Оптимальности заимствован из математического программирования и теории управления. Методологической основой теории оптимизации экономики является принцип народно-хозяйственной оптимальности, т. . изучение экономических явлений с позиций целого, с позиций всего народного хозяйства. К. о. призван помочь обосновать решение. Практические задачи обоснования решения можно условно подразделить на 3 типа. Сущность задач 1-го типа заключается в необходимости выбора наилучшего варианта действий, обеспечивающих достижение вполне определенного, т. е. заданного результата при минимальном расходе ресурсов. В задачах 2-го типа объем имеющихся ресурсов зафиксирован, нужно найти наилучший вариант их использования для получения максимального результата. Задачи, в которых поиск наилучшего варианта ведется при отсутствии жестких ограничений как по объему используемых ресурсов, так и по конечному результату, относятся к 3-му типу. При обосновании решений оперируют понятием степень достижения цели, которую характеризуют определенным показателем. Ресурсы, имеющиеся в распоряжении общества, отрасли или предприятия, ограничены, поэтому объем ресурсов, выделяемых на одну цель , в какой-то степени зависит от того, сколько их выделено на др. цели. Следовательно, любой вариант распределения ресурсов прямо или косвенно касается одновременно несколько целей и поэтому характеризуется несколькими показателями. Решение задачи любого типа в принципе сводится к рассмотрению множества альтернатив с последующей их сравнительной оценкой и выбором наилучшей. Примером задачи 1-го типа может служить т. . транспортная задача. В стране имеется n мест добычи угля, откуда он доставляется т потребителям, расположенным в различных городах страны. Известна стоимость доставки тонны угля из i-го места добычи (i = 1, 2,..., n) в j-й пункт потребления (j = 1, 2,..., m). Количество угля xj, необходимое каждому потребителю, также известно. Следует определить план доставки потребителям требующегося количества угля при минимуме затрат. Решение такой задачи методологически просто, поскольку значения всех показателей, характеризующих результаты действий, - xj зафиксированы (являются ограничениями в виде равенств). Каждый вариант плана обеспечения потребителей углем оценивается одним переменным показателем - затратами, являющимися К. о. Значительно сложнее решать задачи подобного типа, когда, кроме денежных затрат, приходится учитывать расход материальных, трудовых и др. ресурсов, которые иногда не удается выразить в денежной форме. Аналогичные трудности возникают в задачах 2-го типа, поскольку результаты распределения ресурсов характеризуются несколькими показателями, имеющими переменное значение . Случай , когда сравниваются различные варианты капиталовложений в развитие отрасли, производственные объединения или отдельные предприятия и соответствующие им конечные результаты работы, является примером задачи 3-го типа. С такими задачами чаще всего приходится встречаться в процессе планирования, когда нужно решить, что лучше - повысить производственные возможности за счет увеличения капиталовложений или, предположим, оставить те и др. на прежнем уровне. Результаты каждого решения характеризуются сочетанием значений нескольких показателей. Чтобы установить, какое из возможных решений лучше, нужно сравнить их по нескольким показателям. В этом случае может возникнуть необходимость в формировании К. о., который облегчит сравнительную оценку альтернатив. В качестве К. о. можно использовать величину, которая, как и отдельные показатели, измеряется в непрерывной или дискретной шкалах. Причем дискретные оценки могут быть порядковыми и метрическими. Порядковая шкала представляет собой последовательность различных сочетаний значений показателей, составленную исходя из соответствия этих сочетаний определенным целям. При использовании подобной шкалы для сравнения вариантов нельзя установить, насколько один результат лучше другого, можно только определить, какой из вариантов лучше других. Метрическая шкала, в отличие от порядковой, допускает оценку «расстояния» между двумя соседними порядками (рангами), т. е. позволяет установить, насколько одна альтернатива лучше другой. Примером порядковой шкалы для одного показателя могут быть словесные (качественные) определения степени достижения намеченной цели: полное удовлетворение какой-либо потребности , частичное удовлетворение потребности и т. . Показатель, выраженный в метрической шкале, может представлять собой объем продукции определенного назначения. На практике чаще всего приходится сравнивать альтернативы, различающиеся конечными результатами и затратами типа «лучше и дороже», «хуже и дешевле». Причем результаты характеризуются несколькими показателями. Задачи подобного типа иногда называют задачами векторной оптимизации. При этом компонентами вектора являются показатели, характеризующие степень достижения отдельных целей. Среди сравниваемых вариантов обычно выделяют рациональные, к числу которых относятся варианты, обеспечивающие достижение определенного результата при минимуме затрат или достижение максимального результата при определенных затратах. Выбор наилучшего (оптимального) варианта из числа рациональных может производиться с помощью соответствующих К. о. Объективная необходимость сравнивать варианты по нескольким несоизмеримым показателям является основной причиной трудностей, которые нужно преодолеть при формировании К. о. Нельзя считать лучшим вариант, при котором один показатель невозможно дальше увеличивать, не уменьшая значения хотя бы одного из остальных (т. н. оптимум или максимум по Парето). К. о. должен быть таким, чтобы в общем случае можно было сравнивать варианты, когда один из показателей (одна из компонент вектора) возрастает, а другой уменьшается. По-видимому, самое большое, на что можно рассчитывать при сравнении векторов (сочетаний