Во время учебы студенты очень часто сталкиваются с разнообразными уравнениями. Одно из них - уравнение регрессии - рассмотрено в данной статье. Такой тип уравнения применяется специально для описания характеристики связи между математическими параметрами. Данный вид равенств используют в статистике и эконометрике.

Определение понятия регрессии

В математике под регрессией подразумевается некая величина, описывающая зависимость среднего значения совокупности данных от значений другой величины. Уравнение регрессии показывает в качестве функции определенного признака среднее значение другого признака. Функция регрессии имеет вид простого уравнения у = х, в котором у выступает зависимой переменной, а х - независимой (признак-фактор). Фактически регрессия выражаться как у = f (x).

Какие бывают типы связей между переменными

В общем, выделяется два противоположных типа взаимосвязи: корреляционная и регрессионная.

Первая характеризуется равноправностью условных переменных. В данном случае достоверно не известно, какая переменная зависит от другой.

Если же между переменными не наблюдается равноправности и в условиях сказано, какая переменная объясняющая, а какая - зависимая, то можно говорить о наличии связи второго типа. Для того чтобы построить уравнение линейной регрессии, необходимо будет выяснить, какой тип связи наблюдается.

Виды регрессий

На сегодняшний день выделяют 7 разнообразных видов регрессии: гиперболическая, линейная, множественная, нелинейная, парная, обратная, логарифмически линейная.

Гиперболическая, линейная и логарифмическая

Уравнение линейной регрессии применяют в статистике для четкого объяснения параметров уравнения. Оно выглядит как у = с+т*х+Е. Гиперболическое уравнение имеет вид правильной гиперболы у = с + т / х + Е. Логарифмически линейное уравнение выражает взаимосвязь с помощью логарифмической функции: In у = In с + т* In x + In E.

Множественная и нелинейная

Два более сложных вида регрессии - это множественная и нелинейная. Уравнение множественной регрессии выражается функцией у = f(х 1 , х 2 ...х с)+E. В данной ситуации у выступает зависимой переменной, а х - объясняющей. Переменная Е - стохастическая, она включает влияние других факторов в уравнении. Нелинейное уравнение регрессии немного противоречиво. С одной стороны, относительно учтенных показателей оно не линейное, а с другой стороны, в роли оценки показателей оно линейное.

Обратные и парные виды регрессий

Обратная - это такой вид функции, который необходимо преобразовать в линейный вид. В самых традиционных прикладных программах она имеет вид функции у = 1/с + т*х+Е. Парное уравнение регрессии демонстрирует взаимосвязь между данными в качестве функции у = f (x) + Е. Точно так же, как и в других уравнениях, у зависит от х, а Е - стохастический параметр.

Понятие корреляции

Это показатель, демонстрирующий существование взаимосвязи двух явлений или процессов. Сила взаимосвязи выражается в качестве коэффициента корреляции. Его значение колеблется в рамках интервала [-1;+1]. Отрицательный показатель говорит о наличии обратной связи, положительный - о прямой. Если коэффициент принимает значение, равное 0, то взаимосвязи нет. Чем ближе значение к 1 - тем сильнее связь между параметрами, чем ближе к 0 - тем слабее.

Методы

Корреляционные параметрические методы могут оценить тесноту взаимосвязи. Их используют на базе оценки распределения для изучения параметров, подчиняющихся закону нормального распределения.

Параметры уравнения линейной регрессии необходимы для идентификации вида зависимости, функции регрессионного уравнения и оценивания показателей избранной формулы взаимосвязи. В качестве метода идентификации связи используется поле корреляции. Для этого все существующие данные необходимо изобразить графически. В прямоугольной двухмерной системе координат необходимо нанести все известные данные. Так образуется поле корреляции. Значение описывающего фактора отмечаются вдоль оси абсцисс, в то время как значения зависимого - вдоль оси ординат. Если между параметрами есть функциональная зависимость, они выстраиваются в форме линии.

В случае если коэффициент корреляции таких данных будет менее 30 %, можно говорить о практически полном отсутствии связи. Если он находится между 30 % и 70 %, то это говорит о наличии связей средней тесноты. 100 % показатель - свидетельство функциональной связи.

Нелинейное уравнение регрессии так же, как и линейное, необходимо дополнять индексом корреляции (R).

