Кафедра технологии и организации машиностроительного производства

Дисциплина

"Технологические основы машиностроения" (ТОМ)

Конспект лекций

Э.П. Выскребенцев

Для студентов специальности "Металлургическое оборудование"

3-й курс дневного обучения

4-й курс заочного обучения

Основная

1. Ковшов А.Н. Технология машиностроения: учебник для вузов. – М.: Машиностроение, 1987

Дополнительная.

2. Горбацевич А.Ф., Шкред В.А. Курсовое проектирование по технологии машиностроения. – Минск: Вышейша школа, 1985.

3. Воробьев А.Н. Технология машиностроения и ремонт машин: Учебник. – М.: Высшая школа, 1981.

4. Корсаков В.С. Технология машиностроения. – М.: Машиностроения, 1987.

5. Справочник технолога-машиностроителя: в 2 кн. под. ред. Косиловой А. Г, – 3-е изд. – М.: Машиностроение, 1985.

6. Балабанов А.Н. Краткий справочник технолога-машиностроителя. – М.:

Изд. стандарт. 1992.

ВВЕДЕНИЕ 5

1 ТИПЫ ПРОИЗВОДСТВА, ФОРМЫ ОРГАНИЗАЦИИ И ВИДЫ

ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ 6

1.1 Типы производства 6

1.2 Виды технологических процессов 9

1.3 Структура технологического процесса и его основные

характеристики 11

1.3.1 Характеристики технологического процесса 15

1.4 Трудоёмкость технологической операции 16

1.5 Основные принципы технологического проектирования 21

2 ТОЧНОСТЬ МЕХАНИЧЕСКОЙ ОБРАБОТКИ 23

2.1 Точность и её определяющие факторы 23

3 ОСНОВЫ БАЗИРОВАНИЯ И БАЗЫ ЗАГОТОВКИ 27

3.1 Погрешность закрепления ε з, 36

3.2 Погрешность положения заготовки ε пр, вызываемая

неточностью приспособления 37

3.3 Базирование заготовки в приспособлении 38

4 КАЧЕСТВО ПОВЕРХНОСТИ ДЕТАЛЕЙ МАШИН И

ЗАГОТОВОК 41

4.1 Влияние технологических факторов на величину

шероховатости 41

4.2 Методы измерения и оценки качества поверхности 46

5 ЗАГОТОВКА ДЕТАЛЕЙ МАШИН 49

5.1 Выбор исходной заготовки и методов ее изготовления 49

5.2 Определение припусков на механическую обработку 51

6 ОСНОВНЫЕ ЭТАПЫ ПРОЕКТИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ

ПРОЦЕССОВ МЕХАНИЧЕСКОЙ ОБРАБОТКИ 60

6.1 Общие положения разработки технологических

процессов 60

6.2 Выбор технологического оборудования 63

6.З. Выбор технологической оснастки 64

6.4. Выбор средств контроля 65

6.5. Формы организации технологических процессов и их

разработка 65

6.6. Разработка групповых технологических процессов 67

6.7. Разработка типовых технологических процессов 70

7 ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ТИПОВЫХ ДЕТАЛЕЙ 72

7.1 Технология производства валов 72

7.2 Технология производства корпусных деталей 82

7.2.1 Технологический маршрут обработки заготовок

корпусов 84

7.3 Технология производства цилиндров 92

7.4 Обработка зубчатых колёс 94

7.4.1 Конструктивные особенности и технические требования к зуб-

чатым колёсам 94

7.4.2 Обработка заготовок зубчатых колёс с центральным отверстием. 95

7.4.3 Нарезание зубьев 97

7.4.4 Изготовление крупногабаритных зубчатых колёс 100

7.4.5 Обработка заготовок до нарезания зубьев 101

7.5 Технология изготовления рычагов 102

8. ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ СБОРКИ 111

ВВЕДЕНИЕ

Технология машиностроения - наука, занимающаяся изучением закономерностей процессов изготовления машин, с целью использования этих закономерностей для обеспечения выпуска машин заданного качества, в установленном производственной программой количестве и при наименьших народнохозяйственных затратах.

Технология машиностроения развивалась с развитием крупной промышленности, накапливая соответствующие методы и приемы для изготовления машин. В прошлом технология машиностроения получила наибольшее развитие в оружейных мастерских и заводах, где изготовлялось оружие в больших количествах.

Так, на Тульском оружейном заводе еще в 1761 г. впервые в мире было разработано и внедрено изготовление взаимозаменяемых деталей и их контроль с помощью калибров.

Технология машиностроения создавалась трудами российских ученых: А.П. Соколовского, Б.С. Балакшина, В.М. Кована, B.C. Корсакова и др,

К технологии машиностроения относятся следующие области производства: технология литья; технология обработки давлением; технология сварки; технология механической обработки; технология сборки машин, т. е. технология машиностроения охватывает все этапы процесса изготовления машиностроительной продукции.

Однако под технологией машиностроения обычно понимают научную дисциплину, изучающую преимущественно процессы механической обработки заготовок и сборки машин к попутно затрагивающие вопросы выбора заготовок методы их изготовления. Это объясняется тем, что в машиностроении заданные формы деталей с требуемой точностью и качеством их поверхностей достигаются в основном механической обработкой. Сложность процесса механической обработки и физической природы, происходящих при этом явлений, вызвана трудностью изучения всего комплекса вопросов в пределах одной технологической дисциплины и обусловила образование нескольких таких дисциплин: резание металлов; режущие инструменты; металлорежущие станки; конструирование приспособлений; проектирование машиностроительных цехов и заводов; взаимозаменяемость, стандартизация и технические измерения; технология конструкционных материалов; автоматизация и механизация технологических процессов и др.

