". Инженеры гордятся своими разработками и напоминают, что до недавнего времени не было самолетов, способных долететь до космоса без посторонней помощи. Так, например, всемирно известный "Буран" в 1988 году совершил два оборота вокруг Земли. Однако он был отправлен в космическое пространство с помощью ракеты-носителя.

В настоящее время специалисты уверяют, что современные аппараты могут добраться до других планет и без носителей. Новый суборбитальный самолет похож на "Буран", но как уверяет его создатель российский инженер Владимир Денисов, он справится при полете в космос без ракеты-носителя. Аппарат уже получил название МГ-19.

Добавим, инженеры намерены вскоре приступить к созданию МГ-19. Об этом сообщается на сайте ok-inform.ru.

Техническая справка

МГ-19 воздушно-космический самолет. МГ-19 разработан на базе разрабатываемого ранее ВКС М-19.

ВКС М-19 был выполнен по аэродинамической схеме «несущий корпус». Корпус аппарата имел треугольную форму в плане с углом стреловидности по передней кромке 75°.

Такая стреловидность была выбрана из условия сохранения высоких несущих свойств аппарата при малом сопротивлении и аэродинамическом нагреве передних кромок на больших скоростях полета. Носовая часть корпуса имела эллиптические поперечные сечения с соотношением полуосей 1/4.


Миделевое сечение располагалось в точке перехода носовой части корпуса в кормовую, на расстоянии 0,67 длины корпуса от носка. Конфигурация ВКС, выполненного по схеме «несущий корпус», обеспечивала достаточно высокий уровень аэродинамических характеристик.

Так, например, аэродинамическое качество на дозвуке составляло величину порядка -7,0, а на гиперзвуке около 3,0, что подтверждалось экспериментальными исследованиями в ЦАГИ.

Проведенные исследования по определению оптимального облика крылатых космических аппаратов, совершающих горизонтальные взлет и посадку «по-самолетному», показали, что наиболее приемлемой формой многорежимного ВКС, летающего на до-, сверх- и гиперзвуковых скоростях в условиях интенсивного нагрева является форма типа «несущий корпус».

Основным проблемным вопросом создания ВКС М-19 было создание комбинированной силовой установки. На ней, как на главной идее, строилась концепция всего проекта. Схема силовой установки носила элементы новизны, и главное, с чем справились разработчики, это то, что был предложен специальный агрегат (теплообменник), благодаря которому радиоактивный контур был полностью изолирован, что исключало радиационное заражение атмосферы при включении двигателя у земли.

Схема маршевого ЯРД / Изображение: www.testpilots.ru

Десять ДТРДФ / Изображение: www.testpilots.ru

Комбинированная двигательная установка включала в себя:

  • маршевый ядерный ракетный двигатель (ЯРД) включая ядерный реактор с радиационной защитой
  • десять двухконтурных турбореактивных двигателей (ДТРДФ) с теплообменниками во внутреннем и наружном контурах и с форсажной камерой
  • гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД)
  • два турбокомпрессора для обеспечения прокачки водорода через теплообменники ДТРДФ
  • распределительный узел с турбонасосными агрегатами, теплообменниками и вентилями трубопроводов, системы регулирования подачи топлива.
В качестве топлива для ДТРДФ и ГПВРД использовался водород, он же являлся и рабочим телом в замкнутом контуре ЯРД. Комбинированная двигательная установка ВКС М-19 предполагала поэтапное включение различных типов двигателей в зависимости от режима полета. Работа комбинированной силовой установки ВКС регламентировалась оптимальными режимами работы на всех фазах полета и предусматривала следующие режимы:
  1. Режим «взлет» и «начальный разгон» до скоростей, соответствующих числам М=2,5-2,7 на высотах 12-15 км. На этом режиме работает ДТРДФ с подогревом воздуха перед турбиной от замкнутого контура с реактором при включенной форсажной камере.
  2. Режим полета «разгон », соответствующий скоростям М=2,7-5,0 на высотах ~ 15 км. На этом режиме работают только ДТРДФ в режиме авторотации с подогревом воздуха на входе в форсажную камеру от замкнутого контура с реактором при включенной форсажной камере. В диапазоне скоростей, соответствующих числам М=3,5-4,5 к ДТРДФ подключаются ГПВРД, которые обеспечивают разгон аппарата до условий полета: высота -50 км, скорость М~16,0.


Основные тактико-технические характеристики

Конструкция ОКБ ЭМЗ
Обозначение
М-19
Состояние
проект 1974-80 гг.
Тип
воздушно-космический самолет
Экипаж, чел
3-7
Геометрические и массовые характеристики
Длина (без хвостового обтекателя), м
69
Размах крыла, м
50
Высота, м
15,2
Площадь несущей системы, м²
1000
Грузовой отсек:
длина - 15,2 м;
ширина - 4,0 м;
высота - 4,0 м;
объем - 320,0 м³
База шасси, м 41,2 41,2
Колея шасси, м
20,0
Массовые характеристики, т:
стартовая масса - 500;
максимальная масса выводимой нагрузки - 40;
масса конструкции - 125;
масса топлива (жидкий водород) - 220
Силовая установка
Число двигателей
10
Тип двигателей
комбинированная ВРДУ (ДТРДФ + ГПВРД) + ЖРД (ЯРД)
Тяга ВРДУ, кгс
10 х 25 000
Тяга ЯРД, кгс
1 х 320 000
Летно-технические характеристики
Высота опорной орбиты, км
185,0
Боковая дальность при спуске с орбиты, км
4500
Длина разбега, м
2000
Длина пробега, м
3750
Длина ВПП (потребная), м
4000

17 февраля 1976г. ЦК КПСС и Совет министров СССР приняли постановление No132-51 «О создании многоразовой космической системы в составе разгонной ступени, орбитального самолета, межорбитального буксира-корабля, комплекса управления системой, стартово-посадочного и ремонтно-восстановительного комплексов и других наземных средств, обеспечивающих выведение на северо-восточные орбиты высотой до 200 км полезных грузов массой до 30 т и возвращения с орбиты грузов массой до 20 т».

Другими словами, речь шла о создании «Бурана». Космический самолет «Буран» и по настоящее время вызывает бурные дискуссии, но большинством специалистов признается, что технически это был совершенный проект. Однако мало кому известно, что куда более перспективной альтернативой «Бурана», способной сделать качественный скачок в развитии мировой космонавтики был воздушно-космический атомный самолет В.М. Мясищева М-19 с ядерным двигателем на борту. Создание этого космического самолета могло изменить ход мировой истории…

В 1966г. было восстановлено, хотя и в более скромном варианте, КБ Мясищева. Владимир Михайлович сразу же развил бурную деятельность, предложив целый ряд самолетов короткого и вертикального взлета, самолет-перехватчик высотных аэростатов. Одной из задач, стоявшей перед Мясищевым, была разработка воздушно-космического самолета.

В рамках многоплановой темы «Холод-2» в 1974 г. на ЭМЗ была разработана комплексная программа, которая предусматривала выполнение работ сразу по нескольким направлениям одновременно. Выполнение работ проводилось под шифром тема «19» и предусматривало следующее:
1. Тема 19-1. Создание летающей лаборатории с силовой установкой на жидком водородном топливе, отработка технологии работ с криогенным топливом;
2. Тема 19-2. Проектно-конструкторские работы по определению облика гиперзвукового самолета;
3. Тема 19-3. Проектно-конструкторские работы по определению облика перспективного ВКС;
4. Тема 19-4; 9-5. Проектно-конструкторские работы по определению облика альтернативных вариантов ВКС с ядерной двигательной установкой.
В программе явно просматривался поэтапный подход и систематизация в разработке будущего ВКС. Работы по перспективному ВКС проводились на предприятии под индексом М-19.

При непосредственном руководстве Генерального конструктора В.М.Мясищева, работы по теме «19» воглавил заместитель Генерального конструктора, начальник проектного комплекса, ближайший соратник Мясищева - А.Д.Тохунц. Ведущим конструктором по теме был назначен И.3.Плюснин. У истоков идеи перспективного ВКС М-19 с комбинированной силовой установкой стояли ближайшие подвижники В.М.Мясищева - сотрудники проектного комплекса: начальник отдела аэродинамики А.А.Брук и начальник отдела силовых установок Н.Д.Барышов. Проектно-конструкторские проработки проводились в отделе проектов под руководством начальника отдела проектов И.С.Говора ведущими специалистами А.Н.Уразовым, В.А.Петровым и многими другими. Комбинированную силовую установку с ядерным реактором разрабатывал Генеральный конструктор Куйбышевского моторостроительного завода Н.Д.Кузнецов.
О работах того периода вспоминает А.Д.Тохунц:
«Когда в начале 70-х годов всем стало ясно, что создание в США МТКС «Спейс-Шаттл» - это реальность, а не очередной миф, во что очень хотелось верить руководству страны, так как все понимали, какими затратами это ляжет на экономику всей страны, Минавиапром в числе многих других предприятий стал все больше привлекать ЭМЗ к работам по космической тематике. Результатом этих работ явился проект воздушно-космического самолета с горизонтальным взлетом и посадкой, размерность которого должна была обеспечить выведение такого же полезного груза (30 т), какой был заявлен для американской МТКС «Спейс Шаттл».
Первоначально Владимир Михайлович отнесся к идее ВКС скептически. Ход его рассуждений был прост. Вес конструкции обычной ракеты, как известно, составляет всего несколько процентов от стартового веса (примерно 7-8 %), в то время как вес конструкции самолета, даже хорошего в весовом отношении (Владимир Михайлович приводил в качестве примера сверхзвуковой стратегический бомбардировщик ВВС США В-58 «Хастлер») составляет примерно 30% от взлетного веса (и это без учета теплозащиты, ЖРД и т. п. будущего ВКС).

Возникает естественный вопрос - какой же эффективностью должна обладать силовая установка этого ВКС, чтобы вывести такую тяжелую конструкцию в космос? На поиски ответа на этот вопрос ушло примерно полгода.
По результатам предварительной проработки проекта ВКС Владимиру Михайловичу был предоставлен солидный отчет, который он «изучал» около месяца никак его не комментируя.
И вот однажды утром, помнится это было в начале весны, Владимир Михайлович вызвал меня и спросил как о чем-то совершенно обыденном:
- А где же план-график работ по ВКС?
После этого мне стало ясно - наши доказательства реальности заявляемых характеристик проекта ВКС Генеральным приняты, и можно срочно начинать работу. В связи с этим уместно вспомнить пословицу: «Медленно запрягает, но быстро едет». План-график всех этапов создания ВКС был составлен очень оперативно. Для развертывания работ была задействована обширная кооперация со смежниками. Как то раз, рассматривая график работ по ВКС, Владимир Михайлович заметил:
- Эта тема, видимо, станет моей «лебединой песней», окончания ее я конечно, не застану, но ведь очень важно пойти в правильном направлении.