Корреляция для множественной регрессии

Коэффициент детерминации является показателем квадрата множественной корреляции. Он говорит о тесноте взаимосвязи представленного комплекса показателей с исследуемым признаком. Он также может говорить о характере влияния параметров на результат. Уравнение множественной регрессии оценивают с помощью этого показателя.

Для того чтобы вычислить показатель множественной корреляции, необходимо рассчитать его индекс.

Метод наименьших квадратов

Данный метод является способом оценивания факторов регрессии. Его суть заключается в минимизировании суммы отклонений в квадрате, полученных вследствие зависимости фактора от функции.

Парное линейное уравнение регрессии можно оценить с помощью такого метода. Этот тип уравнений используют в случае обнаружения между показателями парной линейной зависимости.

Параметры уравнений

Каждый параметр функции линейной регрессии несет определенный смысл. Парное линейное уравнение регрессии содержит два параметра: с и т. Параметр т демонстрирует среднее изменение конечного показателя функции у, при условии уменьшения (увеличения) переменной х на одну условную единицу. Если переменная х - нулевая, то функция равняется параметру с. Если же переменная х не нулевая, то фактор с не несет в себе экономический смысл. Единственное влияние на функцию оказывает знак перед фактором с. Если там минус, то можно сказать о замедленном изменении результата по сравнению с фактором. Если там плюс, то это свидетельствует об ускоренном изменении результата.

Каждый параметр, изменяющий значение уравнения регрессии, можно выразить через уравнение. Например, фактор с имеет вид с = y - тх.

Сгруппированные данные

Бывают такие условия задачи, в которых вся информация группируется по признаку x, но при этом для определенной группы указываются соответствующие средние значения зависимого показателя. В таком случае средние значения характеризуют, каким образом изменяется показатель, зависящий от х. Таким образом, сгруппированная информация помогает найти уравнение регрессии. Ее используют в качестве анализа взаимосвязей. Однако у такого метода есть свои недостатки. К сожалению, средние показатели достаточно часто подвергаются внешним колебаниям. Данные колебания не являются отображением закономерности взаимосвязи, они всего лишь маскируют ее «шум». Средние показатели демонстрируют закономерности взаимосвязи намного хуже, чем уравнение линейной регрессии. Однако их можно применять в виде базы для поиска уравнения. Перемножая численность отдельной совокупности на соответствующую среднюю можно получить сумму у в пределах группы. Далее необходимо подбить все полученные суммы и найти конечный показатель у. Чуть сложнее производить расчеты с показателем суммы ху. В том случае если интервалы малы, можно условно взять показатель х для всех единиц (в пределах группы) одинаковым. Следует перемножить его с суммой у, чтобы узнать сумму произведений x на у. Далее все суммы подбиваются вместе и получается общая сумма ху.

Множественное парное уравнение регрессии: оценка важности связи

Как рассматривалось ранее, множественная регрессия имеет функцию вида у = f (x 1 ,x 2 ,…,x m)+E. Чаще всего такое уравнение используют для решения проблемы спроса и предложения на товар, процентного дохода по выкупленным акциям, изучения причин и вида функции издержек производства. Ее также активно применяют в самых разнообразным макроэкономических исследованиях и расчетах, а вот на уровне микроэкономики такое уравнение применяют немного реже.

Основной задачей множественной регрессии является построение модели данных, содержащих огромное количество информации, для того чтобы в дальнейшем определить, какое влияние имеет каждый из факторов по отдельности и в их общей совокупности на показатель, который необходимо смоделировать, и его коэффициенты. Уравнение регрессии может принимать самые разнообразные значения. При этом для оценки взаимосвязи обычно используется два типа функций: линейная и нелинейная.

Линейная функция изображается в форме такой взаимосвязи: у = а 0 + a 1 х 1 + а 2 х 2 ,+ ... + a m x m . При этом а2, a m , считаются коэффициентами «чистой» регрессии. Они необходимы для характеристики среднего изменения параметра у с изменением (уменьшением или увеличением) каждого соответствующего параметра х на одну единицу, с условием стабильного значения других показателей.