1 ТИПЫ ПРОИЗВОДСТВА, ФОРМЫ ОРГАНИЗАЦИИ И ВИДЫ

ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

1.1 Типы производства

Тип производства - классификационная категория производства, выделяемая по признакам широты номенклатуры, регулярности, стабильности и объема выпуска изделий.

Объем выпуска изделий - количество изделий определенных наименования, типоразмера и исполнения, изготовленных или ремонтируемых объединением, предприятием или его подразделением в течение планируемого интервала времени.

Реализуют следующие типы производства: единичное; серийное; массовое. Одной из основных характеристик типа производства является коэффициент закрепления операций. Коэффициент закрепления операций – отношение числа всех различных технологических операций, выполненных или подлежащих выполнению в течение месяца, к числу рабочих мест.

Единичное производство - производство, характеризуемое широкой номенклатурой изготовляемых или ремонтируемых изделий и малым объемом выпуска изделий.

В единичном производстве изделия изготовляются единичными экземплярами, разнообразными по конструкции или размерам, причем повторяемость этих изделий редка или совсем отсутствует (турбостроение, судостроение). В этом типе производства, как правило, используется универсальные оборудование, приспособления и измерительный инструмент, рабочие имеют высокую квалификацию, сборка производится с использованием слесарнопригоночных работ, т. е. по месту и т. п. Станки располагаются по признаку однородности обработки, т. е. создаются участки станков, предназначенных для одного вида обработки - токарных, строгальных, фрезерных и др.

Коэффициент закрепления операций > 40.

Серийное производство - производство, характеризуемое ограниченной номенклатурой изделий, изготовляемых или ремонтируемых периодически повторяющимися партиями выпуска.

В зависимости от количества изделий в партии или серии и значение коэффициента закрепления операций различают мелкосерийное, среднесерийное и крупносерийное производство.

Коэффициент закрепления операций в соответствии со стандартом принимают равным:

а) для мелкосерийного производства - свыше 20 до 40 включительно;

б) для среднесерийного производства - свыше 10 до 20 включительно;

в) для крупносерийного производства - свыше 1 до 10 включительно.

Основные признаки серийного производства: станки применяются разнообразных типов: универсальные, сспециализированные, специальные, автоматизированные; кадры различной квалификации;

работа может производиться на настроенных станках; применяется и разметка, и специальные приспособления; сборка без пригонки и т. д.

Оборудование располагается в соответствии с предметной формой организации работы.

Станки располагаются в последовательности технологических операций для одной или нескольких деталей, требующиходинакового порядка выполнения операций. В той же последовательности, очевидно, образуется и движение деталей (так называемые, предметно-замкнутые участки). Обработка заготовок производится партиями. При этом время выполнения операций на отдельных станках может быть не согласовано с временем операций на других станках.

Изготовленные детали хранятся во время работы у станков и затем транспортируются всей партией.

Массовое производство - производство, характеризуемое узкой номенклатурой и большим объемом выпуска изделий, непрерывно изготовляемых или ремонтируемых в течение продолжительного времени.

Коэффициент закрепления операций для массового производства принимают равным единице.

Рассмотрим основы машиностроения с точки зрения обрабатывающей промышленности. Машиностроение занимает ведущее место среди всех других отраслей мировой промышленности, как по занятости населения, так и по стоимости изделий.

Степень развития этой отрасли показывает уровень научно-технического развития и обороноспособности той или иной страны, а также влияет на развитие остальных хозяйственных отраслей.

На сегодняшний день машиностроение включает в себя целый комплекс различных отраслей и производств.
Основы машиностроения подразделяются по техническим и экономическим особенностям производства на трудоемкое, наукоемкое и металлоемкое машиностроение.
А они, в свою очередь, делятся на тяжелое, среднее, точное машиностроение, и производство металлоизделий и заготовок.

К тяжелому относится подъемно-транспортное, железнодорожное машиностроение, ракетно-космическая отрасль, авиационная промышленность, судостроение и энергомашиностроение. А также производство оборудования для химического, сельскохозяйственного, лесопромышленного, нефтегазового и строительного машиностроения.
Среднее включает в себя производство автомобилей, станков, тракторов, инструментальную промышленность и производство оборудования для легкой промышленности. А также робототехнику и производство бытовых приборов и машин.

К точному машиностроению относятся приборостроение, электротехническая промышленность, а также электронное и радиотехническое машиностроение.
Производство металлоизделий подразумевает выпуск гвоздей, крепежей, канатов, проволоки и другой мелкой продукции.
Изучение основ машиностроения невозможно представить без рассмотрения технологии. Ведь создание продукции промышленной отрасли в первую очередь подразумевает разработку технологического процесса. Человек при изготовлении любого изделия ставит перед собой цель сократить количество труда и соблюсти качество.

Для этого необходимо пройти следующие этапы:
1. Разработка проекта, в результате которого появляются чертежи изделия.
2. Изготовление, которое является главной задачей технологии машиностроения.
Технология изучает и применяет различные способы обработки металла, для получения заготовок, создания машин и других изделий машиностроения. История возникновения технологии машиностроения как науки, условно делится на 4 периода:
1. Период накопления зарубежных знаний и опыта в области металлообработки и производства машин.
2. Период обобщения накопленного опыта, его систематизация, и первые попытки разработать общенаучные принципы осуществления технологического процесса.
3. Период интенсивного развития технологии машиностроения, формирования научных основ, публикации работ с описанием технических процессов обработки металлов и изготовления деталей с указанием применяемых инструментов, оборудования и оснастки. В этот период были разработаны методы поточного производства серийного и крупносерийного изготовления машин, деталей, методы обработки металла на высоких скоростях. Стали применять переналаживаемую оснастку и другие технические новшества.
4. Период использования достижений инженерных и фундаментальных наук, применение электронно-вычислительных машин, автоматизация процесса обработки путем программирования станков с ЧПУ. Стали использовать робототехнику, автоматизировать производство с помощью межоперационного транспортирования деталей, осуществлять контроль качества деталей.