В тот же период был сформирован проект технического задания на будущий ВКС, где определялись основные технические характеристики и требования к будущему аппарату. Эти требования, в частности, предусматривали то, что М-19 мог использоваться:
- как основа для перспективной многоразовой транспортной космической системы многоцелевого применения в интересах народного хозяйства и науки;
- как составной элемент перспективных систем космического оружия;
- как составной элемент перспективных космических средств обеспечения и ведения военных действий на театрах военных действий на земле.
Применение ВКС М-19 в качестве транспортного средства позволяло решать следующие задачи:
- доставка и смена экипажей на орбитальных станциях;
- материально-техническое снабжение орбитальных объектов;
- возвращение грузов на Землю;
- аварийное спасение экипажей;
- доставка и смена отдельных блоков орбитальных станций;
- транспортировка космических аппаратов в космосе с опорных орбит на рабочие и наоборот;
- проведение на орбите профилактических и регламентных работ, выполнение ремонтных и восстановительных работ и др.;
- проведение военно-научных исследований и экспериментов в космосе.

С самого начала проект М-19 рассматривался как одноступенчатый ВКС с горизонтальными взлетом и посадкой (по-самолетному). Благодаря многоразовости ВКС, все перечисленные задачи должны были выполняться более эффективно, чем обычными средствами. Эта эффективность выражалась в возможности периодической доставки на орбиту различных объектов и грузов одним и тем же аппаратом с восполнением лишь необходимого запаса горючего и расходуемых запасов спецгазов и спецжидкостей.
Разрабатывая проект отечественного ВКС, проектантам важно было учитывать одно безусловное обстоятельство, которое заключалось в том, что для получения в условиях СССР транспортной системы, обладающей, как минимум, такими же энергетическими и транспортными характеристиками как американская «Space Shuttle», отечественная система должна была быть даже более совершенной, чем американская. Это было обусловлено тем, что точки старта в СССР имели менее благоприятное географическое положение, чем у американцев, (это, в первую очередь, наличие жестких ограничений на азимуты пусков, необходимость в отчуждении огромных территорий по направлению пусков ракет, ограничения мест пуска по широте), а также усугублялось уже имеющимся отставанием СССР от США в этой области. Создание подобной системы в СССР явилось бы наиболее крупным качественным шагом в развитии авиационно-космической науки и техники, который следовало рассматривать как важнейшую общегосударственную задачу на конец 70-х начало 80-х годов.

Проведенный анализ возможных сроков создания подобной МТКС показывал, что при условии принятия решения о начале работ и выделении необходимых финансовых средств, а также выполнения единой общегосударственной координации всех работ можно было обеспечить её создание уже в 1986-1987 гг.
Учитывая высокий риск и сложность создания подобной системы программа создания МТКС носила поэтапный характер.
Для ускорения сроков создания многоразовой космической системы в СССР на первом этапе прототип ВКС мог бы использоваться в качестве гиперзвукового бомбардировщика со скоростями полета М~6,0 на высотах до Н~30 км и с дальностью полета порядка 10000 км. или в качестве самолета-разгонщика на жидком водородном топливе, способного выводить на опорную орбиту орбитальную ступень весом до 40 т.

Если сравнивать потенциальные возможности проектируемого ВКС М-19 с американской МТКС типа «Space Shuttle», то принципиально новыми и отличительными качествами нашего аппарата являлись:
- в первую очередь возможность всеазимутального запуска с максимальным сокращением площади отчуждаемых земель (для СССР с учетом географического положения места существующего старта эта проблема приобретала первостепенное значение);
- возможность самостоятельного возврата к месту старта и самостоятельного перебазирования на другие площадки базирования;
- получение высокой степени надежности (на уровне больших самолетных систем, достигаемой за счет авиационных принципов эксплуатации: опробование двигателей перед стартом, создание ремонтно-пригодных агрегатов, использование встроенных систем автоконтроля и др.);
- высокая экономическая эффективность, обусловленная меньшими эксплуатационными расходами, снижением затрат на средства поиска, спасения, транспортировку отдельных ступеней и т. п., снижением затрат на аренду отчуждаемых земель, высвобождением значительных производственных мощностей, необходимых для воспроизводства одноразовых ракет-носителей и т. п.
- расширение технических возможностей за счет увеличения типов возможных орбит различного наклонения; значительно большей автономности системы (отсутствие разделяемых ступеней, самостоятельные взлет, «осадка, перебазирование).
- высокие маневренные характеристики ВКС, обеспечивающие возможность погружения в атмосферу до высот Н=50-б0 км с обратным выходом на орбиту.

Использование ВКС с комбинированной ядерной двигательной установкой потенциально обеспечивало неограниченные возможности интенсивного освоения как околоземного космического пространства, включая удаленные геостационарные орбиты, так и области удаленного космоса, в том числе Луну и окололунное пространство. Энергетика бортовой ядерной установки обеспечивала автономное длительное пребывание и свободное маневрирование в космосе. Наличие на борту ВКС ядерной установки, позволяло бы также использовать ее в качестве мощного энергетического узла для обеспечения функционирования новых типов космического оружия (лучевое, пучковое оружие, средства воздействия на климатические условия и т. п.). От таких перспектив захватывало дух и это была поистине фантастика.
Если систематизировать возможные области применения ВКС с ядерной двигательной установкой, то получалась довольно многообещающая картина.
1. В научных целях:
- изучение околоземного космического пространства;
- проведение научных экспериментов в прикладных целях;
- медико-биологические исследования;
- изучение планет и дальнего космоса.
2. В интересах народного хозяйства:
- создание космических служб, обеспечивающих связь, навигацию, экологический мониторинг, метеопрогноз и т. п.;
- создание космического комплекса новых промышленных технологий.
3. В интересах обороноспособности:
-техническая основа создания космического рода войск, для боевого использования, космической разведки, транспортного обеспечения на орбите.

При взлетной массе 500 т., ВКС М-19 должен был выводить на опорную орбиту с наклонением 57,3° полезную нагрузку массой порядка 30 т. Создание подобного проекта одноступенчатого ВКС базировалось на реализации следующих физико-технических принципов:
- использование бортового ядерного реактора;
- использование устройства для эффективной передачи тепла набегающему потоку;
- использование окружающей среды в качестве рабочего тела и окислителя (кислород из атмосферы);
- использование водорода в качестве бортового запаса горючего, рабочего тела и теплоносителя в контуре ЯРД;
- использование аэродинамической подъемной силы аппарата.
По предварительным оценкам, выполненным на начальном этапе работ, рациональное использование этих принципов позволяло:
- снизить почти в два раза потребный коэффициент заполнения топливом, составляющий в существующих ракето-носителях более 90% от стартового веса;
- исключить размещение запаса окислителя (кислорода) на борту аппарата, составляющего более 60% от стартового веса РН «Сатурн-5»;
- уменьшить более чем в два раза потребную стартовую тяговооруженность;
- резко уменьшить (примерно в 50 раз) расход топлива на атмосферном участке выведения (до режимов полета Н~25км, М~4,0);
- уменьшить более чем в три раза (при одной и той же полезной нагрузке) стартовый вес аппарата, по сравнению с МТКС, использующей обычное химическое топливо.