значений нескольких показателей, характеризующих степень достижения различных целей),- это установление предпочтений между ними, т. е. оценка векторов с помощью порядковой шкалы. Следует заметить, что оценки векторов по порядковой шкале вполне достаточно для сравнения вариантов и выбора наилучшего из них. В условиях социалистического общества все решения, принимаемые на различных уровнях в системе планирования и управления, должны в максимально возможной степени соответствовать высшей цели - наиболее полному удовлетворению потребностей общества. Эта цель может быть достигнута при условии постановки и последующего достижения определенной совокупности социально-экономических целей, предусматривающих удовлетворение всех потребностей общества. Для удовлетворения потребностей общество должно производить различную продукцию. Необходимость в этой продукции зависит от уровня удовлетворения личных и др. непроизводственных потребностей сегодня и в будущем. Т. о., уровень развития производства можно рассматривать как аргумент , функцией которого является степень удовлетворения непроизводственных потребностей общества. Одна из задач планирования - определение наиболее рациональных пропорций в производстве различных продуктов. В процессе планирования должны быть рассмотрены варианты распределения трудовых и др. ресурсов, имеющихся в распоряжении общества, и выбран тот вариант, который в наибольшей степени отвечает потребностям общества. Маркс писал, что «общественная потребность, то есть потребительная стоимость в общественном масштабе, - вот что определяет здесь долю всего общественного рабочего времени, которая приходится на различные особые сферы производства» (Маркс К. и Энгельс Ф., Соч., 2 изд., т. 25, . 2, . 186). Т. о., сравнительная оценка вариантов народно-хозяйственного плана должна производиться по критерию, отражающему степень соответствия плана общественным потребностям. Планы реализуются во времени и пространстве. Следовательно, в общем случае значения отдельных показателей должны характеризовать изменения степени удовлетворения потребностей в разные годы периода планирования и в различных районах страны. Сравнение вариантов плана по большому числу показателей представляет значительные трудности. Чтобы уменьшить число показателей, прибегают к обобщению информации. Чем выше уровень планирующего органа, тем больше степень обобщения. Так, для принятия решения на высшем уровне степень удовлетворения определенной потребности населения, по-видимому, можно представить как отношение планируемого объема производства продуктов некоторого вида к количеству продуктов (услуг), обеспечивающему данную потребность в соответствии с платежеспособным спросом населения, а также за счет общественных фондов. При этом степень удовлетворения потребности будет характеризоваться одним показателем W. Чтобы избежать необходимости оперировать значениями этого показателя в разные годы, можно учитывать его значение на конец планируемого периода. Это допустимо, если предполагается равномерное увеличение значения показателя по годам. Если исходить из необходимости удовлетворения n потребностей общества, то каждый вариант народно-хозяйственного плана будет характеризоваться, как минимум , сочетанием значений n показателей W1, W2,..., Wn. Сравнительная оценка вариантов плана, разрабатываемого на любом уровне, может производиться либо непосредственно по сочетанию значений показателей, либо по специально сформированному К. о. Главным требованием, которому должен отвечать К. о., используемый на любом уровне, является возможность обеспечить оценку вариантов исходя из поставленной цели. Одним из способов отражения соответствия различных сочетаний значений нескольких показателей высшей цели является упорядоченная последовательность этих сочетаний. Выбор или формирование К. о. - главный вопрос сравнительной оценки альтернатив. При этом основным методологическим принципом является системный подход к оценке возможных решений. Сущность системного подхода заключается в том, что целесообразность тех или иных изменений объекта определяется с учетом его взаимосвязей, исходя из интересов системы, составной частью которой является рассматриваемый объект . Нельзя дать заранее какие-либо рекомендации относительно конкретного содержания К. о. Они могут быть сделаны только после рассмотрения общих целей и установления степени соответствия различных сочетаний значений показателей, характеризующих объект, целям, которые стоят перед системой. При обосновании решений особое значение имеет учет неопределенности, например, характеристик разрабатываемой техники, ее стоимости, условий, в которых она будет использоваться, и т. п. Существует формальная «теория принятия решений», которая рассматривает различные способы формирования критерия оценки альтернатив в условиях неопределенности: критерий максимина, критерий минимаксного сожаления и т. п. Сравнение альтернатив нужно всегда проводить по одному критерию. Однако это не исключает возможности поочередной оценки вариантов сначала по одному, а затем по другому критерию. Вопросам количественного обоснования решений в условиях неопределенности уделено значительное внимание в литературе по анализу систем. Анализ систем представляет собой метод оценки альтернатив в условиях неопределенности при наличии нескольких противоречивых целей. Применение этого метода облегчает обоснование целей действий, а также выявление преимуществ и недостатков альтернативных вариантов действия. Однако окончательный выбор осуществляется руководителем, ответственным за принятие решения. Лит.: Льюс Р. Д., Райфа Х., Игры и решения, пер. с англ., М., 1961; Пугачев . Ф., Оптимизация планирования (теоретические проблемы), М., 1968; Федоренко Н. П., О разработке системы оптимального функционирования экономики, М., 1968; Солнышков . С., Как обосновать решение, М., 1972. Ю. С. Солнышков.