Как мы видим, технический прогресс в машиностроительной отрасли развивается стремительно и постоянно. Поэтому осваивать должны не только инженеры и технологи, но и люди, имеющие или собирающиеся открыть свое производство. И не важно, будет это малый бизнес или крупная международная компания, знание основ машиностроения, в современном технологическом и индустриальном мире, необходимо для успеха предприятия.

Развитию и формированию учебной дисциплины «Технология машиностроения» как прикладной науки предшествовал непрерывный прогресс машиностроения на протяжении последних двух столетий. Степень прогресса определяла интенсивность изучения производственных процессов, а, следовательно, и научное их обобщение с установлением закономерностей в технологии механической обработки и сборки.

Производственные процессы в древние времена были примитивными. Оружие затачивали с помощью камней, обладающих абразивными свойствами; вначале режущий инструмент удерживали в рабочем положении рукой, а в дальнейшем прикрепляли к рукоятке прутьями деревьев или сухожилиями животных. Одним из достижений того времени явилось использование вращающегося камня - прообраза заточного станка. В дальнейшем вращательное движение применили для изготовления керамических изделий и изделий цилиндрической формы из дерева, костей животных и, наконец, из металла.

Наряду с устройствами, сообщающими движение режущему инструменту, появились приспособления, передающие движение обрабатываемой заготовке. Прообразом примитивного токарного станка оказался лук, вращающий изделие с помощью тетивы; кремневый резец держали вручную. Постепенно был создан простейший тип токарного станка с конным приводом и по-прежнему ручным удерживанием режущего инструмента.

История возникновения металлообработки в России мало исследована, однако известно, что уже в X в. русские мастера-ремесленники обладали высокой техникой изготовления оружия, предметов домашнего обихода и т. п. Еще в XII в. русские оружейники применяли сверлильные и токарные устройства с ручным приводом и вращательным движением инструмента или обрабатываемой заготовки. В XIV- XVI вв. для изготовления оружия пользовались токарными и сверлильными станками с приводом от водяной мельницы.

В XVI в. в селе Павлово на Оке и в окрестностях г. Тулы существовала металлообрабатывающая промышленность, основанная на использовании местной железной руды. Однако наиболее значительное развитие эта отрасль получила во времена Петра I. Ремесленные мастерские превращались в фабрики и заводы, оборудованные машинами. В этот период (1718-1725) русский механик А. Нартов изобрел для токарного станка механический суппорт, который с помощью зубчатого колеса и рейки перемещался вдоль обрабатываемой детали. А. Нартов также создал ряд других станков оригинальной конструкции (винторезный, зуборезный, пилонасекательный и др.). Одним из выдающихся русских механиков был М. Сидоров, создавший в 1714 г. на Тульском оружейном заводе «вододействующие машины» для сверления оружейных стволов. Тогда же солдат Я. Батищев построил станки для одновременного сверления 24 ружейных стволов, станки для «обтирания» (зачистки) напильниками наружных и внутренних поверхностей орудийных стволов с помощью «водил» от мельничных приводов и др. Работы М. Сидорова и Я. Батищева продолжали мастера-механики XVIII и начала XIX в. А. Сурин, Я- Леонтьев, Л. Собакин, П. Захава и др.

К тому же времени относится деятельность гениального русского ученого 71. В. Ломоносова (1711 - 17G5), который построил лоботокарный, сферотокарный и шлифовальный станки. Изобретатель паровой машины И. И. Ползунов (1728-1764) построил для изготовления некоторых деталей парового котла специальный цилиндрорасточный и другие станки. Русский механик И. П. Кулибин (1735-1818) создал специальные станки для изготовления зубчатых колес часовых механизмов.

Первые шаги в механизации производственных процессов относятся также к этому времени. Так, И. И. Ползунов создал простейшее автоматическое устройство, в котором основным элементом является поплавок на поверхности жидкости. Изменение уровня жидкости заставляло поплавок опускаться или подниматься и тем самым производить те или иные действия посредством системы прикрепленных к нему рычагов.

В то время военная промышленность была единственной областью массового производства, она положила начало введению принципа взаимозаменяемости в технологию производства. Установлено, что первая инструкция по организации взаимозаменяемого производства была разработана в России и направлена на Тульский завод почти за 25 лет до первых опытов по взаимозаменяемости французского инженера Леблана и почти за 100 лет до съезда английских промышленников, где Витворт сформулировал основные задачи взаимозаменяемости. Вначале на Тульском оружейном заводе были применены медные калибры, а затем по указу Петра I - лекала для независимой обработки сопрягаемых деталей ружья. Известно, что успешному внедрению взаимозаменяемости содействовали русские лекальщики, изготовлявшие лекала и сложные калибры с высокой для того времени точностью и применявшие при изготовлении калибров искусственное старение. В конце XIX и начале XX в. на некоторых предприятиях начали указывать на рабочих чертежах допуски на изготовление деталей.

Начало изучения технологических процессов, т. е. способов обработки заготовок, в результате которых получается готовое изделие, соответствующее по размерам, форме и качеству поверхности требованиям, предъявляемым к его работе, относится к первым годам прошлого столетия. В 1804 г. акад. В. М. Севергин сформулировал основные положения о технологии, в 1817 г. проф. Московского университета И. А. Двигубский издал книгу «Начальные основания технологии, как краткое описание работ на заводах и фабриках производимых». Первым капитальным трудом, посвященным технологии металлообработки, является трехтомный труд проф. II. А. Тиме «Основы машиностроения. Организация машиностроительных фабрик в техническом и экономическом отношении и производство в них работ» (1885). II. А. Тиме впервые сформулировал основные законы резания и установил правильное понимание сущности этого процесса как последовательного скалывания отдельных элементов металла. Его исследования легли в основу науки о резании металлов, которая получила широкое развитие в нашей стране после Великой Октябрьской социалистической революции. Советские инженеры и техники в содружестве с рабочими-новаторами решили важную проблему современного машиностроения - разработали и внедрили в производство резание с большими скоростями и подачами.

