Добрый день, друзья!

Продолжаем сегодня знакомство с . Привел ссылку, где обзорно рассказывал о принципе работы фотокамер. Далее мы детальнее остановимся на отдельных элементах, о которых в общих чертах фотограф должен иметь понятие. Если будут встречаться непонятные для вас определения или термины, ничего страшного, просто продолжайте читать, и вы обязательно поймете суть. Уверен в этом! А важно именно общее понимание.

Статья довольна объемная, поэтому для удобства навигации оформил для вас содержание 🙂

Матрица в фотоаппарате. Что это такое?

Матрица в камере – это основной элемент, при помощи которого мы получаем изображение. Также часто называется сенсором или датчиком. Представляет собой микросхему, состоящую из фотодиодов – светочувствительных элементов. В зависимости от интенсивности попадающего света фотодиод формирует электрический сигнал разной величины, который впоследствии преобразуется в цифровой при помощи отдельного АЦП или встроенного в матрицу.

Матрица фиксирует свет и превращает его в набор битов (0/1), который затем формирует цифровое изображение.

Выглядит она следующим образом:

Матрица в фотоаппарате

Блестящая прямоугольная пластина по центру – это она и есть. А по краям фотографии .

Дискретная структура матрицы

Основу составляют очень маленькие фотодиоды или фототранзисторы, которые фиксируют свет и превращают его в электрический сигнал. Один такой фотодиод формирует один пиксель выходного цифрового изображения.

Небольшое отступление для тех, кто, возможно, не знает. Цифровое изображение состоит из множества точек, которые наш мозг «склеивает» в целостную картинку. Если таких точек будет недостаточно, мы станем замечать дискретность структуры, иными словами, станет казаться, будто изображение «распадается», являясь мозаичным, плавные переходы исчезнут.

Давайте рассмотрим фотографию собаки.

Дискретная структура матрицы на примере собаки

Не обращайте сейчас внимания, что она черно-белая. Абстрагируйтесь от понятия цвета, это другая тема, в данный момент так лучше будет воспринимать информацию. Матрица фиксирует электрический сигнал разной величины в зависимости от интенсивности света. И, если отнять специальные фильтры, предназначенные для получения цветного изображения, то выходная фотография получается как раз черно-белой. Кстати, камеры, снимающие исключительно в ЧБ, также существуют.

Схематически нанес на изображение сетку, иллюстрирующую дискретную, т.е. прерывную структуру матрицы. Каждый квадрат иллюстрирует минимальный элемент матрицы – пиксель, формируемый фотодиодом, на который попадает свет N-ой интенсивности и на выходе преобразуется в пиксель цифрового изображения N-ой яркости. К примеру, левый верхний угол темный – значит, на этот участок матрицы попало мало света. Шерсть, напротив, светлая – значит, туда попало больше света и электрический сигнал был иным. Естественно, изображение состоит из намного большего числа квадратиков, тут лишь схематическое изображение.

Матрица – аналог пленки

Раньше, когда не было цифровых фотоаппаратов, в качестве светочувствительного элемента, то бишь матрицы, использовалась пленка. В принципе конструкция пленочного фотоаппарата от цифрового не слишком сильно отличается, в последнем больше электроники, а вот «приемник» света совершенно иной.

Когда в пленочном фотоаппарате вы нажимаете на кнопку спуска, открывается затвор, и свет попадает на пленку. До момента закрытия затвора происходит химическая реакция, результат которой – изображение, хранящееся на пленке, но невидимое глазу до момента проявки. Пример такого химического процесса – разложение галогенида серебра на атомы галогена и серебра.

Как видите, сама суть совершенно другая. Пишу это для того, чтобы вы запомнили, что в современном мире матрица выполняет функции пленки, т.е. формирует изображение. Кстати, разница между ними в хранении: пленка является непосредственно и местом хранения конечного изображения, в цифровой фотографии изображение сохраняется на картах памяти.

Экспонирование матрицы

Важный термин, который часто используют фотографы. Означает сам процесс получения фотоснимка. Т.е. когда вы нажали кнопку спуска затвора, последний открылся и свет стал попадать на матрицу, говорят, что идет ее экспонирование. Идет до тех пор, пока затвор не закроется.

Вы можете услышать словосочетания «во время экспонирования…», «процесс экспонирования…», «при экспонировании…». Обычно слово «матрица» опускается, и говорят просто – экспонирование.