Основная проблема постановки задачи оптимальности - формулировка целевой функции (ЦФ). Все выходные параметры являются функциями внутренних параметров и, следовательно, не могут изменяться независимо друг от друга. Среди них всегда можно найти такие параметры, что улучшение одного из них приводит к ухудшению другого. Такие параметры называются конфликтными.

Если среди выходных параметров можно выделить параметр, наиболее важный и наиболее полно характеризующий свойства объекта, то его естественно и принять за ЦФ. Это частный критерий. В большинстве частных критериев в качестве ЦФ принимают один из выходных параметров, все остальные выходные параметры в виде соответствующих условий работоспособности относят к ограничениям. Например, при проектировании космического аппарата (КА) применяют критерий начальной массы аппарата при заданной массе полезного груза, поскольку она в значительной степени влияет на стоимость выведения КА на орбиту. Следовательно, минимизируются затраты топлива. Применяются, например, ограничения типа равенств на угловую дальность (траекторию) и неравенств на время полета.

Однако в большинстве случаев отдать предпочтение одному среди качественно разнородных величин довольно трудно, поэтому прибегают к построению комплексного критерия, при котором ЦФ объединяет все или большинство выходных параметров. Рассмотрим наиболее распространенные из комплексных критериев.

Мультипликативные критерии . Они могут применяться в тех случаях, когда в ТЗ отсутствуют условия работоспособности типа равенства и выходные параметры не могут принимать нулевые значения.

Тогда ЦФ, подлежащая максимизации, имеет вид:

f (x ) = ,

где: ‘+" - ограничения, при которых необходимо максимальное увеличение функции;

‘-" - ограничения, при которых необходимо минимизировать функцию.

Удобство этого критерия в том, что не требуется нормирования.

Например, к числу указанных ограничений в ряде задач относятся: ‘+"- КПД, мощность; ‘-" - габариты, вес.

Аддитивные критерии . В аддитивных критериях целевая функция образуется путем сложения выходных параметров, преобразованных к безразмерным слагаемым. Это осуществляется с помощью введения нормирующих множителей - весовых коэффициентов. Нормирование необходимо для объединения нескольких выходных параметров, имеющих в общем случае различную физическую размерность. Тогда ЦФ имеет вид:

f (x )= ω j y j (x ),

где ω j - весовой коэффициент, определяемый самим инженером или группой экспертов.