Советская станкоинструментальная промышленность создала станки различного технологического назначения и усовершенствованные конструкции режущего инструмента, обеспечивающие большую производительность и точность при обработке. Все эго позволило советским ученым и инженерам разработать основные закономерности технологических процессов механической обработки.

К первым трудам по технологии машиностроения относятся работы А. П. Соколовского, вышедшие в 1930-1932 гг. Обобщением опыта автотракторной промышленности были «Основы проектирования технологических процессов» А. И. Каширина (1933) и «Технология автотракторостроения» В. М. Кована (1935). В 1933 г. Б. С. Балакшин провел теоретические исследования по технологии машиностроения, основные положения и выводы которых, разработанные им в «Теории размерных цепей», дали возможность технологам путем предварительных расчетов решать технологические задачи, обеспечивающие повышение точности изготовления машин.

Для создания теоретических основ технологии машиностроения большое значение имели работы Н. А. Бородачева по анализу качества и точности производства, К. В. Вогинова, осуществившего обширные исследования жесткости системы станок - приспособление - инструмент - деталь и ее влияния на точность механической обработки, А. А. Зыкова и А. Б. Яхина, положивших начало научному анализу причин возникновения погрешностей при обработке. В 1959 г. вышли «Основы технологии машиностроения» В. М. Кована, содержащие основные научные положения технологии машиностроения и методику технологических расчетов, общих для различных отраслей машиностроения.

Задачи экономии металла и повышения производительности труда при механической обработке теоретически обоснованы работами Г. А. Шаумяна по основам расчета производительности обработки на автоматах и автоматических линиях и др.

В 50…70-х годах проводились многочисленные исследования по адаптивному управлению станками, по групповой обработке, определению влияния различных факторов на точность обработки и качество поверхности. В разработке этих проблем участвовали Б. С. Балакшин, С. П. Митрофанов, П. Е. Дьяченко, М. Е. Егоров, В. С. Корсаков и др. В последние годы многие научно-исследовательские и проектные институты работали над созданием автоматического оборудования с системами числового программного управления (ЧПУ) на микропроцессорах, разработкой нового металлообрабатывающего инструмента с применением природных и синтетических алмазов, минералокерамики, производством стойких абразивных материалов.

XXVI съезд КПСС рассмотрел и утвердил «Основные направления экономического и социального развития СССР на 1981-1985 годы и на период до 1990 года». Главная задача одиннадцатой пятилетки состоит в обеспечении дальнейшего роста благосостояния советских людей на основе устойчивого, поступательного развития народного хозяйства, ускорения научно-технического прогресса и перевода экономики на интенсивный путь развития, более рационального использования производственного потенциала страны, всемерной экономии всех видов ресурсов и улучшения качества работы.

В решении этой задачи существенное место занимает ускорение научно-технического прогресса на базе технического перевооружения производства, создания и выпуска высокопроизводительных машин и оборудования большой единичной мощности, внедрения новой техники и материалов, прогрессивной технологии и систем машин для комплексной механизации, и автоматизации производства. В связи с этим большое внимание уделяется разработке, освоению и внедрению новых высокоэффективных технологических процессов, новых материалов, в том числе и неметаллических, снижению металлоемкости изделий, экономики топливно-энергетических ресурсов, механизации и автоматизации производственных процессов, повышению надежности и долговечности изделий, соответствующих (или превосходящих) по своему техническому уровню и качеству лучшим отечественным и зарубежным аналогам.

Ведущее место в дальнейшем росте экономики страны принадлежит отраслям машиностроения, которые обеспечивают материальную основу технического прогресса всех отраслей народного хозяйства. В настоящее время машиностроение располагает мощной производственной базой, выпускающей свыше четверти всей промышленной продукции страны.

Опережающее развитие машиностроения и металлообработки в условиях растущего дефицита трудовых и энергетических ресурсов и металла предусмотрено с одновременным увеличением выпуска продукции машиностроения не менее чем в 1,4 раза при прогрессивных тенденциях как по увеличению номенклатуры изделий, так и обновлению ее структуры.

Моральное старение продукции машиностроения зачастую наступает значительно быстрее их физического старения, при этом сроки устойчивого массового или серийного производства изделий сократились к настоящему времени с 10… 15 до 3…5 лет, а для постановки на производство новых изделий на каждую тысячу деталей требуется разработать свыше 15 тыс. единиц различной технической документации и изготовить до 5 тыс. различных видов технологического оснащения. Все это требует дальнейшего повышения научно-технического уровня и качества изделий, всестороннего совершенствования технологии методов организации и управления процессами производства.

Практическому осуществлению широкого применения прогрессивных типовых технологических процессов, оснастки и оборудования, средств механизации и автоматизации, соответствующих современным достижениям науки и техники, содействует Единая система технологической подготовки производства (ЕСТПП), обеспечивающая для всех предприятий и организаций системный подход к оптимизации выбора методов и средств технологической подготовки производства (ТПП). Единство структур и положений ТПП предусматривает взаимосвязь ее с другими функциональными подсистемами автоматизированных систем управления (АСУ) всех уровней с применением технических средств обработки информации.

Технологическая подготовка производства, осуществляемая на принципах, установленных основополагающими стандартами ЕСТПП, создает условия для максимального сокращения сроков этой подготовки, быстрейшего освоения новой техники, всестороннего совершенствования технологии н организации производства. Основными принципами ЕСТПП являются: запуск в производство изделий, отработанных на технологичность, широкое применение типовых технологических процессов, стандартизация и унификация оборудования, технологической оснастки и инструмента, автоматизация и механизация инженерно-технических и управленческих работ. Важное место в решении этих задач занимает технология машиностроения.