Характеристики матрицы

Нужно отдавать отчет, что матрицы сильно различаются друг от друга, и в различных ценовых диапазонах им присущи те или иные качества. Этот элемент можно считать «сердцем» камеры, как двигатель в машине или процессор в компьютере. Хотя ни машина, ни компьютер с одним только двигателем или процессором работать не станут, тем не менее эти элементы определяют потенциал системы. Сложно ожидать, что машина с двигателем малого объема сможет демонстрировать чудеса проворности в гонках. Так и с камерой – в бюджетном диапазоне они оборудуются ограниченными по возможностям матрицами, и от них сложно ожидать бесшумной картинки при съемке на длинной выдержке. Понятно, что есть характеристики, которые категоризуют матрицы по возможностям. К их рассмотрению и перейдем.

Для начала перечень основных характеристик:

  • физический размер;
  • разрешение;
  • соотношение сигнал/шум;
  • чувствительность ISO;
  • динамический диапазон
  • тип матрицы (устарело).

Теперь рассмотрим все детально.

Физический размер матрицы фотоаппарата

Матрица представляет собой прямоугольную пластину, которая собирает свет, и естественным образом имеет размеры. Выше мы рассматривали дискретную структуру матрицы, где уяснили, что она состоит из пикселей, которые в физическом смысле представляют собой фотоэлементы, превращающие попадающий свет в электрические заряды.

Соответственно, физический размер матрицы определяется величиной пикселей и расстоянием между ними. Чем больше будет расстояние между пикселями, представляющее собой изоляционный слой, тем меньше будет нагрев матрицы, тем выше будет соотношение сигнал/шум и чище выходная картинка.

Идем далее. Размер матрицы – это один из важнейших параметров, на который обязательно стоит обращать внимание. Для начинающих фотографов упрощенно отмечу, что размер матрицы – самая важная ее характеристика .

На практике отмечается в миллиметрах, либо обозначением формата, либо в дюймах диагонали сенсора. Формат – это просто наименование матрицы с определенными размерами. Называют так для упрощения. Что касается дюймов, то тут история тянется с измерения площади изображения на трубчатых телевизорах. Записывается, например, так: 1/1,8″. Не стоит производить математические вычисления, задаваясь целью определить физический размер диагонали и посчитать размеры сторон. Это просто обозначение, не имеющее математической силы. Важно лишь понимать, что матрица с диагональю 1/2,7″ заметно меньше, чем с 1/1,8″. Приведу популярные размеры:

На что влияет размер матрицы?

Чем больше размер матрицы, тем лучше

Это не всегда так, и с утверждением можно поспорить, но в общем случае это соответствует действительности. Более опытные читатели предвкушают переход темы в холиварное русло «Кроп vs полный кадр»:) Не стану сейчас потакать их желаниям, ведь мы говорим о фундаментальных вещах! Вернемся к теме.

От размера матрицы зависит:

  1. шумность изображения;
  2. динамический диапазон;
  3. глубина цвета;
  4. габариты камеры.

Опосредованно с изменением размера матрицы изменяется ГРИП и угол обзора, т.к. для получения снимка в том же масштабе приходится менять другие параметры (фокусное расстояние, расстояние до объекта съемки).

Чем больше матрица, тем:

  • Менее шумное изображение. Физики скажут, что чем больше света попадает на фиксирующую его поверхность, тем меньше нагрев, меньше погрешность при квантовании и, следовательно, меньше влияние постороннего шума. Изображение при одних и тех же условиях получается более «чистым» и детализированным. Конечное изображение будет содержать меньше лишней информации, вызванной «помехами». Теперь более практичное определение. При равном количестве пикселей и одинаковой технологии чем больше матрица, тем меньше шума будет на снимке при съемке с недостаточным освещением. Попросту говоря, на фотографии будет меньше посторонних точек, мешающих просмотру. Например, намереваясь снимать с рук сумеречные портреты, предпочтительно обладать камерой с матрицей большого размера.Чем меньше матрица, тем меньше изолирующие элементы между пикселями. По этой причине возникает повышенный нагрев, что в электронике всегда плохо, ухудшается соотношение сигнал/шум и количество шума на получаемом изображении растет в сравнении с моделями, обладающими большими матрицами. Давайте посмотрим на пример:
    Слева условно изображение, получаемое с камеры с большей матрицей, справа – с меньшей. Условия съемки одни и те же. Увеличьте изображение. Достаточно посмотреть на небо. Разница может варьироваться, но тенденция сохранится (при условии, что матрицы схожи по технологиям и поколениям). На практике шум отлично просматривается в светах, и, вытягивая тени на одну и ту же величину, на камере с большей матрицей вы сможете получить более чистую картинку. Под вытягиванием понимается увеличение экспозиции в редакторе, в данном случае в тенях – в них начинают проявляться детали. Если вы предпочитаете следующие жанры: вечерние/ночные пейзажи, портреты в режимное время, когда света не очень много, динамичную репортажную съемку, обратите внимание на уровень шума матрицы выбранной камеры. По размеру желательно выбирать камеры с матрицами, начиная от APS-C формата.
  • Шире динамический диапазон (об этом далее в статье).
  • Больше глубина цвета . Глубина цвета — показатель, определяющий, насколько мелкие цветовые изменения может различить камера. Т.е. при большей глубине цвета незначительные переходы в полутонах будут смотреться более естественно и близко к видимому глазом. Будет записано больше информации о полутонах. Это проявляется, например, на почти однотонных пейзажах.
  • Больше камера. Непреложный факт – если вы хотите снимать на камеру с большей матрицей, придется мириться с ее увеличенными размерами. Взглянув на рынок фотоаппаратов, становится понятно, что не существует, например, небольших полнокадровых камер, хоть и пытаются такие сделать. А мобильная фотография ограничена размером сенсора.
  • Больше угол обзора можем получить при прочих равных условиях .
    Размер матрицы не влияет на угол обзора!!! Перспектива, получаемая на одном и том же объективе, установленном на разных камерах будет отличаться. Но при одинаковом ЭФР (эквивалентном фокусном расстоянии) изображение будет примерно одинаковым. Если вам понятия перспективы и ЭФР мало о чем говорят, ничего страшного, просто читайте дальше, рассказываю важную суть «на пальцах». Если взять один и тот же объектив, то, снимая на фотоаппарат с матрицей большего размера, вы получите более широкий обзор. Примем приближение объектов при съемке на фотоаппарат с большей матрицей за 100%. Тогда этот же объектив на меньшей матрице обеспечит приближение >100% (приближение будет кратно уменьшению размера матрицы). Такой же эффект можно смоделировать, вырезав из фотографии (снятой на большую матрицу) часть кадра и растянув его до исходного размера. Иными словами, мальчик, которого сфотографировали на 35 мм объектив на камеру с APS-C матрицей (посмотрите таблицу размеров матриц), будет ближе, чем этот же мальчик, сфотографированный на такой же объектив, но на полнокадровую матрицу (FF). Солнце на горизонте, снятое на матрицу меньшего размера, будет «расположено ближе» к нам:
  • Меньше ГРИП можно получить при прочих равных условиях . Это еще один интересный аспект, который вводит фотографов в заблуждение и требует рассмотрения. Забегая наперед, ГРИП (глубина резко изображаемого пространства) определяет, на каком расстоянии от точки фокусировки объекты будут находиться в зоне резкости. Размер матрицы не влияет на ГРИП!!! Но, чтобы на разных камерах при одинаковых фокусных расстояниях масштаб изображения был одинаковым, на камерах с меньшими матрицами придется отойти подальше либо изменить фокусное расстояние, что в свою очередь уже как раз влияет на ГРИП, увеличивая его. Поэтому на камерах с большими матрицами проще получать «размытые» фотографии.

Это не все, но основные моменты, критичные для фотографа, на которые прямо или косвенно влияет размер матрицы фотоаппарата и которые для себя нужно четко уяснить.

Тип матрицы

Определяет принцип, по которому работает матрица. Существовало две основных технологии:

  • CMOS (КМОП – комплементарная логика на транзисторах);
  • CCD (ПЗС – прибор с зарядовой связью).

Матрицы, основанные на обеих технологиях, накапливают свет. Только в первой мельчайшим структурным элементом является диод, во второй – транзистор.

Что касается качества изображения, то во времена широкого распространения обеих технологий считалось, что CCD матрицы обладали более приятным, «ламповым» цветом, в то же время CMOS меньше шумели, но структура шума отличалась.