Статистические критерии . Оптимизация имеет целью получения максимальной вероятности Р выполнения условий работоспособности. Эту вероятность и принимают в качестве ЦФ. Например, применение статистического критерия позволяет добиться наименьшего процента брака при серийном производстве спроектированных изделий, т. е. получить максимальную серийную пригодность, или, используя статистические данные по старению, можно получить объекты, имеющие высокую надежность.

Максимальные (минимальные) критерии . Введем количественную оценку степени выполнения j-го условия работоспособности, обозначим ее через Z j и назовем запасом работоспособности параметра y j . Расчет запаса по j-му выходному параметру можно выполнить различными способами, например:

где - весовой коэффициент;

Номинальное значение j-го выходного параметра;

Величина, характеризующая разброс j-го выходного параметра. Рекомендуется 5 ≤≤ 20.

Если в качестве целевой функции рассматривается запас только того выходного параметра, который в данной точке x является наихудшим с позиции выполнения требований ТЗ, то:

f (x )= min (x ), 1≤ j m .

где m - количество запасов работоспособности.

Поэтому ставится задача о выборе такой стратегии поиска x, которая максимизировала бы минимальный из запасов, т. е.

max f(x)=max min (x), 1 ≤ j ≤ m, x X Д ,

где X Д - допустимая для поиска область.

Задача оптимизационного проектирования технических объектов в некоторых случаях можно сформулировать как задачу безусловной оптимизации (без ограничений), но наиболее типичной является условия оптимизации, дающая условие целевой функции при наличии ограничений.

В зависимости от диапазона исследования различают методы локальной и глобальной оптимизации, которые могут и не совпадать.

В зависимости от порядка используемых производных целевой функции по управляемым параметрам методы оптимизации делят на методы нулевого, первого и второго порядков. В методах нулевого порядка (прямых методах) информация о производных не используется. Для методов первого порядка необходимо вычислять как значение функции качества, так и ее первые частные производные (градиентные методы). В методах второго порядка организация поиска экстремума ведется с учетом значений целевой функции, ее первых и вторых производных.

В зависимости от количества управляемых параметров ЦФ различают методы одномерного и многомерного поиска. В зависимости от вида ММ при решении задач оптимального проектирования можно использовать следующие методы: исследование функций классического анализа; метод множителей Лагранжа; вариационное исчисление; принцип максимума Понтрягина; динамическое программирование; линейное программирование; нелинейное программирование; методы случайного поиска и др.

Все градиентные методы используют особенности поведения градиента, которые заключаются в том, что градиент ортогонален к гиперповерхности целевой функции в точке его определения и это направление совпадает с локальным направлением наибыстрейшего возрастания целевой функции. Способ выбора шага, направления поиска или того и другого одновременно определяют сущность метода. Особенностью метода наискорейшего спуска является движение с оптимальным шагом, рассчитанным с помощью одномерной минимизации целевой функции по шагу вдоль антиградиентного направления. Действительно, если в какой - либо точке x направление поиска определено, то целевая функция может считаться функцией переменного параметра шага, характеризующего положение новой точки на x заданной прямой. Поэтому алгоритм метода наискорейшего спуска содержит следующие этапы.

  • 1. Вычисление частных производных целевой функции по управляемым параметрам в исходной или промежуточной точке.
  • 2. Нахождение одним из методов одномерного поиска оптимального вдоль антиградиентного направления.
  • 3. Вычисление координат новой точки x .

Движение прекращается вдоль одного направления, когда линия направления поиска становится касательной к какой - либо линии равного уровня. Каждое направление движения к экстремуму ортогонально предшествующему, если ЦФ квадратичная.

В отличие от градиентных, методы поисковой оптимизации хорошо программируются и требуют меньших затрат машинного времени. Для них характерен выбор направления поиска оптимума по результатам последовательных вычислений ЦФ. По способу точки испытаний ЦФ поисковые методы оптимизации делятся на детерминированные методы поиска и методы случайного поиска. В детерминированных методах переход их предыдущей точки в последующую происходит в соответствии с некоторым алгоритмом, определяющим тот или иной метод. В методах случайного поиска в этот процесс вносится некоторый элемент случайности.