Основы технологии машиностроения.

Занятие 1. Лекция 1

Литература

Лекция № 1. Основы технологии машиностроения

Тема № 1. ОСНОВЫ ТЕХНОЛОГИИ МАШИНОСТРОЕНИЯ

Л Е К Ц И Я № 1

УТВЕРЖДАЮ

Заведующий кафедрой

ʼʼТехнологии машиностроенияʼʼ,

доцент _______________Чумак П.И.

ʼʼ___ʼʼ ____________________ 20__ᴦ.

Важно заметить, что для студентов 4 курса

Специальности 151001 ʼʼТехнология

машиностроенияʼʼ

д.т.н., профессор Аверичкин Павел Алексеевич

(учёная степень, учёное звание, фамилия и инициалы автора)

(занятие № 1)

По дисциплинœе: ʼʼОсновы технологии машиностроенияʼʼ

МГУПИ – 2009

Лекция: Основы технологии машиностроения

Учебные и воспитательные цели :

1. Изложить систематизированные основы технологии машиностроения.

2.Убедить, в важности производственных и технологических процессов.

3. Ознакомить студентов с видами производства и точностью изготовления изделия.

Время: 2 часа (90 мин.).

Место проведения Аудитория по расписанию.

Основная:

1. И.М.Колесов. Основы технологии машиностроения; Учебник для студентов высш. учеб. заведений М. Машиностроение, 1997 ,-592с.

2. Э.Л.Жуков, И.И.Козырь и др.
Размещено на реф.рф
Основы технологии машиностроения, В 2кн. Кн.1. Учебное пособие для вузов. М. ВШ. 2005. 278с.,ил.

3. Э.Л.Жуков, И.И.Козырь и др.
Размещено на реф.рф
Основы технологии машиностроения, В 2кн. Кн.2. Учебное пособие для вузов. М. ВШ. 2005. 295с.,ил.

Дополнительная:

4. В.В. Клепиков, А.Н. Бодров ʼʼТехнология машиностроенияʼʼ М. ФОРУМ -ИНФРА-М,2004

Учебно-материальное обеспечение:

1. Наглядные пособия: Плакат – Технологический процесс.

2. Технические средства обучения: ʼʼПроекторʼʼ.

3. Дополнительные материалы представлены в электроном виде и доступны для просмотра на компьютере.

ПЛАН ЛЕКЦИИ :

Лекция разработана ʼʼ___ʼʼ_____________2009ᴦ.

_______________________(Аверичкин П.А .)

ʼʼОсновы технологии машиностроенияʼʼ

Вопросы, выносимые на лекцию:

1. Основы технологии машиностроения

2. Основные понятия и определœения

3. Эффективность качества

4. Понятие точности

В природе существует ничтожно малое количество предметов, которые может использовать человек непосредственно без преобразования. По этой причине человеку приходиться приспосабливать предметы природы для удовлетворения своих потребностей.

Современный человек стремиться преобразования предметов природы выполнять с помощью машин.

Человеческое общество постоянно испытывает потребности в новых видах продукции, либо в сокращении затрат труда при изготовлении освоенной продукции. Эти потребности бывают удовлетворены с помощью новых технологических процессов и новых машин. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, стимулом к созданию новой машины всœегда является новый технологический процесс.

Машина полезна лишь, в случае если она обладает требуемым качеством и, т.о., способна удовлетворять потребность людей.

Ресурсы труда в жизни человеческого общества представляют из себянаивысшую ценность.

Создавая машину, человек ставит перед собой две задачи:

Создать машину качественной

Затратить меньшее количество труда при создании машины

Замысел новой машины возникает при разработке технологического процесса изготовления продукции, в производстве которой возникла потребность. Этот замысел выражается в формулировке служебного назначения, которая является исходным документом для проектируемой машины.

Процесс создания машины состоит из двух этапов:

Проектирование

Изготовление

В результате проектирования появляются чертежи машины. В результате изготовления с помощью производственного процесса появляется машина.

Второй этап и составляет основную задачу технологии машиностроения. Создание машины можно представить в виде схемы (рис.1.1). Изготовление машины связано с использованием различных способов обработки металлов.

История возникновения металлообработки в России мало исследована, однако известно, что:

в X в. Русские ремесленники обладали высокой техникой изготовления оружия, предметов обихода и т.п.;

в XII в. Русские оружейники применяли сверлильные и токарные устройства с ручным приводом и вращательным движением инструмента или заготовки;

в XIV – XVI в.в. использовались токарные и сверлильные устройства с приводом от ветряной мельницы;

в XVI в. в селœе Павлове на Оке и в окрестностях ᴦ. Тулы существовала металлообрабатывающая промышленность;

А.И.Нартов (1718-1725) создал механический суппорт для токарного станка;

М.В. Сидоров (1714) на тульском оружейном заводе создал ʼʼвододействующиеʼʼ машины для сверления оружейных стволов;

Яков Батищев построил станок для одновременного сверления 24 ружейных стволов;

М.В.Ломоносов (1711-1765) построил лоботокарные, сферотокарные и шлифовальные станки;

И.И.Ползунов (1728-1764) построил цилиндрорасточные и др.
Размещено на реф.рф
станки для обработки деталей паровых котлов;

И.П.Кулибин (1735-1818) построил станки для изготовления зубчатых колес часовых механизмов;

в конце XIX и начале XX в.в. на некоторых предприятиях начали указывать на рабочих чертежах допуски на изготовление деталей.

Рис. 1.1. Создание машины

Зарождение технологии машиностроения, как отрасли науки связывают появлением трудов, содержащих описание опыта производство процесса.

Впервые сформулировал положение о технологии и определил, что ʼʼтехнология - сфера научных знаний о ремеслах и заводахʼʼ в 1804 ᴦ. Академик В.М.Севергин. А в 1817 ᴦ. Впервые был изложен опыт производства профессором Московского университета И.А. Двигубским в книге ʼʼНачальные основания технологии или краткое описание работ, на заводах и фабриках производимыхʼʼ.