Большой объем работ по данной тематике был проведен институтом теоретической и прикладной механики Сибирского отделения академии наук СССР (ИТПМ СО АН СССР). Проводились экспериментальные исследования аэродинамических характеристик моделей гиперзвуковых ЛА и ВКС с моделированием тракта ВРД. Исследовалась динамика разделения объектов и оценивалась интерференция при больших скоростях полета.
В части исследований характеристик силовой установки нового типа проводились расчетно-экспериментальные работы по изучению процессов смешения и горения в камерах сгорания ВРД в сверхзвуковом и гиперзвуковом потоках, проводились испытания моделей ГПВРД в аэродинамических трубах на скоростях, соответствующих числам М=3-12. Для оценки эффективности будущего ВКС были разработаны математические модели систем аппарата и комбинированной силовой установки с ЯРД.
По программе летных полунатурных испытаний, рассчитанной на период с 1980 по 1985 гг предусматривалось:
1) непосредственно по МВКС:
- изготовление и бросковые испытания крупномасштабной модели МВКС;
- изготовление аналога для отработки спуска с орбиты;
2) по силовой установке:
- создание летающей лаборатории для отработки ядерной силовой установки (ЯРД);
- создание летающей лаборатории для отработки ПВРД и ГПВРД с использованием ракет.
Разработка эскизного проекта и изготовление полнонатурного макета ВКС М-19 планировалось на период с 1980 по 1982 г. Рабочее проектирование - 1982-1984 гг. Изготовление, стендовые и летные испытания комбинированной силовой установки и систем МВКС - 1982-1986 гг.
Создание базы для запуска и эксплуатации МВКС - 1981-1987 гг. В этот же период предполагалось изготовление трех опытных образцов МВКС. И, наконец, вершиной всех работ многочисленных предприятий и организаций по созданию МВКС должны были стать летные испытания в период 1987-1988 гг. Такими виделись основные вехи комплексной программы создания принципиально нового МВКС. Несмотря на всю кажущуюся фантастичность заявленных характеристик и преимуществ многоразового одноступенчатого ВКС нового типа, всё это не было пустым прожектёрством.
Авторитет Генерального конструктора В.М.Мясищева и его многолетний опыт были гарантией того, что проект подобного ВКС может быть реализован. В это твердо верил он сам, и эта уверенность Генерального заряжала его окружение. Окружающие отмечали, что у В.М.Мясищева до последних дней жизни сохранилось несмотря ни на что, желание снова вести работу с размахом, который был у него при осуществлении программ создания тяжелых бомбардировщиков в 50-60-е годы в ОКБ-23 в Филях.
Темпы и размах работ по теме М-19 приобретали все более значительный характер, об этом красноречиво говорит хотя бы такой факт. Вспоминает заместитель Генерального конструктора А.А.Брук:
«Работы по теме продвинулись достаточно далеко, и дело дошло даже до того, что однажды В.М.Мясищев поручил мне начать прорабатывать вопрос о подготовке передачи производственной базы в Филях (бывшее ОКБ-23, где раньше работал В. М. Мясищев) и перепрофилирование ее под новые задачи ЭМЗ».
Можно было только удивляться тому, с какой энергией взялся В.М.Мясищев за организацию работ по теме М-19 .
Учитывая то, что ему к тому времени уже было за 70 лет, а сроки создания подобных систем оценивались периодом порядка 10-15 лет Владимир Михайлович, несмотря на явно долгосрочный характер работ, сам активно работал и увлекал своей энергией своих ближайших помощников. Невзирая на свой уже почтенный возраст, Генеральный сам ездил по смежникам, участвовал в многочисленных совещаниях, делал доклады по теме ВКС. Как высказывались участники и очевидцы событий тех лет, со стороны создавалось впечатление, что В. М. Мясищев словно заново родился, интересная перспективная работа, видимо, придавала ему сил и смысл жизни.
Памятна встреча Генерального конструктора В.М.Мясищева с президентом Академии наук А.П.Александровым, которая состоялась на совместном совещании в Академии наук в 1974 г. На совещании была представлена демонстрационная модель ВКС М-19 и обсуждался вопрос о возможности использования водорода и ядерной энергии. Академик А.П.Александров заявил, что наша страна заинтересована в расширении применения водорода в авиации и всячески поддерживает предлагаемое направление с применением ядерной энергии в авиации. Особо он отметил, что применение ядерной энергии в авиации потребует создания необходимой биологической защиты от радиации и обеспечения очень высокой безопасности ядерных реакторов при аварийных ситуациях и падении на землю. Насколько это серьезная проблема и что такое опасность ядерного заражения местности, весь мир узнал спустя много лет после произошедшей 26 апреля 1986 г. Чернобыльской катастрофы.
Резюмируя итоги той памятной встречи, А.П.Александров сказал, что в течение 10 лет может быть создан серийный (он сказал «деловой») образец комбинированной двигательной установки с ядерным реактором.
Теоретические вопросы создания реактора были ясны, оставались проблемы технической реализации. Это вселяло уверенность у разработчиков М-19 в правильности выбранного направления работ.
В свете событий тех лет, небезинтересна позиция Минавиапрома, вернее его министра - П.В.Дементьева по отношению к проекту М-19. Когда в начале 70-х годов стало ясно, что создание в США системы «Спейс Шаттл» реальность, в недрах Министерства обороны СССР появился (поддерживаемый Д.Ф.Устиновым) лозунг о необходимости адекватного ответа на вызов США. Начались проработки различных вариантов этого адекватного «ответа». Генеральным конструктором НПО «Энергия» (теперь это РКК «Энергия») был назначен академик В.П.Глушко, которым был предложен проект МТКС «Энергия-Буран», внешне очень похожий на американский МТКС «Спейс Шаттл». Организацией работ по МТКС «Энергия-Буран» предусматривалось подключение к работам по орбитальному кораблю «Буран» предприятий Минавиапрома.
Министр авиационной промышленности Дементьев был этим фактом очень озабочен, так как опасался, что такое подключение авиационных предприятий к работам со временем может привести к очередному поглощению части предприятий Минавиапрома ракетным Министерством Общего Машиностроения (MOM). Как говорится, за примерами далеко ходить было не надо, такое уже было в конце 50-х годов, когда Н.С.Хрущев, решив, что стратегическая авиация больше не нужна (так как есть ракеты) передал чать предприятий Минавиапрома (включая, в частности, и ОКБ В.М.Мясищева, завод им. Хруничева и ряд других) МОМ"у.
Открыто противодействовать началу работ по МТКС «Энергия-Буран» П. В. Дементьев не мог. Поэтому была избрана стратегия «затягивания», в соответствии с которой надо было не спешить копировать американцев (такое уже было с лунной программой), а рассмотреть различные альтернативные варианты, учесть экономические аспекты проблемы и прочее, и прочее...
Для этих целей проект М-19, по мнению Дементьева, вполне подходил. Поэтому первоначально он, хотя и дистанцировался от открытой поддержки проекта, не препятствовал активной деятельности В.М.Мясищева по продвижению проекта М-19.
В результате такой негласной поддержки проект М-19 широко рассматривался во многих высоких инстанциях, и в какой-то момент В.П.Глушко решил лично ознакомиться с проектом, который тогда находился у зам. министра обороны по вооружению Н.Н.Алексеева. Адьютант зам. министра подполковник Н.И.Графов свидетельствовал, что В.П.Глушко более четырех часов знакомился с проектом. Будучи сам хорошим двигателистом, В.П.Глушко резюмировал: «Ядерную двигательную установку быстро не создать!» В.М.Мясищев и сам понимал, что быстро такой проект не реализуешь, но он рассуждал так: создавать «Энергию-Буран», которая уже на пять лет отстает от «Спейс Шаттла», значит заведомо планировать отставание.
- Проблему, - говорил он, - надо брать за горло, а не за хвост. Иначе всегда будешь в хвосте. Пусть мы затратим на создание М-19 лишние 5 лет, зато потом будем намного впереди.

После принятия решения о создании МТКС «Энергия-Буран», разработка планера ВКС «Буран» поручалась вновь созданному в МАПе объединению «Молния», в которое ЭМЗ вместе с КБ «Буревестник» структурно входило в качестве подчиненного предприятия. В результате такой реорганизации ЭМЗ потеряло свою самостоятельность, а Генеральный конструктор В.М.Мясищев становился подчиненным Главного конструктора Г.Е.Лозино-Лозинского. Тематика работ ЭМЗ и их приоритеты становились прерогативой вышестоящего НПО «Молния», работы по теме М-19 постепенно стали сворачиваться, объемы проектно-конструкторских исследований с каждым годом уменьшались. Ставка была сделана на МТКС «Энергия-Буран», а ЭМЗ поручено участвовать в разработке модуля кабины ВКС «Буран» и его систем.
Отдельной большой работой предприятия становилось создание транспортного самолета-носителя ВМ-Т «Атлант», предназначенного для транспортировки элементов МТКС «Энергия-Буран».
После кончины Генерального конструктора В.М.Мясищева в октябре 1978 г. работы на ЭМЗ по теме М-19 в небольшом объеме еще продлились непродолжительное время и в 1980 г. были окончательно свернуты.

Если бы программа Мясищева была принята, то в конце 80-х мы обладали бы серийными образцами воздушно-космического самолета с ядерным двигателем. Именно при обсуждении этой программы в 1974 г. академик А.П. Александров заявил, что серийный образец ядерного двигателя с требуемыми характеристиками можно сделать за 10 лет!

Всего десяток атомных самолетов М-19 смог бы обеспечить весь грузопоток «Земля – ближний космос» до середины XXI в. Орбитальные станции и спутники при подобной транспортной системе были бы существенно масштабнее, функциональнее, а себестоимость выводимого на орбиту груза была бы существенно меньше. Военные возможности Советского Союза с М-19 выросли бы на порядки. Это решение действительно стало бы «асимметричным ответом» заокеанским авторам “стратегической оборонной инициативы”. К сожалению, руководство думало о другом (не исключено, что данный проект заблокировали вполне сознательно, не в первый раз предав интересы Родины). Данный проект решал целый комплекс задач: создание атомного сверхзвукового самолета, гиперзвукового самолета на криогенном топливе, воздушно-космический самолета и космического корабля с двигателем на основе ядерного реактора! Проект Буран», к сожалению, решал только одну из этих задач и являлся “симметричным” ответом США. Результат такого ответа известен: проект оказался никому не нужным, и на фоне распадающейся страны поставил под вопрос существование отрасли вообще. Атомный самолет М-19 же остался ждать своего часа…

ВКС М-19 был выполнен по аэродинамической схеме «несущий корпус». Корпус аппарата имел треугольную форму в плане с углом стреловидности по передней кромке 75°. Такая стреловидность была выбрана из условия сохранения высоких несущих свойств аппарата при малом сопротивлении и аэродинамическом нагреве передних кромок на больших скоростях полета. Носовая часть корпуса имела эллиптические поперечные сечения с соотношением полуосей 1/4.
Миделевое сечение располагалось в точке перехода носовой части корпуса в кормовую, на расстоянии 0,67 длины корпуса от носка. Конфигурация ВКС, выполненного по схеме «несущий корпус», обеспечивала достаточно высокий уровень аэродинамических характеристик. Так, например, аэродинамическое качество на дозвуке составляло величину порядка -7,0, а на гиперзвуке около 3,0, что подтверждалось экспериментальными исследованиями в ЦАГИ.
Проведенные исследования по определению оптимального облика крылатых космических аппаратов, совершающих горизонтальные взлет и посадку «по-самолетному», показали, что наиболее приемлемой формой многорежимного ВКС, летающего на до-, сверх- и гиперзвуковых скоростях в условиях интенсивного нагрева является форма типа «несущий корпус».
Придание ВКС такой формы обеспечивало ему следующие преимущества:
- хорошие маневренные возможности;
- малые перегрузки при спуске в атмосфере;
- устойчивость полета на гиперзвуковых скоростях;
- малое отношение поверхности аппарата к его объему;
- наличие больших внутренних полезных объемов;
- умеренные требования к тепловой защите.
Аэродинамическая подъемная сила ВКС создавалась крылом небольшой площади, стреловидные консоли которого располагались по бокам кормовой части корпуса, передним горизонтальным оперением и непосредственно самим несущим корпусом аппарата.
Приемлемые характеристики устойчивости и управляемости во всем диапазоне скоростей полета на ВКС М-19 обеспечивалось использованием так называемого верньерного управления в продольном канале. При такой схеме управления наряду с элевонами на крыле используются малые аэродинамические поверхности, расположенные в носовой части корпуса и имеющие большое плечо приложения силы относительно ЦТ аппарата.
Верньерные поверхности работали при больших, а основные поверхности крыла работали при малых значениях скоростного напора.
Вертикальное оперение было выполнено двухкилевым, разнесенным по ширине кормовой части корпуса, для уменьшения эффекта «затенения» при полете на больших углах атаки.
Геометрические параметры поверхностей стабилизации и управления выбирались с учетом минимальных волновых потерь и приемлемых характеристик аэродинамического нагрева.
Носовая часть и передние кромки корпуса, крыла и оперения были затуплены с целью уменьшения аэродинамических тепловых нагрузок при больших скоростях полета.
Как известно, важным показателем эффективности ВКС является его маневренность, то есть способность менять параметры своего движения. Для космического аппарата это прежде всего маневрирование на орбите как по высоте орбиты, так и по боковому маневру (посадка в стороне от плоскости орбиты). Имея достаточное аэродинамическое качество, ВКС М-19 был способен выполнять маневрирование на орбите с так называемым «погружением» в атмосферу до высот порядка 50-60 км.
Расчетами также было показано, что для КЛА, имеющих аэродинамическое качество около 3,0, при изменении плоскости орбиты на 90° аэродинамический маневр становится гораздо выгоднее (~ в 3 раза) чем орбитальный.
Днище несущего корпуса было выполнено плоским для образования так называемого «плато поджатия» перед входом в воздухозаборники двигателей, расположенных по корпусом аппарата. На нижней части корпуса аппарата располагалась мотогондола воздушно-реактивной силовой установки, скомпонованной по схеме «пакет» и обеспечивающей полет аппарата в атмосфере на всех скоростях.
Компоновка двигателей на нижней части корпуса в единый «пакет» обеспечивало благоприятные условия работы двигателей при различных углах атаки.
Использование предварительного поджатия сверхзвукового потока перед входом в двигатели позволяло уменьшить потребные размеры воздухозаборников, вес и соответственно теплозащиту единой мотогондолы.
В хвостовой части аппарата располагалось сопло ЯРД, непосредственно связанное с бортовым ядерным реактором. На атмосферном участке траектории полета, с целью снижения аэродинамического сопротивления, сопло было закрыто сбрасываемым каплевидным обтекателем.
Шасси аппарата трехстоечное с носовым управляемым колесом. Тележки основных стоек шасси шести колесные убирались в ниши корпуса аппарата, расположенные в местах сопряжения корпуса с консолями крыла.
Рабочие помещения для экипажа были оборудованы в носовой части корпуса аппарата и включали в себя саму кабину, бытовой отсек и шлюзовую камеру. Кабина экипажа имела остекление, аналогичное самолетному, что обеспечивало необходимый обзор при взлете и посадке ВКС. В зависимости от выполняемых задач и типа полезной нагрузки количество членов экипажа ВКС могло составлять от трех до семи человек
Шлюзовая камера располагалась за задней гермоперегородкой кабины и была предназначена как для выхода космонавтов в открытый космос, так и для обеспечения доступа в грузовой отсек. Стыковочное устройство располагалось на верхней поверхности носовой части для обеспечения визуального наблюдения за стыковочными операциями на орбите.