Нелинейные уравнения имеют, к примеру, вид степенной функции у=ах 1 b1 х 2 b2 ...x m bm . В данном случае показатели b 1 , b 2 ..... b m - называются коэффициентами эластичности, они демонстрируют, каким образом изменится результат (на сколько %) при увеличении (уменьшении) соответствующего показателя х на 1 % и при стабильном показателе остальных факторов.

Какие факторы необходимо учитывать при построении множественной регрессии

Для того чтобы правильно построить множественную регрессию, необходимо выяснить, на какие именно факторы следует обратить особое внимание.

Необходимо иметь определенное понимание природы взаимосвязей между экономическими факторами и моделируемым. Факторы, которые необходимо будет включать, обязаны отвечать следующим признакам:

  • Должны быть подвластны количественному измерению. Для того чтобы использовать фактор, описывающий качество предмета, в любом случае следует придать ему количественную форму.
  • Не должна присутствовать интеркорреляция факторов, или функциональная взаимосвязь. Такие действия чаще всего приводят к необратимым последствиям - система обыкновенных уравнений становится не обусловленной, а это влечет за собой ее ненадежность и нечеткость оценок.
  • В случае существования огромного показателя корреляции не существует способа для выяснения изолированного влияния факторов на окончательный результат показателя, следовательно, коэффициенты становятся неинтерпретируемыми.

Методы построения

Существует огромное количество методов и способов, объясняющих, каким образом можно выбрать факторы для уравнения. Однако все эти методы строятся на отборе коэффициентов с помощью показателя корреляции. Среди них выделяют:

  • Способ исключения.
  • Способ включения.
  • Пошаговый анализ регрессии.

Первый метод подразумевает отсев всех коэффициентов из совокупного набора. Второй метод включает введение множества дополнительных факторов. Ну а третий - отсев факторов, которые были ранее применены для уравнения. Каждый из этих методов имеет право на существование. У них есть свои плюсы и минусы, но они все по-своему могут решить вопрос отсева ненужных показателей. Как правило, результаты, полученные каждым отдельным методом, достаточно близки.

Методы многомерного анализа

Такие способы определения факторов базируются на рассмотрении отдельных сочетаний взаимосвязанных признаков. Они включают в себя дискриминантный анализ, распознание обликов, способ главных компонент и анализ кластеров. Кроме того, существует также факторный анализ, однако он появился вследствие развития способа компонент. Все они применяются в определенных обстоятельствах, при наличии определенных условий и факторов.

И корреляция

1.1. Понятие регрессии

Парной регрессией называется уравнение связи двух переменных у и х

вида y = f (x ),

где у – зависимая переменная (результативный признак); х – независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.

Линейная регрессия описывается уравнением: y = a + b × x +e .

Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.

Примеры регрессий, нелинейных по объясняющим переменным, но ли-

нейных по оцениваемым параметрам:

· полиномы разных степеней

· равносторонняя гипербола:

Примеры регрессий, нелинейных по оцениваемым параметрам:

· степенная

· показательная

· экспоненциальная

Наиболее часто применяются следующие модели регрессий:

– прямой

– гиперболы

– параболы

– показательной функции

– степенная функция

1.2. Построение уравнения регрессии

Постановка задачи. По имеющимся данным n наблюдений за совместным

изменением двух параметров x и y {(xi ,yi ), i=1,2,...,n} необходимо определить

аналитическую зависимость ŷ=f(x) , наилучшим образом описывающую данные наблюдений.

Построение уравнения регрессии осуществляется в два этапа (предполагает решение двух задач):

– спецификация модели (определение вида аналитической зависимости

ŷ=f(x) );

– оценка параметров выбранной модели.

1.2.1. Спецификация модели

Парная регрессия применяется, если имеется доминирующий фактор, который и используется в качестве объясняющей переменной.

Применяется три основных метода выбора вида аналитической зависимости:

– графический (на основе анализа поля корреляций);

– аналитический, т. е. исходя из теории изучаемой взаимосвязи;

– экспериментальный, т. е. путем сравнения величины остаточной дисперсии D ост или средней ошибки аппроксимации , рассчитанных для различных

моделей регрессии (метод перебора).

1.2.2. Оценка параметров модели

Для оценки параметров регрессий, линейных по этим параметрам, используется метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических значений ŷx при тех же значениях фактора x минимальна, т. е.