Рассмотрим работу одного из детерминированных методов, предложенный Вудом. Метод поочередно реализует две стратегии поиска: «исследующий поиск» и «поиск по образцу». Вначале задаются исходными значениями элементов x, а также элементов вектора приращений Δ x . «Исследующий поиск» заключается в следующем. Циклически по каждой переменной x вычисляют значение целевой функции для x i + Δ x i и x i - Δ x i , оставляя при этом остальные переменные неизменными. Если окажется, что значение ЦФ улучшается при изменении x на величину ± Δ x i , то новое значение фиксированной переменной принимают равным x i + Δ x i или x i - Δ x i . Аналогичные действия выполняют и для остальных переменных.

После проведения одного (или более) «исследующего поиска» переходят к стратегии «поиска по образцу», заключающейся в следующем. В направлении вектора, определяемого изменениями переменных, которые улучшают значение целевой функции, делают несколько ускоряющихся шагов до тех пор, пока значение ЦФ продолжают уменьшаться. Длину шага при «поиске по образцу» для ускорения увеличивают пропорционально числу удачных шагов введением некоторого множителя. Если «поиск по образцу» после серии удачных шагов перестает улучшать значение целевой функции, то возвращаются к стратегии «исследующего поиска».

Описанный поиск прекращается при выполнении одного из следующих трех условий:

  • 1) ЦФ достигает некоторого заранее установленного значения;
  • 2) значения ЦФ оказываются меньше заранее определенных чисел (в задаче минимизации);
  • 3) разность между последним и предыдущим значениями ЦФ не превышают некоторого заранее установленного уровня.

Идея методов случайного поиска заключается в том, чтобы перебором совокупностей случайных значений управляемых параметров найти оптимальное значение ЦФ. В отличие от детерминированных методов, в методах случайного поиска направления поиска выбираются случайными на основе генерации в ЭВМ псевдослучайных чисел посредством специальных программ.

Среди многих разновидностей методов случайного поиска простейшим будет слепой поиск (метод Монте-Карло). На (k+1)-м шаге поиска выбирается случайная точка из допустимой области, вычисляется значение x k+1 и сравнивается со значением, полученным на предыдущем шаге. Если , то запоминаются координаты точки и новое значение ЦФ, иначе делается попытка достичь успеха либо изменяя направление на противоположное, либо выбирая новое случайное направление.

Отсутствие универсального метода оптимизации послужило причиной появления множества узкоспециализированных методов, приспособленных к решению отдельных задач. Рассмотрим такие методы, которые можно применить для оптимизаций конструкций элементов и узлов ракетных комплексов.

Обычно оптимизируемая величина связана с экономичностью работы рассматриваемого объекта (аппарат, цех, завод). Оптимизируемый вариант работы объекта должен оцениваться какой-то количественной мерой - критерием оптимальности .

Критерием оптимальности называется количественная оценка оптимизируемого качества объекта.

На основании выбранного критерия оптимальности составляется целевая функция , представляющая собой зависимость критерия оптимальности от параметров, влияющих на ее значение. Вид критерия оптимальности или целевой функции определяется конкретной задачей оптимизации. Таким образом, задача оптимизации сводится к нахождению экстремума целевой функции.

Наиболее общей постановкой оптимальной задачи является выражение критерия оптимальности в виде экономической оценки (производительность, себестоимость продукции, прибыль, рентабельность). Однако в частных задачах оптимизации, когда объект является частью технологического процесса, не всегда удается или не всегда целесообразно выделять прямой экономический показатель, который бы полностью характеризовал эффективность работы рассматриваемого объекта. В таких случаях критерием оптимальности может служить технологическая характеристика, косвенно оценивающая экономичность работы агрегата (время контакта, выход продукта, степень превращения, температура). Например, устанавливается оптимальный температурный профиль, длительность цикла "реакция-регенерация".

Рассмотрим более подробно требования, которые должны предъявляться к критерию оптимальности.

1. Критерий оптимальности должен выражаться количественно.

2. Критерий оптимальности должен быть единственным.

3. Критерий оптимальности должен отражать наиболее существенные стороны процесса.

4. Желательно чтобы критерий оптимальности имел ясный физический смысл и легко рассчитывался.

Любой оптимизируемый объект схематично можно представить в соответствии с рис. 2.

При постановке конкретных задач оптимизации желательно критерий оптимальности записать в виде аналитического выражения.

В том случае, когда случайные возмущения невелики и их воздействие на объект можно не учитывать, критерий оптимальности может быть представлен как функция входных , выходных и управляющих параметров:

Так как , то при фиксированных можно записать:
.