Для размещения полезной нагрузки в корпусе аппарата был предусмотрен достаточно большой грузовой отсек, закрываемый герметичными створками. Размеры грузового отсека 4,0x20,0x4,0 м позволяли разместить различные полезные нагрузки массой до 40 т. Крепление полезной нагрузки в грузовом отсеке обеспечивалось дистанционно управляемыми электромеханическими замками. Для выполнения на орбите операций погрузки и разгрузки в грузовом отсеке были предусмотрены дистанционные электромеханические манипуляторы.
Водородные баки были вкладными и не входили в силовую конструкцию корпуса аппарата. Для максимального использования всех внутренних объемов в корпусе аппарата топливные водородные баки были выполнены по так называемой «сиамской» схеме, когда форма сечения топливных баков была образована несколькими пересекающими окружностями. Такая схема обеспечивала оптимальное соотношение параметров конструкции баков, таких как: вес - прочность - коэффициент использования полезного объема. Для гашения колебаний жидкого водородного топлива в топливных баках были предусмотрены перфорированные демпфирующие перегородки.
Конструкция планера ВКС включала в себя: непосредственно сам корпус (фюзеляж), состоящий из переднего, центрального и хвостового отсеков, консоли крыла, двухкилевое вертикальное и переднее горизонтальное оперение, мотогондолу воздушно-реактивной силовой установки и водородные баки.
Силовая конструкция корпуса должна была быть выполнена в основном из алюминиевых сплавов, защищаемых многоразовым теплоизолирующим покрытием на наружной поверхности.
Передний отсек корпуса состоял из двух половин, между которыми располагался герметичный модуль кабины экипажа. Остекление кабины экипажа предполагалось выполнить из трехслойных панелей, аналогично иллюминаторам космических кораблей.
Средний и хвостовой отсеки предполагалось сделать ферменно-балочной конструкции с обшивкой из алюминиевого проката.
Теплозащита ВКС от аэродинамического нагрева на атмосферных участках выведения и спуска выполнялись по типу «холодной» конструкции, то есть силовые элементы конструкции были рассчитаны на нормальные температурные условия работы, а высокие температуры от кинетического нагрева воспринимались внешним теплоизолирующим покрытием. Тип внешней теплозащиты определялся условиями полета аппарата в атмосфере, его аэродинамической формой и т. д. Как показывали расчеты, максимальная температура на передних кромках корпуса, крыла и оперения могла достигать 19200°К. С учетом температурного «портрета» аппарата в разных местах его конструкции предполагалось использование различных теплоизолирующих материалов. В наиболее теплонагруженных местах предполагалось использовать материал на основе углерода с противоокислительным покрытием, состоящим из углеродных волокон и матрицы из того же материала с покрытием из карбида кремния.
Верхняя поверхность корпуса, нагреваемая до 5900°К, должна была защищаться плитками ~500x500 мм высокотемпературной многоразовой изоляции, состоящей из волокон чистого плавленого кварца. Наружная поверхность плиток защищалась плавленым боросиликатным покрытием, обеспечивающим необходимое соотношение между количеством поглощаемого и испускаемого излучения. Для менее нагреваемых частей корпуса предполагалось использование низкотемпературной многоразовой теплоизоляции в виде аналогичных плиток, отличающихся только типом покрытия и их толщиной.
В состав основных систем ВКС входили:
1. Система жизнеобеспечения, включающая подсистемы регенерации атмосферы, обеспечения жизнедеятельности экипажа, терморегулирования, обеспечение работы шлюзовой камеры.
2. Бортовое электронное оборудование, обеспечивающее навигацию и управление полетом, отработку полетных данных, связь, индикацию и контроль, измерение параметров подсистем, распределение электроэнергии и др.
3. Система управления полетом.
4. Система бортового электропитания, при этом источниками энергии на борту ВКС были как батареи топливных кислородно-водородных элементов, так и сам бортовой ядерный реактор.
5. Гидросистема, состоящая из четырех независимых подсистем с высокой степенью резервирования.
6. Система вспомогательных силовых установок, состоящая из двигателей орбитального маневрирования и двигателей газодинамического управления ориентацией ВКС.
7. Система орбитального маневрирования, состоящая из двух блоков, располагалась в хвостовой части корпуса ВКС. В состав каждого блока входил ЖРД, шар-баллон с гелием для подачи компонентов топлива. Для стабилизации и ориентации ВКС во время орбитального полета предусматривалась система ориентации, состоящая из блоков небольших двухкомпонентных ЖРД.
При возникновении аварийных ситуаций предусматривались следующие схемы возвращения аппарата на землю: непосредственное возвращение по штатной схеме или один виток вокруг земли по суборбитальной траектории, выход на низковысотную орбиту и вход в атмосферу по типовой программе. В случае экстренной необходимости, для спасения экипажа на любом участке полета предусматривалось отделение спасаемой капсулы с кабиной экипажа и спасение ее на парашюте.
Наличие на борту ВКС М-19 ядерного реактора предполагало безусловное выполнение соответствующих мероприятий по обеспечению радиационной безопасности, в том числе:
- создание круговой радиационной защиты вокруг реактора и установка радиационного экрана за кабиной экипажа;
- предотвращение разрушения оболочки реактора в случае аварии за счет создания специальной амортизационной системы (способной проглотить энергию при ударе о землю) и средств защиты реактора от прогорания;
- применение в конструкции комбинированной силовой установки теплообменника, предотвращающего прямой выброс из двигателя продуктов распада в атмосферу в виде радиоактивной газовой струи.
Вопросы радиационной безопасности применения ЯРД становились на первый план при реализации проекта. Хорошо известно, какими бедами может сопровождаться радиационное заражение окружающей среды для человека. Заражение радиоактивными продуктами может угрожать здоровью и жизни людей в течение даже многих тысячелетий. Так, например, период полураспада «плутония 239» составляет 24 тысячи лет а «цезия 137» - 33 года.
Что касается обеспечения радиационной защиты и безопасности при разрушении корпуса реактора в катастрофических ситуациях, то в СССР и за рубежом проводились подобные исследования. В частности, в качестве конструктивного решения на М-19 предлагалось использовать пластически-деформируемую оболочку, устанавливаемую вокруг корпуса ядерного реактора. Сам корпус реактора также изготавливался из пластичного высокопрочного материала. По расчетам пластическая деформация как самого корпуса реактора, так и его оболочки должны были обеспечить поглощение энергии удара при скоростях столкновения до 300 м/с.

Основным проблемным вопросом создания ВКС М-19 было создание комбинированной силовой установки. На ней, как на главной идее, строилась концепция всего проекта.
Схема силовой установки носила элементы новизны, и главное, с чем справились разработчики, это то, что был предложен специальный агрегат (теплообменник), благодаря которому радиоактивный контур был полностью изолирован, что исключало радиационное заражение атмосферы при включении двигателя у земли. Кстати, идея подобной комбинированной силовой установки была запатентована, среди авторов изобретения были: В.М.Мясищев, Н.Д.Кузнецов, Н.Д.Барышов, А.А.Брук, М.А.Борчев, О.В.Гурко, И.М.Яцунский, А.Б.Чернышев.
Комбинированная двигательная установка включала в себя:
- маршевый ядерный ракетный двигатель (ЯРД) включая ядерный реактор с радиационной защитой;
- десять двухконтурных турбореактивных двигателей (ДТРДФ) с теплообменниками во внутреннем и наружном контурах и с форсажной камерой;
- гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД);
- два турбокомпрессора для обеспечения прокачки водорода через теплообменники ДТРДФ;
- распределительный узел с турбонасосными агрегатами, теплообменниками и вентилями трубопроводов, системы регулирования подачи топлива.
В качестве топлива для ДТРДФ и ГПВРД использовался водород, он же являлся и рабочим телом в замкнутом контуре ЯРД. Комбинированная двигательная установка ВКС М-19 предполагала поэтапное включение различных типов двигателей в зависимости от режима полета.
Работа комбинированной силовой установки ВКС регламентировалась оптимальными режимами работы на всех фазах полета и предусматривала следующие режимы:
1. Режим «взлет» и «начальный разгон» до скоростей, соответствующих числам М=2,5-2,7 на высотах 12-15 км.
На этом режиме работает ДТРДФ с подогревом воздуха перед турбиной от замкнутого контура с реактором при включенной форсажной камере.
2. Режим полета «разгон», соответствующий скоростям М=2,7-5,0 на высотах ~ 15 км.
На этом режиме работают только ДТРДФ в режиме авторотации с подогревом воздуха на входе в форсажную камеру от замкнутого контура с реактором при включенной форсажной камере.
В диапазоне скоростей, соответствующих числам М=3,5-4,5 к ДТРДФ подключаются ГПВРД, которые обеспечивают разгон аппарата до условий полета: высота -50 км, скорость М~16,0.