На сегодняшний день абсолютное большинство камер комплектуется матрицами CMOS типа, как менее шумными и более энергосберегающими. Поэтому вопрос выбора по этому параметру не стоит. Это лишь памятка при использовании устаревших камер.

Чувствительность матрицы. ISO

От чувствительности матрицы зависит соотношение выбранной экспозиции и параметров изображения на выходе. Попросту говоря, чем больше вы устанавливаете чувствительность (меняется в настройках камеры), тем менее освещенные элементы вы сможете зарегистрировать. Но при этом будут расти шумы. За эквивалентный параметр чувствительности принят параметр ISO. Начинается от 50 – это минимальная чувствительность, на которой изображение, насколько возможно, чистое и неподверженное шумовому разрушению. Шаг изменения формируется умножением на 2. Т.е. следующая чувствительность ISO – 100, далее 200, 400, 800, 1600, 3200, 6400… Конечно же, камеры снимают и на промежуточных значениях, например, 546. Но для удобства шагов в стопах принято считать, как описал выше. Про ISO, стопы и прочее сейчас особо не беспокойтесь.

Важно понять, что, снимая один и тот же сюжет (например, дерево в сумерках), при повышении ISO его яркость увеличится. Картинка будет казаться светлее. Также важно понять, что на камере с большей матрицей при одинаковом ISO шумов будет меньше.

Далее для тех, кто хочет знать больше. Есть такое понятие – EI (exposure index). Он определяет соотношение между сигналом, передаваемым с матрицы и параметрами его преобразования в цветовое пространство. Что он позволяет? При одних и тех же настройках экспозиции мы имеем возможность получить изображение различной яркости.

Поступая на матрицу, свет формирует сигнал (выходное напряжение), который в АЦП конвертируется в цветовое пространство. Наиболее распространенное – sRGB. При этом происходит его усиление. Если сигнал слабый, нужно его усилить больше. EI становится другим. Камеры предустанавливают заданный диапазон значений EI, который для упрощения называется ISO. Пошло с пленочного мира и сейчас используется для удобства. Диапазон зависит от возможностей матрицы. Например, на старых зеркалках не было возможности установить ISO 6400 просто из тех соображений, что при такой чувствительности качество изображения из-за шумов станет неприемлемым. Далее про усиление слабого сигнала.

Соотношение сигнал/шум

Следующая характеристика матрицы, неразрывно связанная с чувствительностью – соотношение сигнал/шум. Думаю, суть вам уже ясна. Выражаясь простым языком, это соотношение определяет, сколько полезного сигнала (света от снимаемого вами объекта) и шума будет содержаться в конечном изображении.

Выше мы говорили о том, что при попадании света на матрицу ее фотоэлементы генерируют сигналы в виде выходящего напряжения. Допустим, получается напряжение 0,2 В. Пусть это, к примеру, соответствует чистому зеленому цвету согласно sRGB пространству при ISO 200. Прикрывая диафрагму или делая короче выдержку, мы уменьшаем попадаемый на матрицу световой поток. Напряжение на матрице станет не 0,2, а 0,1 В (для примера, конечно). Что при заданном ISO 200 будет соответствовать не чистому зеленому цвету, а более темному зеленому с грязноватыми примесями. Если мы выставим на камере ISO 400, то напряжение автоматически поднимется до 0,2 В, и мы получим изначальный чистый зеленый цвет.

НО! При этом на матрице формируется плохая составляющая в виде шума, который при базовом ISO не заметен. Но, усиливая сигнал, мы также усиливаем и шум. В разумных пределах это допустимо и не критично. Важно понимать ту грань, когда последующее увеличение чувствительности и, соответственно, соотношения сигнал/шум ведет к неприемлемым результатам.

Допустим, вы снимаете друзей для публикации личных фотографий в социальные сети. Они не слишком заморачиваются безукоризненным качеством фотографий и хотят получить классные эмоции, яркие и приятные снимки. В таком случае небольшой или даже значительный шум, корректируемый в редакторе, не станет проблемой. Но, если вы фотографируете пейзаж и желаете его потом распечатать размером 30×40 см или больше, то лучше изначально выставлять минимально возможное ISO. В принципе, при съемке пейзажей придерживайтесь правила изначальной установки минимального ISO. Просто поставили его и забыли, дальше работайте с остальными параметрами.