Математическое программирование ("планирование") – это раздел математики, занимающийся разработкой методов отыскания экстремальных значений функции, на аргументы которой наложены ограничения. Методы математического программирования используются в экономических, организационных, военных и др. системах для решения так называемых распределительных задач . Распределительные задачи возникают в случае, когда имеющихся в наличии ресурсов не хватает для выполнения каждой из намеченных работ эффективным образом и необходимо наилучшим образом распределить ресурсы по работам в соответствии с выбранным критерием оптимальности.


Временем рождения линейного программирования принято считать 1939г., когда была напечатана брошюра Леонида Витальевича Канторовича "Математические методы организации и планирования производства". Американский математик А. Данциг в 1947 году разработал весьма эффективный конкретный метод численного решения задач линейного программирования (он получил название симплекс метода ).

Линейное программирование - это метод математического моделирования, разработанный для оптимизации использования ограниченных ресурсов. ЛП успешно применяется в военной области, индустрии, сельском хозяйстве, транспортной отрасли, экономике, системе здравоохранения и даже в социальных науках. Широкое использование этого метода также подкрепляется высокоэффективными компьютерными алгоритмами, реализующими данный метод. На алгоритмах линейного программирования базируются оптимизационные алгоритмы для других, более сложных типов моделей и задач исследования операций (ИО), включая целочисленное, нелинейное и стохастическое программирование.

Оптимизационная задача – это экономико-математическая задача, которая состоит в нахождении оптимального (максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений.

В самом общем виде задача линейного программирования математически записывается следующим образом:

где X = (x 1 , x 2 , ... , x n) ; W – область допустимых значений переменных x 1 , x 2 , ... , x n ;f(Х) – целевая функция.

Для того чтобы решить задачу оптимизации, достаточно найти ее оптимальное решение, т.е. указать такое, что при любом .

Оптимизационная задача является неразрешимой, если она не имеет оптимального решения. В частности, задача максимизации будет неразрешимой, если целевая функция f(Х) не ограничена сверху на допустимом множестве W .

Методы решения оптимизационных задач зависят как от вида целевой функции f(Х) , так и от строения допустимого множества W . Если целевая функция в задаче является функцией n переменных, то методы решения называют методами математического программирования.

Характерные черты задач линейного программирования следующие:

Задачей линейного программирования называется задача исследования операций, математическая модель которой имеет вид:

(2)
(3)
(4)
(5)

При этом система линейных уравнений (3) и неравенств (4), (5), определяющая допустимое множество решений задачи W , называется системой ограничений задачи линейного программирования, а линейная функция f(Х) называется целевой функцией или критерием оптимальности .

При описании реальной ситуации с помощью линейной модели следует проверять наличие у модели таких свойств, как пропорциональность и аддитивность . Пропорциональность означает, что вклад каждой переменной в целевой функции и общий объем потребления соответствующих ресурсов должен быть прямо пропорционален величине этой переменной. Например, если, продавая j -й товар в общем случае по цене 100 рублей, фирма будет делать скидку при определенном уровне закупки до уровня цены 95 рублей, то будет отсутствовать прямая пропорциональность между доходом фирмы и величиной переменной x j . Т.е. в разных ситуациях одна единица j -го товара будет приносить разный доход. Аддитивность означает, что целевая функция и ограничения должны представлять собой сумму вкладов от различных переменных. Примером нарушения аддитивности служит ситуация, когда увеличение сбыта одного из конкурирующих видов продукции, производимых одной фирмой, влияет на объем реализации другого.

Допустимое решение – это совокупность чисел (план ) X = (x 1 , x 2 , ... , x n) , удовлетворяющих ограничениям задачи. Оптимальное решение – это план, при котором целевая функция принимает свое максимальное (минимальное) значение.

На следующем шаге рассмотрим построение модели линейного программирования на примере .

Этапы операционного исследования и их содержание

Не существует строгой регламентации хода и содержания операционного исследования, но в любом выполненном проекте можно выделить характерные для ИСО этапы разработки.

1. Постановка задачи. Она включает содержательное описание задачи: объект и цель исследования, внутренние и внешние условия, ресурсы, значения параметров или их оценки, возможные способы действий и возможные результаты, другую имеющуюся информацию. Эту работу выполняют совместно ЛПР и аналитик. После тщательного анализа первоначальной постановки аналитик уточняет с ЛПР содержание задачи по всœем аспектам и особо согласовывает показатель, который предлагается в качестве критерия оптимальности.