В случае линейной регрессии параметры а и b находятся из следующей

системы нормальных уравнений метода МНК:

(1.1)

Можно воспользоваться готовыми формулами, которые вытекают из этой

(1.2)

Для нелинейных уравнений регрессии, приводимых к линейным с помощью преобразования (x , y ) → (x’ , y’ ), система нормальных уравнений имеет

вид (1.1) в преобразованных переменных x’ , y’ .

Коэффициент b при факторной переменной x имеет следующую интерпретацию: он показывает, на сколько изменится в среднем величина y при изменении фактора x на 1 единицу измерения .

Гиперболическая регрессия :

x’ = 1/x ; y’ = y .

Уравнения (1.1) и формулы (1.2) принимают вид

Экспоненциальная регрессия:

Линеаризующее преобразование: x’ = x ; y’ = lny .

Модифицированная экспонента : , (0 < a 1 < 1).

Линеаризующее преобразование: x’ = x ; y’ = ln y – К│.

Величина предела роста K выбирается предварительно на основе анализа

поля корреляций либо из качественных соображений. Параметр a 0 берется со

знаком «+», если y х > K и со знаком «–» в противном случае.

Степенная функция:

Линеаризующее преобразование: x’ = ln x ; y’ = ln y .

Показательная функция:

Линеаризующее преобразование: x’ = x ; y’ = lny .

https://pandia.ru/text/78/146/images/image026_7.jpg" width="459" height="64 src=">

Парабола второго порядка :

Парабола второго порядка имеет 3 параметра a 0, a 1, a 2, которые определяются из системы трех уравнений

1.3. Оценка тесноты связи

Тесноту связи изучаемых явлений оценивает линейный коэффициент

парной корреляции rxy для линейной регрессии (–1 ≤ r xy ≤ 1)

и индекс корреляции ρxy для нелинейной регрессии

Имеет место соотношение

Долю дисперсии, объясняемую регрессией , в общей дисперсии результативного признака у характеризует коэффициент детерминации r2xy (для линейной регрессии) или индекс детерминации (для нелинейной регрессии).

Коэффициент детерминации – квадрат коэффициента или индекса корреляции.

Для оценки качества построенной модели регрессии можно использовать

показатель (коэффициент, индекс) детерминации R 2 либо среднюю ошибку аппроксимации.

Чем выше показатель детерминации или чем ниже средняя ошибка аппроксимации, тем лучше модель описывает исходные данные.

Средняя ошибка аппроксимации – среднее относительное отклонение

расчетных значений от фактических

Построенное уравнение регрессии считается удовлетворительным, если

значение не превышает 10–12 %.

1.4. Оценка значимости уравнения регрессии, его коэффициентов,

коэффициента детерминации

Оценка значимости всего уравнения регрессии в целом осуществляется с

помощью F -критерия Фишера.

F- критерий Фишера заключается в проверке гипотезы Но о статистической незначимости уравнения регрессии. Для этого выполняется сравнение

фактического F факт и критического (табличного) F табл значений F- критерия

Фишера.

F факт определяется из соотношения значений факторной и остаточной

дисперсий, рассчитанных на одну степень свободы

где n – число единиц совокупности; m – число параметров при переменных.

Для линейной регрессии m = 1 .

Для нелинейной регрессии вместо r 2 xy используется R 2.

F табл – максимально возможное значение критерия под влиянием случайных факторов при степенях свободы k1 = m , k2 = n – m – 1 (для линейной регрессии m = 1) и уровне значимости α.

Уровень значимости α вероятность отвергнуть правильную гипотезу

при условии, что она верна. Обычно величина α принимается равной 0,05 или

Если F табл < F факт, то Н0 -гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если F табл > F факт, то гипотеза Но не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.

Для оценки статистической значимости коэффициентов линейной регрессии и линейного коэффициента парной корреляции применяется

t- критерий Стьюдента и рассчитываются доверительные интервалы каждого

из показателей.

Согласно t- критерию выдвигается гипотеза Н0 о случайной природе показателей, т. е. о незначимом их отличии от нуля. Далее рассчитываются фактические значения критерия t факт для оцениваемых коэффициентов регрессии и коэффициента корреляции путем сопоставления их значений с величиной стандартной ошибки

Стандартные ошибки параметров линейной регрессии и коэффициента

корреляции определяются по формулам

Сравнивая фактическое и критическое (табличное) значения t- статистики

t табл и t факт принимают или отвергают гипотезу Но.

t табл – максимально возможное значение критерия под влиянием случайных факторов при данной степени свободы k = n– 2 и уровне значимости α.