Сигнал/шум также зависит от размера пикселя. Поэтому переходим к следующему параметру.

Разрешение матрицы

Популярный параметр, который до сих пор в некоторых магазинах применяется в качестве основного.

В технической документации можно увидеть, например, 6000 x 4000. Это значит, что по ширине расположено 6000 фотоэлементов, фиксирующих свет, а по высоте – 4000. Перемножив, получим общее количество фотоэлементов (пикселей) на матрице – 24000000. Для читабельности пишут 24 МП. Размерность – мегапиксели. Приставка «мега» соответствует степени 10 в 6й степени.

Больше мегапикселей не равно лучше

Современные камеры обычно комплектуются матрицами от 16 МП и выше. Но сейчас не редкость и 36 МП, и 42 МП. Встречаются модели и с большим разрешением. В этом и заключается традиционная маркетинговая уловка, на которую раньше, да и сейчас тоже, «ловят» покупателей, предлагая приобрести камеры с высоким разрешением, «забывая» о сопутствующих подвохах и вообще не интересуясь целями покупателя. А мы копнем чуть глубже и поинтересуемся размером пикселя.

Физический размер пикселя – очень важная характеристика, измеряется в мм или мкм. Если пиксель больше, то он сможет собрать больше света, и соотношение сигнал/шум будет выше со всеми вытекающими последствиями. Т.е. такая матрица при прочих равных будет шуметь меньше.

Определить очень просто. Возьмем матрицу популярного APS-C формата с разрешением 24 МП, что соответствует физическому размеру примерно 23.6 x 15.8 мм. Разрешение в пикселях ­– 6000 x 4000. Значит, по длинной стороне 6000 точек нашего выходного изображения формируется на 23.6 мм. Делим физическое расстояние на количество точек и получаем размер пикселя, составляющий примерно 0.004 мм. Если матрица такого же поколения, аналогичной структуры и физического размера обладает большим разрешением, то размер пикселя будет меньше, что увеличит нагрев и шумы. Говорят, нагрев примерно на 8 градусов ведет к двукратному росту шумов.

Практические особенности размера пикселя:

  1. Шумы. Как неоднократно рассматривали, при прочих равных меньше пиксель = больше шумы.
  2. Увеличенная шевеленка. Меньший пиксель более чувствителен к дрожанию рук и смещению камеры по отношению к снимаемому объекту. Представьте, будто пиксель по размеру соответствует теннисному мячу, а вы снимаете кота. Пиксель в виде теннисного мяча фиксирует свет, соответствующий темному пятну на шерсти кота. Если вы немного пошевелите матрицу с такими пикселями, то на этот пиксель вероятнее всего будет попадать свет от этого же темного пятна. Смещение не вызовет глобальных проблем в изображении. Предположим, что снимаем этого же кота на камеру с матрицей, обладающей маленькими пикселями, и на определенный пиксель попадает ворсинка пятна кота. Немного сместив камеру, получится, что пиксель будет фиксировать другую ворсинку.Таким образом, детализация растет, но изображение становится смазанным. Для определенных целей это подходит лучше, но требует больших навыков от фотографа и имеет свои особенности при съемке отдельных жанров.
  3. Повышенные требования к объективу. Меньший физический размер пикселя говорит о том, что для получения детализированной фотографии разрешающая способность объектива должна быть выше. Объектив тоже имеет разрешающую способность, и на каждый миллиметр матрицы он может спроецировать ограниченное количество точек. Большей разрешающей способностью обладают более дорогие объективы. При этом, если разрешающая способность объектива ниже таковой у матрицы, то изображение будет недостаточно детализированным. Говорят, что «матрица не раскроется». По факту система не сбалансирована и результат будет, как на более дешевой, но сбалансированной технике.Разрешающая способность фотоаппарата, как целостной системы, не превышает разрешающей способности каждого из компонентов (матрицы или объектива). В идеале, их разрешающая способность должна быть примерно равна. Но практика, как обычно, вносит массу корректив.
  4. Больше разрешение – мощнее компьютерное железо. Чем больше разрешение, тем большие требования предъявляются к компьютеру при обработке. Если вы желаете получить хорошие результаты и даже не снимаете в RAW (советую все-таки перейти к RAW’у), то вам все равно придется «вертеть» изображение в Photoshop’е или другом редакторе. А при разрешении 24 МП, 36 МП или выше это может быть проблемой. Даже если небольшие правки вносятся достаточно шустро, то небольшие задержки на большом фотосете будут раздражать и сильно красть время.