2. Построение математической модели. Характер задач исследования операций таков, что их решение не может проводиться путем натурного эксперимента или физического моделирования. К примеру, выбор места и мощности нового производства, определœение оптимального плана выпуска продукции, формирование портфеля заказов немыслимо производить путем реализации и сравнения различных вариантов. Такая ситуация в науке не нова: так в астрономии нельзя манипулировать небесными телами, но предсказывать положение планет солнечной системы возможно благодаря использованию математической модели. Модели, и в частности математические, широко применяются в различных областях. Математические модели исследования операций отличаются своей направленностью, которая отражается в структуре модели. Математическая модель в ИСО включает:

зависимость критерия от управляемых и неуправляемых переменных;

уравнения, отражающие связи между переменными, к примеру, уравнения на основе материально-энергетических балансов;

ограничения, обусловленные реальными условиями и требованиями к показателям и переменным (неотрицательность, целочисленность, комплектность, допустимые и/или директивные значения и т.п.). В конкретных задачах могут отсутствовать отдельные составляющие модели полностью или частично за исключением критериальной функции, которая должна быть в модели обязательно.

3. Проверка адекватности модели. Математическая модель представляет собой формализованную гипотезу исследователя о реальных взаимосвязях и поведении системы. По этой причине прежде чем использовать модель для прогнозирования последствий и выбора решений, крайне важно убедиться в ее адекватности системе или операции с точки зрения поставленной цели исследования. Для "прозрачных" моделœей может быть достаточной качественная проверка, в сложных моделях необходим количественный анализ. В последнем случае для моделирования поведения на модели используются численные методы (иногда это называют прямой задачей: по задаваемым входам нужно определить выходы). Для осуществляемых ранее операций проверка адекватности может производиться по ретроспективным данным (при отсутствии качественных изменений в операции). В других случаях проверка проводится путем наблюдения за реакцией модели и системы на одинаковые решения. При обнаружении неадекватности модель корректируется: при качественном совпадении повысить количественную адекватность можно путем уточнения коэффициентов модели, при более серьезных расхождениях может потребоваться изменение и/или добавление ограничений и уравнений или даже построение другого вида модели. Следует заметить, что такая проверка невозможна для вновь разрабатываемых операций, и тогда приходится довольствоваться качественным тестированием модели.

4. Поиск оптимального решения на модели. Это центральный этап операционного исследования (с математической точки зрения - обратная задача). Он заключается в определœении решения, оптимального в смысле принятого критерия. Для отыскания оптимального решения на математической модели применяются методы оптимизации, главным образом методы математического программирования.

5. Анализ оптимального решения. Сюда входит анализ чувствительности полученного решения, параметрический и вариантный анализ, выявление альтернативных оптимальных решений и др. Анализ чувствительности критерия к отклонению переменных от их оптимальных значений позволяет определить разумные требования к точности реализации оптимального решения. Результаты параметрического и вариантного анализа показывают, каким будет оптимальное решение при изменении коэффициентов модели, состава ограничений или при изменении критерия. При этом может устанавливаться значимость отдельных элементов модели, то есть их влияние на оптимальное значение критерия. В случае неединственности оптимального решения появляется дополнительная возможность выбора по показателю, который не представлен в критерии. Важное место в анализе решения отводится интерпретации полученных результатов в терминах предметной области Л ПР.

6. Внедрение результатов исследования. Здесь главное требование состоит в крайне важности непосредственного участия разработчиков на всœех стадиях реализации предлагаемых решений.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, применение научных методов в ИСО отличается всœесторонним количественным исследованием, основанным на математической модели и ставящим своей целью определœение оптимального решения в интересах ЛПР.

Поставленная в операции цель может быть достигнута по-разному и в разной степени в зависимости от принимаемых решений. Критерий есть тот показатель, который характеризует (оценивает) эффективность решений с точки зрения достижения цели, а следовательно, позволяет выбрать среди них наилучшее. В ИСО применяют равнозначные термины: критерий оптимальности, критерий эффективности, целœевая функция. Последний термин подчеркивает неразрывную связь критерия с целью. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, решение может быть оптимальным только в смысле конкретного критерия в пределах адекватности используемой модели.