Связь между F- критерием Фишера (при k 1 = 1; m =1) и t- критерием Стьюдента выражается равенством

Если t табл < t факт, то Но отклоняется, т. е. a, b и не случайно отличаются

от нуля и сформировались под влиянием систематически действующего фактора х. Если t табл > t факт, то гипотеза Но не отклоняется и признается случайная природа формирования а, b или https://pandia.ru/text/78/146/images/image041_2.jpg" width="574" height="59">

F табл определяется из таблицы при степенях свободы k 1 = 1, k 2 = n –2 и при

заданном уровне значимости α. Если F табл < F факт, то признается статистическая значимость коэффициента детерминации. В формуле (1.6) величина m означает число параметров при переменных в соответствующем уравнении регрессии.

1.5. Расчет доверительных интервалов

Рассчитанные значения показателей (коэффициенты a , b , ) являются

приближенными, полученными на основе имеющихся выборочных данных.

Для оценки того, насколько точные значения показателей могут отличаться от рассчитанных, осуществляется построение доверительных интервалов.

Доверительные интервалы определяют пределы, в которых лежат точные значения определяемых показателей с заданной степенью уверенности, соответствующей заданному уровню значимости α.

Для расчета доверительных интервалов для параметров a и b уравнения линейной регрессии определяем предельную ошибку Δ для каждого показателя:

Величина t табл представляет собой табличное значение t- критерия Стьюдента под влиянием случайных факторов при степени свободы k = n –2 и заданном уровне значимости α.

Формулы для расчета доверительных интервалов имеют следующий вид:

https://pandia.ru/text/78/146/images/image045_3.jpg" width="188" height="62">

где t γ – значение случайной величины, подчиняющейся стандартному нормальному распределению, соответствующее вероятности γ = 1 – α/2 (α – уровень значимости);

z’ = Z (rxy) – значение Z- распределения Фишера, соответствующее полученному значению линейного коэффициента корреляции rxy .

Граничные значения доверительного интервала (r– , r+ ) для rxy получаются

из граничных значений доверительного интервала (z– , z+ ) для z с помощью

функции, обратной Z- распределению Фишера

1.6. Точечный и интервальный прогноз по уравнению линейной

регрессии

Точечный прогноз заключается в получении прогнозного значения уp , которое определяется путем подстановки в уравнение регрессии

соответствующего (прогнозного
) значения x p

Интервальный прогноз заключается в построении доверительного интервала прогноза, т. е. нижней и верхней границ уpmin, уpmax интервала, содержащего точную величину для прогнозного значения https://pandia.ru/text/78/146/images/image050_2.jpg" width="37" height="44 src=">

и затем строится доверительный интервал прогноза , т. е. определяются нижняя и верхняя границы интервала прогноза

Контрольные вопросы:

1. Что понимается под парной регрессией?

2. Какие задачи решаются при построении уравнения регрессии?

3. Какие методы применяются для выбора вида модели регрессии?

4. Какие функции чаще всего используются для построения уравнения парной регрессии?

5. Какой вид имеет система нормальных уравнений метода наименьших квадратов в случае линейной регрессии?

6. Какой вид имеет система нормальных уравнений метода наименьших квадратов в случае гиперболической, показательной регрессии?

7. По какой формуле вычисляется линейный коэффициент парной корреляции r xy ?

8. Как строится доверительный интервал для линейного коэффициента парной корреляции?

9. Как вычисляется индекс корреляции?

10. Как вычисляется и что показывает индекс детерминации?

11. Как проверяется значимость уравнения регрессии и отдельных коэффициентов?

12. Как строится доверительный интервал прогноза в случае линейной регрессии?

Лабораторная работа № 1

Задание.1 На основании данных табл. П1 для соответствующего варианта (табл. 1.1):

1. Вычислить линейный коэффициент парной корреляции.

2. Проверить значимость коэффициента парной корреляции.

3. Построить доверительный интервал для линейного коэффициента парной корреляции.