Дальнейшее описание выполнено Тиме И.А. (1838-1920 ᴦ.ᴦ.) в первом капитальном труде ʼʼОсновы машиностроения. Организация машиностроительных фабрик в техническом и экономическом отношении и производство в них работʼʼ, вышедшим в 1885 ᴦ. Позже Гавриленко А.П. (1861-1914ᴦ.ᴦ.) создал курс ʼʼТехнология металловʼʼ.

Затем появились работы не просто обобщающие опыт, но и выявляющие общие зависимости и закономерности. Соколовский А.П. в 1930-1932 ᴦ.ᴦ. издал первый труд по технологии машиностроения. В 1933 ᴦ. Появился труд Каширина А.И. ʼʼОсновы проектирования технологических процессовʼʼ и ʼʼТеория размерных цепейʼʼ, разработанная Балакшиным Б.С., а в 1935ᴦ. – ʼʼТехнология автотракторостроенияʼʼ, в котором Кован В.М. и Бородачев Н.А. занимались анализом качества и точности производства. Исследованием жесткости, применительно к станкам, в 1936 ᴦ. занимался Вотинов К.В. Работы ЗыковаА.А. и Яхина А.Б. положили начало анализу причин возникновения погрешностей при обработке. В 1959 ᴦ. Кован В.М. разработал методику расчета припусков. Исследования в области технологии машиностроения продолжили Глейзер Л.А., Корсаков В.С., Колесов И.М., Чарнко Д.В. и др.,

Технология машиностроения как наука (в современном понимании) прошла в своем развитии несколько этапов. Маталин А.А., автор одного из учебников по технологии машиностроения, выделяет четыре этапа.

Первый этап (до1929-1930 ᴦ.ᴦ.) характеризуется накоплением отечественного и зарубежного производственного опыта изготовления машин. Публикуются описания процессов обработки различных деталей, применяемого оборудования и инструментов. Издаются руководящие и нормативные материалы ведомственных проектных организаций страны.

Второй этап (1930-1941 ᴦ.ᴦ.) характеризуется обобщением и систематизацией накопленного производственного опыта и началом разработки общих научных принципов построения технологических процессов.

Третий этап (1941-1970 ᴦ.ᴦ.) отличается интенсивным развитием технологии машиностроения, разработкой новых технологических идей и формированием научных основ технологической науки.

Четвертый этап – с 1970 ᴦ. По настоящее время отличается широким использованием достижений фундаментальных и общеинженерных наук для решения теоретических проблем и практических задач технологии машиностроения.

Современное представление технологии машиностроения - ϶ᴛᴏ отрасль технической науки, которая изучает связи и закономерности в производственных процессах изготовления машин.

Конструкция любой машины – сложная система двух видов сопряженных множеств связей:

1. свойств материалов;

2. размерных.

Для реализации такой системы связей должен быть создан и осуществлен производственный процесс, который представляет собой другую систему сопряженных множеств связей:

1. свойств материалов (нужны для создания аналогичных связей в машинœе во время производственного процесса);

2. размерных;

3. информационных (для управления производственным процессом);

4. временных и экономических (производственный процесс не может осуществляться вне времени и без затрат живого и овеществленного труда).

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, создание машины сведены к построению двух систем связей (рис.1.2):

1. конструкции машины;

2. производственного процесса изготовления.

Рис.1.2. Системы связей в машинœе

Основы технологии машиностроения. - понятие и виды. Классификация и особенности категории "Основы технологии машиностроения." 2017, 2018.

Отрасль науки, занимающаяся исследованием закономерностей технологических процессов изготовления машиностроительных изде - пий, с целью использования результатов изучения для обеспечения требуемого качества и количества изделий с наивысшими технико - жономическими показателями, называется технологией машинострое­ния.

Объектом технологии машиностроения является технологический процесс, а предметом - установление и исследование внешних и внут­ренних связей, закономерностей технологического процесса. Только на основе их глубокого изучения возможно построение прогрессивных тех­нологических процессов, обеспечивающих изготовление изделий высо­кого качества с минимальными затратами.

Современная технология развивается по следующим основным на­правлениям: создание новых материалов; разработка новых технологиче­ских принципов, методов, процессов, оборудования; механизация и авто­матизация технологических процессов, устраняющая непосредственное участие в них человека. Технологический процесс и орудия труда тесно таимосвязаны. Если осуществление технологического процесса порож­дает необходимость изготовления орудий труда, являясь причиной их появления, то развитие и совершенствование орудий труда в свою оче­редь стимулирует совершенствование самого процесса. Формирование технологии машиностроения как отрасли знания началось с появлением крупного машиностроения. Большой вклад в ее развитие внесли русские умельцы Андрей Чохов, М. В. Сидоров, Я. Батищев, А. К. Нартов и многие другие. Так, например, А. К. Нартов (1680 - 1756 гг.) разработал ряд тех­нологических процессов изготовления оружия, монет, создал для этого оригинальные станки и инструменты.

Одним из первых, описавшим накопленный опыт в технологии ма­шиностроения, был профессор Московского Университета И. Двигуб - і"кий. В 1807 г. он написал книгу "Начальные основания технологии или краткое описание работ на заводах и фабриках производимых". В 1885 г. нышла работа профессора И. И. Тиме (1838 - 1920 гг.) "Основы машино­строения, организация машиностроительных фабрик в техническом и жономическом отношении и производство работ". И, наконец, была из­дана книга проф. А. ГТ. Гавриленко (1861 - 1914 гг.) "Технология метал­лов", в которой обобщен опыт развития технологии металлообработки. Долгие годы этот учебник был основным пособием, по которому училось несколько поколений русских инженеров.