Только по достижении заданных высокоскоростных параметров происходит включение ЯРД. В этих условиях отстреливается хвостовой обтекатель и заглушка горловины сопла маршевого ЯРД, включается ЯРД.
На режимах полета с работающим воздушно-реактивным контуром мощность реактора могла изменяться в пределах 2100-4000 МВт.
Тяга силовой установки на режиме ЯРД (Н~50 км, М=1б,0) должна была составлять около 280-300 тс, при эффективной мощности ядерного реактора порядка N~14800-15600 МВт.
Исследуя концепцию ВКС с комбинированной ядерной установкой, разработчики прекрасно понимали, какие проблемы и трудности стоят на пути создания подобной системы. В том числе, одной из них было создание новых конструкционных материалов, и особенно проблематичным было получение материалов для создания активной зоны реактора и теплообменников. Так, например, максимальная температура воздуха перед турбиной ДТРДФ составляла 1600°К, а максимальная температура центрального тепловыделяющего элемента реактора доходила до 3300°К. В связи с этим рассматривался вопрос использования для изготовления теплообменников специального молибденового сплава, конструкции из которого для предотвращения интенсивного окисления имели специальное защитное покрытие.
В качестве входного устройства силовой установки был выбран регулируемый многорежимный двухскачковый воздухозаборник. При полетах на гиперзвуковых скоростях воздухозаборники переключались на гиперзвуковой режим путем изменения площади горла и углов стенок каналов воздухозаборников за счет поворотных плоских рамп.
Необходимо отметить, что при расчетах характеристик двигателя на турбопрямоточном, ракетно-прямоточном и гиперзвуковом режимах полета использовались результаты экспериментальных исследований, проведенных в ЦИАМ, ЦАГИ и ИТПМ СО АН СССР.

По материалам сайтов testpilot.ru, objectiv-x.ru

Недавно массмедиа обнародовали лаконичное сообщение об имевшем место докладе Владимира Денисова, работника российского научного и производственного космического центра. В нем прозвучала идея строительства космического корабля моноблочной конструкции, способного совершить полеты на Луну или Марс, облететь вокруг Венеры.

Космический корабль, по замыслу, будет осуществлять движение в поле гравитации планет при помощи комбинированной двигательной ядерной установки. Полет по орбите планируется осуществлять за счет «электроракетных двигателей», питаемых ядерной электростанцией, находящейся на борту.

Докладчик также упомянул, что основа для подобного проекта уже наработана русскими учеными, в частности Мясищевым Владимиром Михайловичем. При этом говорящий тактично умолчал о воинском звании названной личности.
Тот был генерал-майором-инженером.

Актуальность вопроса, затронутого в докладе

Оглашая возможную тему исследования, явно намекал на доведенный до стадии рабочих чертежей самолет Мясищева МГ-19, разрабатываемый в 70-х годах прошлого века.

Это была перспективная модель. В случае ее создания, которое планировалось к концу 80-х годов, СССР намного бы в космосе опередил США, значительно «переиграв» американскую программу «Спейс Шаттл». Проект «М-19» не был завершен, однако для двух поколений советских космических инженеров он стал легендой.

С позиций сегодняшних дней программа по проекту Мясищева была в 80-х годах закрыта волюнтаристски. Следует признать: авиаконструктора Владимира Мясищева МГ-19 не был единственной жертвой. Временщики-управленцы тогда рушили всю военную науку, требующую ассигнований и дающую результат лишь через годы, при этом прикрываясь демагогией.

По современным расчетам, десяток самолетов Мясищева с избытком обеспечил бы грузооборот Земля - Космос на период до конца XXI века. С помощью этих летательных аппаратов намного дешевле и масштабней создавались бы системы спутников и Боевые возможности космических систем повышались на порядок.

Универсальный проект - самолет Мясищева МГ-19 - одновременно достигал четырех научных целей, создавая:

  • атомный сверхзвуковой самолет;
  • гиперзвуковой самолет на криогенном топливе;
  • воздушно-космический самолет;
  • космический корабль, движимый ядерным реактором.

В то же время заместивший МГ-19 советский проект «Буран-2» преследовал лишь одну из этих задач: конструирование воздушно-космического самолета. Попросту говоря, он был всего лишь адекватным ответом американской программе «Спейс Шаттл», не более того.

Владимир Михайлович, прежде чем заняться программой космической, прославил свое имя в области создавая тяжелые сверхзвуковые самолеты-бомбардировщики. Его биографии и техническим изысканиям посвящена эта статья.

Мясищев Владимир Михайлович. Начало карьеры

Жизнь этого человека была насыщенной. Мясищев пользовался авторитетом у коллег. Его уважал С. Королев, двух выдающихся инженеров летательных аппаратов связывала тесная дружба. Его идеи обгоняли время, а разработки всегда были сверхактуальными. Достаточно упомянуть, что летательные аппараты Мясищева установили 19 мировых рекордов.

Родился будущий Генеральный конструктор ОКБ-23 в 1902 году, в семье богатого купца Тульской губернии. Интерес к авиации возник в детстве, когда в его родном городе Ефремове приземлился отряд красных летчиков. Мальчик потрогал их самолеты руками и «заболел» ими на всю жизнь.

Окончил Мясищев МВТУ им. Баумана в 25 лет и тогда же и женился - на Елене Спендиаровой, дочери армянского композитора.

После получения высшего образования двенадцать лет работал в КБ Туполева. Учился тонкостям конструирования у своего руководителя Петлякова В. М. Владимир Мясищев. Самолеты «Максим Горький», АНТ-20, ТБ-3 стали плодом работы инженерно-технического коллектива, где набирался опыта герой этой статьи.

Владимир Михайлович выделялся среди коллег фундаментальными физико-математическими знаниями. В 1934 году он руководил созданием бомбардировщика-торпедоносца АНТ-41, пребывая на должности начальника бригады ЦАГИ.

С 1937 года Мясищев налаживал серийное производство Ли-2 как главный конструктор завода № 84 (Химки). Это стало признанием в нем производственника-практика.

Спасительный арест

Нелегкими для армии были времена, когда репрессировали всю ее верхушку. К чести отдельных работников НКВД, «мозги Вооруженных Сил» пытались уберечь. Возможно, поэтому в 1938 году, действуя на опережение костоломов Берии, ведущих авиаинженеров арестовали, вынудив подписать признание о вредительстве, судили и отправляли отбывать наказание в тюремное конструкторское бюро № 23.

Попав туда, Мясищев с удивлением увидел знакомые лица: арестованного ранее своего наставника Петлякова, Туполева, Королева и еще полтора десятка авиационных специалистов. Они не только работали совместно, но и проживали в одном и том же помещении.

Впрочем, НКВД никогда не был благотворительной организацией. В пассиве Владимира Михайловича числился 10-летний тюремный срок и конфискация имущества. В активе - сохраненная жизнь, работоспособность, талант, позволяющие в перспективе быть реабилитированным.

Конструктор был хорошим семьянином. Пережить испытания ему помогала надежда опять вернуться к семье. Как он вспоминал, только благодаря письмам супруги он не сломался.

Авиапромышленность. Преподавательская работа

Авиаконструктор понимал, что от него требовались креативность и нестандартность. Проект инновационного дальнего бомбардировщика в 1939 году разработал Мясищев. Самолеты советского производства, его предшественники, на целое поколение отстали от него. Владимир Михайлович внедрил целый комплекс новинок: дистанционно управляемое пулеметно-пушечное оборудование, тонкое крыло и встроенные баки, шасси с одним ведущим колесом. В 1940 году авиаконструктора досрочно освободили.

С 1943 года Владимир Михайлович после гибели своего предшественника возглавил казанское КБ Петлякова. Под его руководством выпускался бомбардировщик ПЕ-2И, превосходящий по характеристикам немецкие аналоги.

В 1945 году его проект создания четырехдвигательного бомбардировщика признали неперспективным и разработку закрыли. С 1946 по 1951 гг. Мясищев работает деканом факультета по строительству летательных аппаратов ЦАГИ. Он целенаправленно углубляет свои знания. Ему, генерал-майору-инженеру, присваивают ученое звание профессора.

От стратегических бомбардировщиков до космических кораблей

Мясищев был принципиально несогласен с тем, что в 1946 году его «выгнали из прикладной авиации» из-за бесперспективности разработок. Как профессор, он смог фундаментально доказать верность своих изысканий, что изложил в 1950 г. в личном письме Сталину. Ему поверили. В 1951 генерал-майора назначили главным конструктором для разработки стратегического бомбардировщика М-4.

Проект оказался более чем успешным. Владимир Михайлович создал советский стратегический бомбардировщик, который стал родоначальникдм целого семейства этих машин (М-50, М-52, М-53, М-54).

В 1956 году перед конструктором впервые встала задача создания ядерного двигателя. Генерал-инженер совершенствовал предыдущую свою модель межконтинентального бомбардировщика М-50. При хороших боевых возможностях машины, правда, вызывал критику расход топлива: 500 тонн на полет в одну сторону до американского континента. К чести героя этой статьи, изготовителем двигателя было не его КБ.

Этот недостаток для запуска летательного аппарата в серийное производство был критическим. Конструктор решил его устранить в следующей модели.

Самолет М-60 Мясищева - стратегический бомбардировщик, движимый ядерным реактором - должен был стать более совершенным межконтинентальным оружием. Однако проект остановили. Дело даже не в том, что проблему радиации наука того уровня разрешить не могла. Просто генсек Хрущев решил, что для межконтинентальных атак много перспективней баллистические ракеты.

В дальнейшем авиаконструктор решился на разработку самолетов для космоса. С 1956 года его ОКБ № 23 первым в СССР трудилось над созданием ракетоплана, приземляющегося по-самолетному. Немалым научно-исследовательским опытом обладал Мясищев. Самолеты космические он готов был разрабатывать с «нуля», ведь те лишь в самых общих чертах описывались теоретиками. Параллельно с отечественными учеными, американцы развивали аналогичную программу «Спейс Шаттл». Советская версия космического челнока называлась «Буран-1».