В исследовании операций к критерию предъявляются определœенные требования. Наиболее важные из них следующие.

1. Критерий должен быть количественной и неслучайной величиной.

2. Критерий должен правильно и полно отражать поставленную цель. Его можно рассматривать как количественную модель качественной цели.

3. Критерий должен иметь простой и понятный ЛПР физический смысл.

4. Критерий должен быть чувствителœен к управляемым (искомым) переменным.

При исследовании действующих систем к критерию могут предъявляться дополнительные требования, такие как измеримость, статистическая однозначность, статистическая эффективность и др.

Множество показателœей, которые в ИСО используются в качестве критериев, можно условно разделить на ряд групп: социальные (среднедушевой доход, обеспеченность жильем и т.п.), экономические (прибыль, рентабельность, себестоимость и др.), технико-экономические (производительность, урожайность и др.), технико-технологические (прочность, чистота материала, другие физические или химические показатели), прочие. Οʜᴎ приведены в порядке убывания глобальности применения: первые применяются в системах более высокого уровня (страна, регион, предприятие), последние - в основном на уровне процесса, объекта.

При этом во многих случаях не удается полностью отразить поставленную цель одним критерием и тем более это невозможно, когда в операции преследуется более одной цели. К примеру, цели типа повышение уровня жизни, улучшение экологической обстановки и т.п. нельзя "покрыть" одним критерием. В таких ситуациях вводится несколько показателœей, характеризующих достижение цели. Как правило, оптимальные решения, получаемые по разным показателям-критериям, не совпадают, что создает неопределœенность в выборе окончательного решения. Задачи, в которых приходится определять наилучшее решение по нескольким критериям, называются многокритериальными или задачами векторной оптимизации. Οʜᴎ составляют особый и более сложный класс задач исследования операций.

Критерием оптимальности называется количественная оценка оптимизируемого качества объекта. Иным образом, критерий оптимальности – это главный признак, по которому судят о том, насколько хорошо функционирует технологическая система, работает данный процесс, и т.д., а также, насколько хорошо решена задача .

Критерий оптимальности является одним из выходов системы, и, к нему предъявляются следующие требования:

1. Критерий оптимальности должен выражаться количественно;

2. Критерий оптимальности должен быть единственным;

3. Величина критерия оптимальности должна изменяться монотонно (без разрывов и скачков);

4. Критерий оптимальности должен отражать наиболее существенные стороны процесса;

5. Желательно чтобы критерий оптимальности имел ясный физический смысл и легко рассчитывался.

На выбранного критерия оптимальности составляется целевая функция, представляющая собой зависимость критерия оптимальности от параметров, влияющих на ее значение. Вид критерия оптимальности или целевой функции определяется конкретной задачей . Таким образом, задача сводится к нахождению экстремума целевой функции.

Наиболее общей постановкой оптимальной задачи является выражение критерия оптимальности в виде экономической оценки (производительность, себестоимость продукции, прибыль, рентабельность). Однако в частных задачах , когда объект является частью технологического процесса, не всегда удается или не всегда целесообразно выделять прямой экономический показатель, который бы полностью характеризовал эффективность работы рассматриваемого объекта. В таких случаях критерием оптимальности может служить технологическая характеристика, косвенно оценивающая экономичность работы агрегата (время контакта, выход продукта, степень превращения, ). Например, устанавливается оптимальный температурный профиль, длительность цикла - " - регенерация" и т.п.. Однако, в любом случае критерий оптимальности имеет экономическую природу.

Различают простые и сложные критерии . Критерий оптимальности называется простым , если требуется определить экстремум целевой функции без задания условий на какие-либо другие величины. Такие критерии обычно используются при решении частных задач (например, определение максимальной целевого продукта, оптимального времени пребывания реакционной смеси в аппарате и др.).

Критерий оптимальности называется сложным , если необходимо установить экстремум целевой функции при некоторых условиях, которые накладываются на ряд других величин и ограничений. Таким образом, процедура решения задачи обязательно включает, помимо выбора управляющих параметров, еще и установление ограничений на эти параметры. Ограничения могут накладываться как по технологическим, так и по экономическим соображениям. Различают следующие основные ограничения:

1. По количеству и качеству сырья и продукции (состав сырья, качество продукции, производительность и др.);

2. По условиям технологии (размеры аппарата, время пребывания, зажигания и деструктурирования