Задание. 2 На основании данных табл. П1 для соответствующего варианта (табл. 1.1):

1. Построить предложенные уравнения регрессии, включая линейную регрессию.

2. Вычислить индексы парной корреляции для каждого уравнения.

3. Проверить значимость уравнений регрессии и отдельных коэффициентов линейного уравнения.

4. Определить лучшее уравнение регрессии на основе средней ошибки аппроксимации.

5. Построить интервальный прогноз для значения x = x max для линейного

уравнения регрессии.

Требования к оформлению результатов

Отчет о лабораторной работе должен содержать разделы:

1. Описание задания;

2. Описание решения лабораторной работы (по этапам);

3. Изложение полученных результатов.

Таблица П1

Исходные данные к лабораторным работам1, 2

Наличие предметов длительного пользования в домашних хозяйствах по регионам Российской Федерации (европейская часть территории без республик Северного Кавказа) (по материалам выборочного обследования бюджетов домашних хозяйств; на 100 домохозяйств; штук)

1. Построим уравнения степенной нелинейной регрессии вида для пар переменных y, x.

Нахождение модели парной регрессии сводится к оценке уравнения в целом и по параметрам (b0, b1). Для оценки параметров однофакторной модели используют метод наименьших квадратов (МНК). В МНК получается, что сумма квадратов отклонений фактических значений показателя у от теоретических ух минимальна

Сущность нелинейных уравнений заключается в приведении их к линейному виду и как при линейных уравнениях решается система относительно коэффициентов b0 и b1.


Рисунок 3 Линия регрессии на корреляционном поле. Ось ординат - значения y(Производительность труда), ось абсцисс -значения x (Удельный вес рабочих в составе ППП)


Рисунок 4 Линия регрессии на корреляционном поле. Ось ординат - значения y(степ.функция), ось абсцисс -значения x (Удельный вес рабочих в составе ППП)

Найдем среднюю относительную ошибку аппроксимации по формуле:

Полученное значение между 20% и 50%, что свидетельствует о существенности удовлетворительного отклонения расчетных данных от фактических, по которым построена эконометрическая модель.

Исследование статистической значимости уравнения регрессии в целом проводится с помощью F-критерия Фишера. Расчетное значение критерия находится по формуле:

Для парного уравнения p = 1.

Табличное (теоретическое) значение критерия находится по таблице критических значений распределения Фишера-Снедекора по уровню значимости по уровню значимости б и двум числам степеней свободы k1 = p = 1 и k2 = n - p - 1 = 51.

Если Fрасч

то гипотеза принимается, а уравнение линейной регрессии в целом считается статистически незначимым (с вероятностью ошибки 5%).Для уравнения Fрасч = 0,01609). Неравенство выполняется. Уравнение в целом статистически незначимо.

Теснота нелинейной корреляционной связи определяется с помощью корреляционных отношений (индекс корреляции).

Федеральное государственное образовательное учреждение

высшего профессионального образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт управления бизнес-процессами и экономики

Кафедра теоретические основы экономики

Лабораторная работа № 2

по курсу эконометрика

(Вариант 6,7)

Руководитель _______________ Середа В.А.

подпись, дата

Студентка, УБ11-01 _______________ Ивкина В.А.

подпись, дата

Красноярск 2013

Введение……………………………………….…………………………………..3

1.Линейное уравнение регрессии 5

2.Показательное уравнение регрессии 7

3.Логарифмическое уравнение регрессии 9

Логарифмическое уравнение регрессии определяется по формуле: 9

Получим логарифмическое уравнение регрессии: 9

5.Поверка значимости уравнения регрессии и отдельных коэффициентов линейного уравнения 13

6.Построение интервального прогноза для значения x = xmax по уравнению линейной регрессии 17

7.Средний коэффициент эластичности 20

Цель работы: Закрепить навыки построения уравнений регрессии, графиков уравнений, вычисления оценок и построения доверительных интервалов для уравнений регрессии.