Владимир Михайлович поэтапно спланировал работу над летательным аппаратом, аналогов которому еще не было. Для начала, его КБ разработала четыре возможных варианта его конструкции:

  • крылатой с углами атаки малыми для входа и тормозящей щитками гиперзвуковыми;
  • крылатой с углами атаки большими входа и посадкой планирующей;
  • бескрылой со спуском роторным;
  • конусовидной с посадкой парашютной.

К разработке утвердили конструкцию треугольного типа с плоским дном. Шаг за шагом проводились непростые изыскательские работы, однако судьба приготовила очередной удар даровитому ученому. Тему закрыли. Такого субъективного вмешательства в науку не мог даже и предвидеть Мясищев: самолеты космического назначения в СССР были потеснены ракетами. Генсек Хрущев, воодушевленный успехом С. П. Королева, решил: «Мы обе программы не потянем!» Постановлением Совмина была прекращена работа по созданию первого «Бурана».

Последний проект ученого

Владимир Михайлович был крепким орешком: его репрессировали, а он стал одним из ведущих ученых мира в области космонавтики. Темы его изысканий насильственно закрывали дважды, но он не сдавался. Только одно подводило ученого - возраст. Мясищев знал, что, начав глобальную работу, он ее уже не закончит. Об этом он как-то сказал своему первому заместителю: «Этот проект будет моей лебединой песней. Результата ее я уже не застану. Однако я смогу начать ее в правильном направлении.»

Шестидесятичетырехлетний конструктор, словно сбросив лет сорок, с энтузиазмом взялся за разработку глобальной темы «Холод-2», результатом которой стал проект «Суборбитальный самолет Мясищева МГ-19». Создавался принципиально новый летательный аппарат.

Необходимые фундаментальные исследования, конструирование, испытания и, наконец, полная реализация проекта были распланированы примерно на двадцать лет. Изначально намечалось отработать технологию потребления криогенного топлива, затем остальные проектно-конструкторские работы.

Владимир Михайлович создал и сплотил профессиональный и креативный коллектив для разрешения научно-конструкторской работы. Начальником проектного комплекса стал соратник Мясищева А. Д. Тохунц, главным конструктором - И. З. Плюснин, ведущими специалистами по направлениям назначены А. А. Брук и Н. Д. Барышов.

Суборбитальный самолет Мясищева. Двигатель

Уникальная двигательная установка являлась визитной карточкой 19-й модели. Она оказалась камнем преткновения для многих ученых. Одни из них считали принципиально недостижимыми технические характеристики проекта. Другие полагали невозможным создание ядерного двигателя, не угрожающего радиацией самим космонавтам.

Однако коллектив, управляемый конструктором, рассчитал нужные технические параметры двигателя, благодаря чему самолет Владимира Мясищева МГ-19 перестал казаться фантазией. Комбинированная двигательная установка, использующая энергию ядерной реакции, давала ему возможность не только осваивать околоземное пространство, но также и окололунное. Ядерная установка давала возможность использовать перспективные виды космического оружия: пучковое, лучевое, климатическое.

В проекте также была разрешена проблема облучения экипажа. Радиоактивный контур изолировался при помощи специального теплообменника. По этому вопросу Владимир Михайлович провел плановую консультацию с президентов советской академии наук Александровым А. П. Тот высоко оценил создающийся самолет Владимира Мясищева МГ-19, сделав твердое заявление, что через десять лет будет создан серийный комбинированный двигатель с ядерной установкой.

Подробней о двигателе

Рассмотрим схему работы Мясищева. Рабочим топливом для него является водород, который подается на двигатель. Для работы этой жидкостной системы, использующей ядерный реактор, не нужен окислитель. Топливо, сгорающее в управляемой цепной реакции, разогревает водород, который превращаясь в плазму, выбрасывается сквозь сопла под значительным давлением и заставляют «космический челнок» двигаться.

Проект, павший жертвой интриганов

Расчетные исследования подтвердили впечатляющие технические возможности воздушно-космического самолета. Однако над проектом, требующим дальнейшей пятилетней проработки, внезапно завис дамоклов меч закрытия. Министр обороны Устинов поддержал осуществляемый быстрее проект В. П. «Энергия-Буран». На фоне позиции четвертого по рейтингу лица в СССР позиция министра авиапрома Дементьева П. В., поддерживающего атомный самолет Мясищева, не имела решающего значения. Петр Васильевич, изучив документацию, понимал, что МГ-19 в случае его создания ознаменует качественный отрыв советской космической программы, а проект «Буран» - лишь симметричный ответ Пентагону.

Министр авиапрома некоторое время пытался затягивать выполнение программы академика Глушко. Однако участвующие в создании космических самолетов подведомственные ему предприятия были приказом переведены из Минавиапрома в Министерство общего машиностроения.

Так властные интриганы остановили проект, создающий суборбитальный самолет авиаконструктора Владимира Мясищева МГ-19. Владимир Михайлович превратился в подчиненного главного конструктора Лозино-Лозинского В. Г. Работы над воздушно-космическим самолетом стали постепенно сворачиваться, а после смерти Мясищева в 1978 году его разработку закрыли.

Как понимать заявление центра Хруничева?

Читатели, уже имеющие общее представление, что собой представляет самолет Мясищева В. М. МГ-19, теперь могут четче представить, что подразумевалось в недавнем заявлении представителя российского космического ведомства.

В ней содержится известная доля лукавства. Далеко не пацифистом был генерал-майор Мясищев. Декларируемое в хруничевском докладе изучение дальнего космоса на самом деле сегодня для России не есть приоритет № 1. Прежде должны возникнуть необходимые условия.

Приведем мысль, высказанную в прошлом году руководителем отдела Института космических исследований РАН Игорем Митрофановым. Он отметил, что исследовательские полеты в космос станут реальностью лет через 25, когда будет разрешена проблема защиты корабля и экипажа от космической радиации.

Слишком велик соблазн использовать безграничные военные возможности космоса. Суборбитальный самолет советского авиаконструктора Владимира Мясищева значительно удешевляет доставку компонентов и монтаж космических систем. Таковыми могут быть оружие, поражающее электротехнику противника электромагнитным импульсом, перехватывающее его ракеты мощным лазером, дистанционно управляемые ракетные установки лунного базирования. Нынешние конструкторы разрабатывают и довольно экзотическое оружие:

  • климатическое;
  • улавливающее астероиды и перенацеливающие их на наземные цели.

Таким образом, если бы удалось создать самолет Мясищева М-19 сегодня, то это бы означало лишь одно - новый виток гонки вооружений в уже изученном ближнем космосе. Ведь целенаправленное исследование дальнего комплекса прогнозируется учеными лишь через два десятка лет.

Наивно полагать, что Центр Хруничева получит ассигнования на этот проект не из военного ведомства.

Заключение

Когда-то министр авиапромышленности СССР Дементьев имел неосторожность сказать на собрании авиаконструкторов, что проекты Мясищева будут реализованы, когда могилы всех присутствующих их потомки забудут.

Похоже, что он не ошибся. Сегодня опять приобретает актуальность в XXI веке разработка семидесятых годов, суборбитальный самолет Владимира Мясищева МГ-19.

По своим научно обоснованным возможностям летательный аппарат, задуманный генерал-майором, превышает функциональные возможности шаттла по многим базовым показателям:

  • всеазимутальному запуску;
  • самостоятельному возврату к площадке старта и возможности самостоятельного перебазирования;
  • повышенной экономической эффективности;
  • использованию большего диапазона типов орбит;
  • возможности космического самолета попеременно становиться воздушным на высоте 50-60 тыс. км, а затем вновь возвращаться в космос.

Однако при всех «плюсах» самолет МИГ-19 Мясищева приобретет значение в деле изучения дальнего комплекса не прямо сейчас. Прежде чем отпускать в него отважных людей, нужно научно и технически разрешить проблему их радиационной безопасности.

17 февраля 1976г. ЦК КПСС и Совет министров СССР приняли постановление No132-51 «О создании многоразовой космической системы в составе разгонной ступени, орбитального самолета, межорбитального буксира-корабля, комплекса управления системой, стартово-посадочного и ремонтно-восстановительного комплексов и других наземных средств, обеспечивающих выведение на северо-восточные орбиты высотой до 200 км полезных грузов массой до 30 т и возвращения с орбиты грузов массой до 20 т». Другими словами, речь шла о создании «Бурана». Космический самолет «Буран» и по настоящее время вызывает бурные дискуссии, но большинством специалистов признается, что технически это был совершенный проект. Однако мало кому известно, что куда более перспективной альтернативой «Бурана», способной сделать качественный скачок в развитии мировой космонавтики был воздушно-космический атомный самолет В.М. Мясищева М-19 с ядерным двигателем на борту. Создание этого космического самолета могло изменить ход мировой истории…

В 1966г. было восстановлено, хотя и в более скромном варианте, КБ Мясищева. Владимир Михайлович сразу же развил бурную деятельность, предложив целый ряд самолетов короткого и вертикального взлета, самолет-перехватчик высотных аэростатов. Одной из задач, стоявшей перед Мясищевым, была разработка воздушно-космического самолета. Однако воздушно-космическим самолетом конструктор заниматься не торопился, осознавая его коренной недостаток - меньшая в сравнении с ракетой-носителем массовая эффективность. Требовались принципиально новые подходы, новые материалы. Выход Мясищев увидел в предложении руководителя группы в ЦНИИ-50 О.В. Гурко - применение двигателей на основе ядерного реактора.

Концепция одноступенчатого атомного самолета М-19 выглядит следующим образом. Стартовая масса - 500т. Разгон и взлет М-19 совершает как самолет с двигателями замкнутого цикла, при этом теплоносителем, передающим тепло от ядерного реактора к турбореактивным двигателям, является водород. По мере разгона и набора высоты, водород подается в камеры турбореактивных двигателей, а затем - в прямоточные двигатели. На высоте 50 км, при скорости полета, превышающей 16 М, включается ядерный ракетный двигатель (схемы «А») тягой 320 т, который и завершает выход космического самолета на круговую орбиту высотой 185 км. Полезный груз атомного самолета предполагался в пределах 40 т!