Динамический диапазон матрицы

Динамический диапазон (сокращенно ДД) определяет максимальный яркостной диапазон снимка.

Каждый пиксель обладает своей яркостью. Для упрощения будем рассматривать яркость отдельных участков кадра, например, неба. Допустим, вы снимаете городской пейзаж в яркий солнечный день, и в кадр попадает яркое небо и очень темные здания. Если вы экспонируете кадр (определяете экспозицию) по небу, то на выходе получается хорошо проработанное небо и темные или почти черные здания. Наоборот, экспонируя по зданиям, получаем их нормальную яркость, но при этом неба совершенно нет, вместо него белое пятно. Сталкивались с такой ситуацией? Думаю, наверняка.

Так вот динамический диапазон как раз определяет то, насколько широкий яркостной участок сможет охватить камера без потерь информации в самых светлых и самых темных частях кадра.

Динамический диапазон – это неизменная характеристика матрицы, зависящая от технологии производства. Мы можем лишь сузить его, установив большое значение чувствительности ISO, что, как вы понимаете, нежелательно.

На этой фотографии внизу достаточно темные участки, а вверху – яркие солнечные лучи, и съемка ведется в контровом свете, против солнца. Это заведомо тяжелые для камеры условия, создается слишком высокий контраст.

А вот еще более яркий пример с выбитым небом. Фактически классика, такого в папках многих людей предостаточно, и с этим нужно что-то делать.

Недостаточный динамический диапазон матрицы

В таком случае говорят, что снимаемая сцена не укладывается в динамический диапазон камеры. И нужно прибегать либо к перекомпоновке кадра, чтобы снизить контраст сцены, либо к использованию художественных приемов, обыгрывая недостатки техники, либо использовать технику его расширения (HDR). Вы резонно спросите: «Но ведь мы же видим одновременно и голубое небо, и темные детали. Как же так?». Сей факт можно отнести к несовершенству техники. Динамический диапазон глаза превышает диапазон камеры где-то в 2 раза.

Резюмируем

Сразу хочу развеять ваши сомнения. Цель этой статьи — заложить у вас понимание, что и как работает. Не расстраивайтесь, если многое непонятно — главное, создать «полочки» в вашей голове, структуру, а потом по мере надобности заполнять их информацией. Но материал, безусловно, важен и является костяком для понимания фотографии. Поэтому, если совсем ничего непонятно, перечитайте еще раз либо вернитесь к нему позднее. И специально для вас сделаю краткую выдержку из того, что желательно отложить у себя в голове:

  1. Матрица – это один из важнейших элементов в камере, который фиксирует свет, превращая его в электрические сигналы. Не может быть заменена в камере. Является аналогом пленки в пленочных фотоаппаратах.
  2. Процесс получения снимка, когда открыт затвор, называется экспонированием.
  3. Матрица имеет множество характеристик. Размер – одна из важнейших, по нему косвенно можно предполагать остальные параметры. Как класс автомобиля – от седана B-класса не ждешь огромного пространства, как в седане E-класса, каким бы продвинутым и дорогим он ни был.
  4. Выбирая камеру с тем или иным размером матрицы, стоит понимать ее достоинства и недостатки и быть готовым ими пользоваться. Маленькая матрица больше всего страдает в условиях, когда света недостаточно. Если планируете развиваться в сфере фотографии и вам это действительно нравится, советую обратить внимание на формат Micro 4/3 или остановиться на APS-C варианте.
  5. Качественная матрица — залог хорошего изображения. При выборе камеры нужно начинать с нее. С другой стороны, в крайности бросаться тоже не нужно – дорогая полнокадровая камера с дешевым объективом вряд ли принесет хороший результат. Точнее, он будет хуже, чем мог бы быть. Но сегодня камеру с откровенно плохой матрицей нужно поискать.
  6. Не гонитесь за высоким разрешением. Даже минимального в современных камерах будет за глаза.
  7. Вообще по приоритету, что важно для получения качественного изображения, . Рекомендую прочесть, если еще не читали. Если у вас сложилось впечатление превосходства технических параметров над творчеством, эта статья покажет вам обратное, подводя к мысли, что важен баланс. Возможно смещение в творческую сторону. Но смещение в сторону технофильства ни к чему хорошему в плане результатов не приводит.