    Построить уравнения регрессии, включая линейную регрессию

    Вычислить индексы парной корреляции для каждого уравнения

    Проверить значимость уравнений регрессии и отдельных коэффициентов линейного уравнения

    Определить лучшее уравнение регрессии на основе средней ошибки аппроксимации

    Построить интервальный прогноз для значения x=x max для линейного уравнения регрессии

    Определить средний коэффициент эластичности

Исходные данные:

Области и республики

Холодильники. Морозильники.(X )

Стиральные машины.(Y)

Белгородская область

Брянская область

Владимирская область

Воронежская область

Ивановская область

Калужская область

Костромская область

Курская область

Липецкая область

Московская область

Орловская область

Рязанская область

Смоленская область

Тамбовская область

Тверская область

Тульская область

Ярославская область

Республика Карелия

Республика Коми

Архангельская область

Вологодская область

Калининградская область

Ленинградская область

Мурманская область

Новгородская область

Псковская область

Краснодарский край

Ставропольский край

Астраханская область

Волгоградская область

Ростовская область

Республика Башкортостан

Республика Марий Эл

Республика Мордовия

Республика Татарстан

Удмуртская Республика

Чувашская Республика

Кировская область

Нижегородская область

Оренбургская область

Пензенская область

Пермская область

Самарская область

Саратовская область

Ульяновская область

  1. Линейное уравнение регрессии

Формула линейного уравнения регрессии (1)

x,y – переменные,

a,b – параметры.

Система нормальных уравнений (2) в общем виде:

(2)

n - количество наблюдений в совокупности.

Система нормальных уравнений с вычисленными коэффициентами:

Решение системы:

Построенное линейное уравнение регрессии:

Рис. 1 График линейного уравнения регрессии

  1. Показательное уравнение регрессии

Показательное уравнение регрессии имеет следующий вид:

,

,

x,y – то же что и в формуле (1),

Найдем b 0 и b 1:

Полечим показательное уравнение регрессии:

  1. Логарифмическое уравнение регрессии

Логарифмическое уравнение регрессии определяется по формуле:

x,y – то же что и в формуле (1),

b – то же что и в формуле (1),

,

(8),

x,y – то же что и в формуле (1),

b – то же что и в формуле (1),

n – то же что и в формуле (2).

Найдем b 0 и b 1:

Получим логарифмическое уравнение регрессии:

Рис. 1 График логарифмического уравнения регрессии

    Индекс парной корреляции для уравнений регрессии

Индекс парной корреляции исчисляется по следующей формуле:

(9)

y – то же что и в формуле (1),

–значение у из исследуемого уравнения,

Среднее значение y.

Для оценки качества построенной модели регрессии можно использовать индекс детерминации или среднюю ошибку аппроксимации. Чем выше показатель детерминации или чем ниже ошибка аппроксимации, чем лучше модель описывает исходные данные.

Средняя ошибка аппроксимации – среднее относительное отклонение расчетных значений от фактических, рассчитывается по формуле

(10)

y – то же что и в фотрмуле (1).

Индекс парной корреляции для линейного уравнения регрессии:

= 0,92

Средняя ошибка аппроксимации для линейного уравнения регрессии:

=6%

Индекс парной корреляции для логарифмического уравнения регрессии:

=0,95

Средняя ошибка аппроксимации для логарифмического уравнения регрессии:

=6%

Построенные уравнения считаются удовлетворительными, так как . Коэффициент детерминации достаточно высокий, а это значит, что модель точно описывает исходные данные.

  1. Поверка значимости уравнения регрессии и отдельных коэффициентов линейного уравнения

Оценка статистической значимости уравнения регрессии в целом осуществляется с помощью F -критерия Фишера.

Величина F факт определяется по формуле:

(11)

Индекс детерминации,

n – то же что и в формуле (2),

m – число параметров при переменных.

Таким образом, для

F факт = =2,26

F крит =4,08, при α =0,05

F табл >

=3,87

F крит =4,08, при α =0,05

F табл >F факт, гипотеза H 0 не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.

Для оценки статистической значимости коэффициентов линейной регрессии применяется t- критерий Стьюдента:

Величины t b ,факт и t a , факт определяются по формулам:

a,b – то же что и в формуле (1),

r xy - коэффициент корреляции,

m b , m a , m rxy – стандартные ошибки.

Таким образом, для

    линейного уравнения регрессии:

    логарифмического уравнения регрессии:

Стандартные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам:

(15)

(16)

Где, y – то же что и в формуле (1),

–то же что и в формуле (9),

То же что и в формуле (9),