Что очень важно, использование водорода (жидкого) в качестве рабочего тела ЯРД, и в качестве теплоносителя, решает еще одну серьезную проблему: водород в ядерном реакторе не активируется, а потому радиоактивного заражения не создает. Возможности М-19 воистину впечатляют. Он мог как доставить на орбиту 40т груза, так и спустить их с орбиты, и в режиме атомного самолета совершить посадку на своей базе с любого витка. М-19 мог также выполнить «нырок» в атмосферу с маневром по курсу и возвращением на орбиту, который оказался недосягаем для «Шаттлов», и которого так опасались наши военные.

При определенном уменьшении полезного груза, этот М-19 без проблем достиг бы любой точки околоземного космоса вплоть до лунной орбиты. Энергия, вырабатываемая ядерным реактором, позволяла решать в космосе такие задачи, которые для существующих аппаратов в принципе невозможны...

Поскольку угроза загрязнения местности при падении терпящего аварию самолета оставалась, и для ее предотвращения корпус реактора предполагалось выполнить с круговой защитой. Он должен был мяться, но герметичность при ударе о землю он не терял, даже если самолет врезался со скоростью 300 м/с (это значение значительно превышает скорость падения обломков на землю с любой высоты).

Мясищев предложил программу, предусматривающую начало работ в середине 1970-х. В этом случае к началу 1980-х можно было бы построить летающие лаборатории для отработки ядерных двигателей и экспериментальных гиперзвуковых самолетов. В результате этого уже через несколько лет Советский Союз обладал бы бомбардировщиком класса Ту-160, но со скоростью в три раза большей. В любом случае данный аппарат представлял собой революцию в космическом транспорте. Если говорить о характеристиках М-19, то его аэродинамическая компоновка чрезвычайно совершенна: схема имеет дозвуковое аэродинамическое качество >7.0, а гиперзвуковое - 3.0. Аналогичные показатели «Бурана» равны, соответственно, >5.0 и 1.5. Хотя у этой схемы есть уязвимое место (криогенные баки, образованные пересечением нескольких конусов), Владимир Михайлович подстраховался, предложив более простую технологически схему (аналогичную схеме “Бурана”). Именно эти криогенные баки впоследствии привели к неудаче американского одноступенчатого ВКС Х-33.

Если бы программа Мясищева была принята, то в конце 80-х мы обладали бы серийными образцами воздушно-космического самолета с ядерным двигателем. Именно при обсуждении этой программы в 1974 г. академик А.П. Александров заявил, что серийный образец ядерного двигателя с требуемыми характеристиками можно сделать за 10 лет!

Всего десяток атомных самолетов М-19 смог бы обеспечить весь грузопоток «Земля - ближний космос» до середины XXI в. Орбитальные станции и спутники при подобной транспортной системе были бы существенно масштабнее, функциональнее, а себестоимость выводимого на орбиту груза была бы существенно меньше. Военные возможности Советского Союза с М-19 выросли бы на порядки. Это решение действительно стало бы «асимметричным ответом» заокеанским авторам “стратегической оборонной инициативы”. К сожалению, руководство думало о другом (не исключено, что данный проект заблокировали вполне сознательно, не в первый раз предав интересы Родины). Данный проект решал целый комплекс задач: создание атомного сверхзвукового самолета, гиперзвукового самолета на криогенном топливе, воздушно-космический самолета и космического корабля с двигателем на основе ядерного реактора! Проект Буран» , к сожалению, решал только одну из этих задач и являлся “симметричным” ответом США. Результат такого ответа известен: проект оказался никому не нужным, и на фоне распадающейся страны поставил под вопрос существование отрасли вообще. Атомный самолет М-19 же остался ждать своего часа…

Явление призраков

Тевтонские рыцари

Колония на Марсе: перспективы Mars One

Иерусалим - вечный город

БАК: могут ли страпельки поглотить Землю?

Трехколесный гибрид - автомобиль или мотоцикл

Трехколесные гибриды бросаются в глаза, их нельзя не заметить, они буквально приковывают всеобщее внимание. Пока люди спорят, к какому виду...

Золотой рог в Хорватии

Пляж Золотой Рог - одно из самых красивых и известных мест в Хорватии. Золотой рог находится на побережье Адриатического моря, вблизи курортного поселка...

Группа катаров

Группа катаров являлась обществом, чье название переводится как «чис-тые». Члены данной группы проживали в провинции Лангедок на юге Франции. Общество...

Архипелаг Сокотра

Архипелаг Сокотра лежит в 380 км. от мыса Фартак на Йеменском побережье Аравийского моря и состоит из островов: Сокотра, ...

Рыцари Золотого Круга

В 1854 г. д-ром Джорджем Бикли в г. Цинциннати (штат Огайо) была основана организация под названием «Рыцари Золотого Круга». Многие из...

Тауэр в Лондоне

Резиденция королей, самая страшная тюрьма Англии, крепость, возведенная для обороны города, монетный двор, королевский арсенал и даже царский зверинец...

Первой мыслью заключительной статьи о гиперзвуковых задумках человечества было озаглавить её, как «Хороший самолёт должен быть большим», но потом подумал, что те технические концепты, о которых я хотел рассказать в этой заключительной статье — так и остались стоять на Земле.
Как приведенный на первой фотографии студенческий макет так и не взлетевшего в конце 1980-х годов американского ракетоплана Х-30.
И решил назвать статью «Время гигантов».
Может быть, все эти гиганты и были хорошими самолётами, но, наверное, где-то в другой, параллельной с нашей реальности.
В которой в начале XXI века человечество уже имеет обитаемую базу на Луне, построило там заправочную станцию для межпланетных ракет — и штурмует ближние рубежи своей собственной Солнечной системы, вовсю осваивая Марс и спутники Юпитера, помышляя об энергетических станциях на Меркурии и терраформировании Венеры.
В силу чего тому, параллельному человечеству по-прежнему нужны сотни и сотни тонн грузов на околоземной орбите, потому что быстро растущий фронтир требует всего того, что может пока произвести только Терра.

Но — река времени потекла совершенно в ином направлении. И оставила нам лишь массу нереализованных проектов, которые так и ждут того самого прихода «эпохи гигантов».
Завтра, послезавтра — или же в следующем столетии. Если, конечно, нам повезёт и новый тёмный век не растянется на целое тысячелетие...


Все описанные в данной статье проекты и концепции осуществимы на инженерном и физическом принципе.
Проблема для большинства из них состоит в ином: для их гигантских размеров ни тогда, когда их разрабатывали, ни сейчас — просто нет такого потока грузов на орбиту, которые бы оправдали создание и поддержание эксплуатации этих «самолётно-космических монстров».
Ведь, как ни крути, а сегодня основной заказчик космоса — это системы глобального позиционированния и связи. И вечные военные с их вечным желанием пошпионить за вероятным противником.

А всё остальное — пока лишь блоха на загривке у этих двух быков, которые ещё тянут вперёд и беспилотную, и, отчасти, пилотируемую космонавтику.

Однако, начнём по порядку.

Что же делает космический самолёт — самолётом?
Интуитивно понятно, что крылья.
В случае же космических систем — это возможность производить или горизонтальный взлёт с космодрома — или же производить горизонтальную посадку. Или же делать и то, и другое одновременно. По-английски эти аббревиатуры звучат, как VTHL (вертикальный взлёт, горизонтальная посадка) и HTHL (горизонтальный взлёт, горизонтальная посадка).
Классическая же ракета с вертикальным взлётом и баллистическим возвращаемым аппаратом, который спускается на парашютах или на реактивной струе, имеет формулу VTVL (вертикальный взлёт, вертикальная посадка).

Формулу НTVL (горизонтальный взлёт, вертикальная посадка) пока никто не применял, в силу её инженерной тупости: если уж вы смогли взлететь горизонтально, то особого смысла садиться вертикально у вас нет.

За всё время космических полётов, начиная с 1957 года, в мире пока было реализовано шесть проектов космических самолётов — два советских («Буран» и «Спираль») и четыре американских (Х-15, Space Shuttle, SpaceShipOne и X-37).
Вот они все, за исключением «Спирали»:

У СССР оба проекта реально были реализованы по схеме VTHL (хотя «Спираль» и планировали использовать по схеме НТНL), у США по схеме HTHL летали суборбитальные самолёты X-15 и SpaceShipOne, а по схеме VTHL — более тяжёлые космические самолёты: пилотируемый SpaceShuttle и беспилотный X-37.

Современный беспилотный Х-37 — это нынешний потолок военных. Это небольшой аппарат, весом всего около 5 тонн, с полезной нагрузкой в 900 килограмм, выводимой на орбиту или же сбрасываемой на головы вероятного противника — и он вполне достаточен для выполнения большинства задач, которые ставит сегодня перед собой Пентагон:

Даже «Буран» и «Спейс Шаттл» оказались для космоса «слишком большими» и «безнадёжно невыгодными».
Но, ещё 50 лет тому назад люди думали совсем иначе.

Первым проектом «космического самолёта» являлся целый «букет» НИОКР , которые проводились в США в период с 1957 по 1963 год и получили впоследствии общее, зонтичное название Aerospaceplane-1 . Номер «1» появился возле описания данных разрозненных НИОКР впоследствии, для того, чтобы отличить эти разработки конца 1950-х - начала 1960-х от последующего проекта Х-30 , который в официальных бумагах также иногда именовался National Aerospaceplane .


Представление художника о внешнем виде Aerospaceplane-1.

В создании Aerospaceplane-1 принимали участие такие гиганты, как «Боинг», «Норт Америкен», «Дуглас» и «Локхид». Первый космический самолёт предлагали оснащать различными типами двигателей — от гиперзвуковых воздушно-реактивных двигателей с сжижением атмосферного кислорода и вплоть до прямоточных ядерных.
Для варианта со сжижением атмосферного кислорода действовала следующая схема: поступающий в носовые воздухозаборники атмосферный воздух попадал в теплообменники, в которых циркулировало топливо — жидкий водород и полученный в результате сжижения воздуха жидкий воздух. Первым теплообменным контуром планировался контур на жидком воздухе, который одновременно позволял произвести и его очистку от азота в процессе ректификации . В результате входящий воздушный поток охлаждался, а полученный жидкий воздух очищался от азота.
Сжиженный кислород, очищенный от азота, подавался затем в буферный бак, из которого шёл в двигатель, а предохлаждённый в первом контуре воздух из воздухозаборников поступал на охлаждение жидким водородом.