В связи с бурным развитием техники в начале XX века возникла не­обходимость обобщения опыта по разработке и осуществлению техноло­гических процессов. В учебные программы вузов страны были включены дисциплины, описывающие технологические процессы изготовления машин, проектирование приспособлений, цехов и заводов (например "Технология автомобилестроения", "Технология тракторостроения", "Технология станкостроения" и др.). На первом этапе они содержали, главным образом, описательный материал, обобщающий опыт изготов­ления изделий в отрасли.

По мере развития машиностроения, дальнейшего изучения техноло­гии стали выявляться общие закономерности, появились широкие обоб­щения, справедливые для различных отраслей машиностроения. В итоге были сформированы такие технологические дисциплины как основы тех­нологии машиностроения, конструирования приспособлений, проек­тирования машиностроительных цехов и заводов, а также автоматизация производственных процессов и ряд других. В курсе "Основы технологии машиностроения" излагаются общие вопросы для всех отраслей машино­строения, и постепенно он стал общеинженерной дисциплиной, читаемой студентам всех специальностей машиностроительных вузов. В специаль­ной части курса "Технология машиностроения" рассматриваются, глав­ным образом, вопросы, специфичные для данной отрасли машинострое­ния и касающиеся изготовления основных деталей и сборки машин этой отрасли.

Технология машиностроения стала формироваться как отрасль нау­ки на основе обобщения результатов большого труда коллективов заво­дов, научно-исследовательских институтов, высших учебных заведений и работников науки и промышленности. Основы технологии маши­ностроения были созданы, главным образом, трудами советских ученых: Б. С. Балакшина, Н. А. Бородачева, К. В. Вотинова, В. И. Дементьева, Ф. С. Деменьюка, М. Е. Егорова, А. А. Зыкова, А. И. Каширина, В. М. Кова­на, B. C. Корсакова, А. А. Маталина, С. П. Митрофанова, Э. Б. Рыжова, Э. А. Сателя, А. П. Соколовского, Д. В. Чарнко, А. Б. Яхина и многих других.

Наука о технологии - это не просто сумма каких-то знаний о техно­логических процессах, а система строго сформулированных и проверен­ных положений о явлениях и их глубинных связях, выраженных посред­ством особых понятий. С другой стороны, наука о технологии, как и лю­бая другая отрасль знания, - это результат практической деятельности человека; она подчинена целям развития общественной практики и спо­собна служить теоретической основой.

Если наука - система научных знаний, то процесс приобретения тгих знаний является научным познанием. В процессе становления науч­ного познания в области технологии машиностроения можно выделить три стадии: зарождение и развитие эмпирического исследования и перво­начальное накопление эмпирических знаний о технологических про­цессах; зарождение первой научной картины совокупности явлений, имеющих место при осуществлении технологических процессов; по­строение теорий.

Становление технологии машиностроения как научной дисциплины затруднено огромным разнообразием объектов производства (от миниа­тюрных приборов до экскаваторов, от простейших изделий типа молотка до сложнейших машин - таких, как космический корабль), бесчисленным множеством методов изготовления и оборудования для их осуществле­ния. Поэтому развитие научных основ технологии машиностроения дол­гое время находилось на стадии эмпирического исследования.

Постепенное накопление данных эмпирических исследований тех­нологических процессов, выявление отдельных фактов, связей между явлениями, выдвижение различных идей и гипотез позволило сформиро­вать технологию как науку.

На этой основе создано учение о точности обработки деталей, рас­крыты закономерности размерных и временных связей технологических процессов, разработаны расчетные методы, сформулирована система ос­новных понятий и определений, создана методика разработки техноло­гических процессов и др.

К одному из первых фундаментальных трудов по основам техноло­гии машиностроения следует отнести учебник проф. Б. С. Балакшина "Технология станкостроения" и книгу проф. А. П. Соколовского "На­учные основы технологии машиностроения" .

Развитие машиностроения ставит новые проблемы, связанные с по­вышением качества изделий, производительности труда и требует их раз­решения. Современное машиностроение используется практически во всех сферах человеческой деятельности, достигло огромных успехов в повышении ее эффективности и в итоге превратилось в технологическую базу промышленности, определяющую уровень технического развития страны и ее безопасности.

В развитии промышленного производства, в том числе и машино­строения, можно выделить две эры: индустриальную и информационную. Первая прошла свой путь развития, начиная с прошлого века, и характе­ризуется преимущественным развитием отраслей материального произ­водства и, в первую очередь, промышленности. Само производство в значительной степени стало массовым, крупносерийным, ориентирован­ным на рынки большой емкости и на изделия массового спроса.

На смену индустриальной эры пришла информационная эра, пере­ход к которой в ведущих странах Запада начался в 50 - 60-е годы про­шлого столетия и завершился в наиболее экономически развитых стра­нах мира к середине 80-х гг.

В эру индустриализации основным фактором повышения эффектив­ности производства была преимущественно экономия затрат живого тру­да в самых различных сферах. Повышение эффективности использования прошлого труда (производственных фондов, материально-энергетических затрат) осуществлялось, в основном, в форме "экономии на масштабах производства", снижения затрат ресурсов на единицу конечной продук­ции за счет повышения удельной мощности технологического оборудо­вания и др.

Информационную эру отличает преимущественный рост экономики, сферы услуг (как в валовом продукте, так и в численности занятых), осо­бенно для отраслей, связанных с переработкой информации и осуществ­лением посреднической деятельности всех видов.

Производство в информационную эру становится в высшей степени гибким, не массовым, ориентируется на индивидуальные запросы потре­бителей и небольшие по емкости рынки сбыта.

Прошли времена, когда предприятие могло выпускать одну и ту же продукцию десятилетиями. Сегодня в самых современных отраслях про­мышленности (например, в электронике) жизненный цикл изделия со­кращается до нескольких месяцев. Если же говорить о машиностроении, то в нем в среднем за три-пять лет необходимы полная замена выпускае­мых изделий и смена средств технологического обеспечения (технологи­ческих процессов, оборудования, оснастки).