В 1960 году на этом принципе работы даже был создан двигатель-демонстратор с тягой 125 Ньютонов (около 12 килограмм), который успешно проработал около пять минут.
После этого испытания инновационного СПВРД и ГПВРД велись в США с перерывами вплоть до 1974 года о чём можно достаточно популярно прочитать многостраничном докладе (страница 1-10).
В полёте и в аэродинамических трубах было испытана масса прототипов СПВРД и ГПВРД, однако до ситуации применения на реальных летательных аппаратах ни один так и не дошёл.


Один из прототипов ГПВРД в аэродинамической трубе Аэрокосмического центра в Лэнгли.

В результате к моменты фактического окончания работ по проекту Aerospaceplane-1 у рабочих групп был лишь прототип ГПВРД, испытанный на скорости около 4М и развивший тягу в 517 фунтов (около 220 килограмм).
Но, из-за новизны технических решений и неопределённости многих моментов конструкции самого аппарата, проект Aerospaceplane-1 и разработка двигателей именно для него были тихо прекращены в 1964 году. Возможно, что влияние на это оказали и общие параметры стоимостей и сроков воплощения проекта: все подрядчики оценивали даже тогда стоимость создания такого космического самолёта в сумму не менее 5 млрд. долларов США при возможном первом запуске самолёта в 1970-1972 годах.
Приоритет, как мы помним, тогда был отдан программе «Аполлон».

Нам же в наследство остались только эскизы «космического самолёта», которые оставили нам неудавшиеся подрядчики:



Концепт «Локхида». Концепт «Дугласа».



Концепт «Боинга» Концепт «Репаблик»


Концепт «Конвэйр»

Дальше, уже начиная с середины 1960-х годов, инженерная мысль, касающаяся космических самолётов, и в США, и в СССР понеслась просто-таки галопом.
Проекты космопланов причудливым образом перемешивались с ракетами, в итоге породив совершенно невообразимый список различных концептов и проектов, который даже в Википедии поражает воображение.

Я постараюсь рассмотреть в статье лишь некоторые из них — самые интересные и самые важные с точки зрения дальнейшего развития инженерно-конструкторской мысли.

Нужно понимать, что конец 1960-х - первая половина 1970-х годов ознаменовался реальным переломом в космической эре — и судорожными поисками новых путей дальнейшего освоения космического пространства.
Циклопическая программа «Аполлон», создавшая, так или иначе, целую эпоху в американской истории освоения космического пространства, была завершена в 1972 году. Такая же участь постигла и советскую лунную программу двумя годами позже, после последнего, неудачного пуска сверхгигантской ракеты Н-1.
И вот тут-то и встал простой вопрос: что делать дальше и как поступить со всеми готовыми технологиями обеих лунных программ? (Конспирологи, вам вообще-то, сюда — а не на поиски артефактов на лунных фотографиях).

Скажу сразу — итогом ситуации было то, что обе программы, и американская «Сатурн-Аполлон» и советская «Н1-Л3» — так и остались «реликтами 1960-х годов», мало что дав будущему.
Но — идеи остались:

1. «Сатурн-Спейс Шаттл»


Заметьте, без использования Photoshop!
Концепт системы «Сатурн-Спейс Шаттл» в представлении художника NASA, 1970-й год.

Для вывода будущего космического челнока «Спейс Шаттл» предполагалось использовать первую ступень гигантской ракеты «Сатурн-V». В качестве второй ступени должны были использоваться собственные двигатели «Шаттла», которые бы получали водород и кислород из своего собственного подвесного бака.
Получившаяся схема очень напоминала оригинальный «Шаттл» с его полётной схемой VTHL, однако максимально использовала задел предыдущих программ.


Альтернативные модели «Сатурн-Шаттла».


Сравнительная масса и грузоподъёмность разрабатываемого «Спейс Шаттла», «Сатурн-V» и два варианта тяжёлых систем «Боинга». Большая из них должна была выводить 420 тонн на НОО.

Основной идеей столь гигантского носителя, да ещё и многоразового (схема VTHL для обеих ступеней) было создание на орбите солнечных энергостанций. «Боинг Спейс Фрейтер» должен был быть основной «рабочей лошадкой» для сборки на орбите солнечных электростанций .

При общей массе солнечной электростанции в 50 000 тонн, несмотря на 420-тонную грузоподъёмность «Боинг Спейс Фрейтера», тем не менее, понадобилось бы не менее 120 пусков многоразовой системы на околоземную орбиту.
Первая ступень комплекса должна была быть автоматической, вторая подразумевала пилотируемость и позволяла осуществлять ротацию персонала на планируемых солнечных электростанциях.
Получившаяся громадная конструкция солнечной электросатнции, размером в 10,5 на 5,2 километра, согласно замыслу «Боинга» и НАСА, должна была выдавать около 5 ГВт практически бесплатной электроэнергии на протяжении минимум 20 лет.

3. МГ-19.

Советский проект многоразовой аэрокосмической системы.

Проект одноступенчатого воздушно-космического самолета, прорабатывавался в НИИ-4 Министерства обороны группой под руководством Олега Гурко.
Первоначальный проект аппарата, который группа разрабатывала в конце 1960-х годов, был оборудован силовой установкой, состоящих из нескольких комбинированных прямоточных жидкостных ракетных двигателей, использующих на этапах взлёта и посадки атмосферный воздух в качестве рабочего тела.
Прямоточные ЖРД отличаются от рассматривавшихся мною раннее классических сверхзвуковых и гиперзвуковых ПВРД тем, что если в ПВРД набегающий поток воздуха сначала сжимается за счет собственной кинетической энергии набегающего потока, а затем разогревается при сжигании топлива и выполняет при этом полезную работу, то в прямоточном ЖРД воздух разогревается самой струей ЖРД, которая бьёт прямо в воздушный тракт прямоточного двигателя.
Помимо варианта многорежимности, который подразумевает работу такого ЖРД в безвоздушном пространстве как обычного ракетного двигателя, такой комбинированный ЖРД на атмосферном участке создает дополнительную тягу за счет возникновения инжекционного эффекта. В качестве топлива в первом варианте «гурколёта» предусматривался жидкий водород, который давал необходимую температуру в результате химической реакции.

Однако, в 1974 году у Гурко возникла новая техническая идея, позволяющая существенно снизить расход топлива за счет размещения в воздушном тракте теплообменника, нагревающего воздух теплом от бортового ядерного реактора. Благодаря такому техническому решению появилась возможность в принципе даже полностью исключить расход топлива при полете в атмосфере и соответствующие выбросы в атмосферу продуктов сгорания, расходуя дефицитный водород только в безвоздушном пространстве.

В первой половине 1970-х годов МГ-19 рассматривался как серьезный конкурент разрабатываемой системе «Энергия-Буран», однако ввиду меньшей степени проработки и большей степени технического риски при реализации, а также из-за отсутствия зарубежного аналога, проект МГ-19 дальнейшего развития не получил. Кроме того, судя по сложившейся тогда ситуации (включая буквальное уничтожение Н-1 под чутким руководством академика Глушко), разработчики «Энергии-Бурана» предприняли тогда все усилия для того, чтобы полностью похоронить все возможные альтернативы своему детищу.
Тем не менее, проект МГ-19 в России до сих пор не рассекречен, и информация о нем и по сей день крайне скудна.

Единственное, что известно — «гурколёт» должен был иметь, согласно расчётам, собственную взлётную массу в 500 тонн и, за счёт уникальной конструкции энергетической установки (ЯРД) и использования в качестве реактивной массы атмосферного воздуха, мог бы выводить на орбиту просто-таки невообразивую массу полезной нагрузки по сравнению со своим собственным стартовым весом — 40 тонн (или же 8% от стартовой массы).
Самолётный взлёт и самолётная посадка делали его системой типа HTHL.
Однако, фрагментированность и неполнота информации о МГ-19 не позволяет оценить реальность просчитанных цифр ПН.

Так, в середине 1970-х годов и в СССР и в США закрылось окно для создания гигантских систем космических многоразовых самолётов — в результате чего все 1980-е, 1990-е и 2000-е годы прошли под знаком двух реализованных в железе систем космических многоразовых самолётных систем — американской «Спейс Шаттл» и советской «Энергия-Буран».

Однако, гигантов пытались сделать и в 1990-е.

4. X-33 и VentureStar.

Проект VentureStar был ещё более амбициозным, нежели предыдущий проект американского гиперзвукового ЛА — Х-30.
Он основывался на всё той же, наиболее зарекомендовавшей себя схеме VTHL — вертикального взлёта и горизонтальной посадки.


Полноразмерный космический самолёт VenureStar должен был весить около 1000 тонн и должен был выводить на околоземную орбиту 22,5 тонны полезной нагрузки.
Всё остальное «хозяйство» космического самолёта должно было возвращаться на обычный аэродром уже по-самолётному, и в течение непродолжительного промежутка времени, без пересборки узлов и отладки, характерных для системы «Спейс Шаттл» — снова стартовать на орбиту.


Уменьшенный прототип VentureStar — суборбитальный самолёт Х-33.

В рамках реализации проекта VentureStar компания «Локхид-Мартин» начала реализацию программы испытаний прототипа, который получил кодовое название X-33 .
Прототип должен был весить всего лишь 131 тонну и мог бы продемонстрировать успешность технологии, на использовании которой и была построена вся идея VentureStar — клиновоздушного ракетного двигателя .
Прототип Х-33 должен был продемонстрировать разгон на данных двигателях в земной атмосфере до скорости в 15М и совершить ряд суборбитальных полётов до высот в 50-70 километров.

Сам двигатель XRS-2200 прототипа Х-33 был успешно испытан и показал свою работоспособность.
Двигатель работал на жидком водороде и жидком кислороде, имея тягу в 92 тонны на уровне моря и 120 тонн в вакууме.

Всего на протяжении 1990-х годов на программу Х-33, испытания двигателей и проработку концепции VentureStar было потрачено более 1,2 млрд. долларов США.
Кроме натурного испытания уникального двигателя, в рамках программы Х-33 был построен целый испытательный полигон на авиабазе Эдвардс, а в компнии «Локхид-Мартин» производились испытания элементов конструкции, теплозащиты и даже была построена полноразмерная модель топливного бака.
Однако, система VentureStar так и не получила в итоге обещанного финансирования НАСА, а проект Х-33 был закрыт в 2001 году, хотя по всем расчётам VentureStar могла бы обеспечивать стоимость доставки полезного груза всего лишь за 1/10 часть от удельных расходов системы «Спейс Шаттл».

И, судя по всему — в третий раз гигантские космические самолёты мы увидим ещё очень нескоро....