Таким образом, четко видна тенденция сокращения жизненного цикла изделия, обусловленная стремлением производителей быстрее и максимально полнее удовлетворять потребности общества, что, в свою очередь, стимулирует рост этих потребностей. Непрерывно растущие потребности общества порождают рост разнообразия машинострои­тельных изделий, их назначения. Необходимость выпуска конкуренто­способной продукции усиливает эту тенденцию и требует непрерывно­го совершенствования технологических процессов и средств технологи­ческого оснащения.

Современное предприятие должно быть способным быстро перехо­дить на выпуск новых изделий повышенного качества с минимальными издержками. Сложность решения этой задачи усугубляется тем, что но­менклатура выпускаемых изделий и объемы серий в определенной степе­ни являются непредсказуемыми. Это не говорит о полном отсутствии планирования выпуска продукции предприятием - просто планирование строится на основе прогноза сбыта продукции. Главное отличие плани­рования в условиях рынка от централизованного директивного планиро­вания заключается в ориентации производства на конкретного потреби­теля и даже на общественные явления и политические процессы.

Естественно, что роль случайных и неучтенных факторов в прогнозе достаточно велика и поэтому прогноз носит вероятностный характер, в результате годовая программа производства достаточно непредсказуема.

Работа современного предприятия в динамично изменяющихся ус­ловиях заставляет решать "взаимоисключающие" задачи: быстро перехо­дить на выпуск новой продукции и одновременно внедрять новые техно­логии и технику; повышать качество изделий и снижать издержки про­изводства.

В связи с непрерывно растущими требованиями к качеству изделий, быстрой смене выпускаемых изделий непрерывно растет объем техноло­гической подготовки производства в единицу времени. Таким образом, возникает проблема, заключающаяся в том, что технолог в современных условиях должен выполнять в единицу времени не только ббльший объ­ем работ, но и делать ее на более качественном уровне.

Решение этой проблемы лежит в автоматизации труда технолога, а это, в свою очередь, требует дальнейшего развития научных основ тех­нологии машиностроения. Все это должно идти в направлении более глу­бокого изучения закономерностей технологических процессов, повыше­ния уровня обобщений, формализации результатов исследований, при­менения математических методов, совершенствования методов расчета и разработки технологических процессов, проектирования средств техно­логического оснащения, методов организации технологической подго­товки производства.

В процессе эволюции технологии машиностроения сформировались различные формы организации технологических процессов, основу кото­рых составляют три вида технологий: единичная, типовая и групповая, имеющие свои достоинства и недостатки.

С начала становления машиностроения применялась единичная тех­нология, когда под изготовление изделия разрабатывался единичный технологический процесс. Единичный технологический процесс позволя­ет учесть все особенности конкретного изделия и производственные ус­ловия, но требует много времени на его разработку.

С целью сокращения трудоемкости разработки технологических процессов и распространения передового опыта по предприятиям была разработана типовая технология, основоположником которой является профессор А. П. Соколовский.

Групповая технология, основоположником которой является про­фессор С. П. Митрофанов , разработана с целью повышения эффектив­ности изделий широкой номенклатуры. При групповой технологии разные изделия объединяются в группы по общности обору­дования и оснастки для осуществления одной и той же операции, что по­вышает однородность труда при изготовлении разных изделий и позво­ляет поднять его производительность.

С расширением номенклатуры выпускаемых изделий, снижением жизненного цикла рассмотренные выше виды технологий уже не удовле­творяют требованиям производства, поэтому назрела острая необходи­мость поиска нового вида технологии, позволяющей существенно сни­зить сроки технологической подготовки производства и поднять ее эф­фективность.

Перспективным в этом отношении является новый вид технологии - модульная технология . Она базируется на сквозном применении модульного принципа в конструкторско-технологической подготовке производства, когда изделие представляется совокупностью модулей, а под изготовление этих модулей разрабатываются модули технологиче­ского процесса; в свою очередь под осуществление последних создаются модули технологического оборудования и оснастки. Такой подход позво­ляет на каждом предприятии организовывать на модульном уровне эле­ментную базу технологических процессов, оборудования и оснастки и из них методом компоновки строить технологические процессы, системы и приспособления.

Получаемый модульный технологический процесс объединяет в себе достоинства единичной, типовой и групповой технологий, поскольку учитывает все особенности конкретного изделия так же, как и единичный процесс. Идея типизации реализуется на уровне модулей технологиче­ского процесса и так же, как и при групповой технологии, изделия объе­диняются в группы по общности в них модулей, но (в отличие от группо­вой технологии) в этом случае не возникает трудностей в группировании изделий.

В учебнике развивается методологический подход изложения ос­нов технологии машиностроения, разработанный профессором Борисом Сергеевичем Балакшиным с 1946 по 1976 гг., возглавлявшим кафедру технологии машиностроения Московского станкоинструментального института.

Учебник состоит из трех разделов:

Раздел 1 - теоретические основы технологии машиностроения;

Раздел 2 - основы разработки технологического процесса изготов­ления изделий;

Раздел 3 - основы технологической подготовки производства.

В результате изучения дисциплины "Основы технологии машино­строения" студент должен не только уметь разрабатывать технологиче­ские процессы, но и владеть методами технологической подготовки про­изводства. К сожалению, вопросы технологической подготовки произ­водства в учебниках по основам технологии машиностроения или отсут­ствуют, или излагаются фрагментарно. В итоге у студентов не создается цельного представления о сущности и методах технологической подго­товки производства. В связи с изложенным в учебник введен третий раз­дел "Основы технологической подготовки производства", в котором из­лагаются цель, задачи, функции, методы организации и автоматизации технологической подготовки производства.