И конечно же, я к вашим услугам! На все возможные вопросы в рамках моей компетенции всегда готов ответить в комментариях.

Сегодня мы поговорим о такой вещи, как динамический диапазон . Это слово часто вызывает замешательство начинающих фотолюбителей из-за своей заумности. Определение динамического диапазона, которое дает любимая всеми Википедия способно ввести в ступор даже опытного фотографа - отношение величин максимальной и минимальной экспозиции линейного участка характеристической кривой .

Не пугайтесь, на самом деле ничего сложного в этом нет. Давайте попробуем определить физический смысл этого понятия.

Представьте себе самый светлый объект, который вы вообще видели? Предположим, что это снег, освещенный ярким солнцем.

От яркого белого снега иногда глаза слепнут!

А теперь представьте самый темный объект... Лично мне вспоминается комната со стенами из шунгита (камень черного цвета), в которой я побывал во время экскурсии в подземном музее геологии и археологии в Пешелани (Нижегородская область). Тьма - хоть глаз коли!


"Шунгитовая комната" (п. Пешелань, нижегородская область)

Обратите внимение, что на снежном пейзаже часть картинки ушла в полную белизну - эти объекты оказались ярче определенного порога и из-за этого их текстура исчезла, получилась абсолютно белая область. На снимке из подземелья стены, не освещенные фонариком ушли в полную черноту - их яркость оказалась ниже порога восприятия света матрицей.

Динамический диапазон - это такой диапазон яркости объектов, который камера воспринимает как от абсолютно черного до абсолютно белого. Чем шире динамический диапазон, тем лучше передача цветовых оттенков, лучше устойчивость матрицы к пересвету и меньше уровень шума в тенях.

Еще динамический диапазон можно охарактеризовать как способность фотоаппарата передавать на снимках самые мельчайшие детали и в тенях и в светах одновременно.

Проблема нехватки дианмического диапазона неизбежно сопутствует нам почти всегда, когда мы фотографируем какие-то высококонтрастные сюжеты - пейзажи в яркий солнечный день, рассветы и закаты. При съемке в ясный полдень имеет место большой контраст между светами и тенями. При съемке заката камера часто слепнет от солнца, попадающего в кадр, в итоге либо земля получается черной, либо небо сильно пересвечивается (либо и то и другое сразу).


Катастрофическая нехватка динамического диапазона

Из указанного примера, я думаю, виден принцип работы HDR - светлые участки берутся с недосвеченного снимка, темные с пересвеченного, в итоге получается изображение, на котором все проработано - и света и тени!

Когда следует использовать HDR?

Во-первых - нужно научиться определять на этапе съемки - хватает нам динамического диапазона, чтобы запечатлеть сюжет за одну экспозицию или нет. В этом помогает гистограмма . Она представляет из себя график распределения яркости пикселей вдоль всего динамического диапазона.

Как посмотреть гистограмму снимка на фотоаппарате?

Гистограмма снимка может выводится в режиме воспроизведения, а также при съемке с использованием LiveView. Для отображения гистограммы нужно один или несколько раз нажать кнопку INFO (Disp) на задней панели фотоаппарата.

На фотографии приведен снимок задней панели фотоаппарата Canon EOS 5D. Расположение кнопки INFO на вашем фотоаппарате может быть другим, в случае затруднения почитайте инструкцию.

Если гистограмма полностью умещается внутри отведенного ей диапазона, нет никакой надобности в использовании HDR. Если график упирается только вправо или только влево, воспользуйтесь функцией экспокоррекции, чтобы "загнать" гистограмму в отведенные ей рамки (подробнее об этом читайте в ) Света и тени можно безболезненно подкорректировать в любом графическом редакторе.

Однако, если график "упирается" и в ту и в другую сторону, это свидетельствует о том, что динамического диапазона не хватает и для качественной проработки изображения нужно прибегнуть к созданию HDR-изображения . Это можно сделать автоматически (не на всех камерах) или вручную (практически на любой камере).

Авто HDR - плюсы и минусы

Владельцам современных фотоаппаратов технология создания HDR изображений близка как никому другому - их камеры умеют это делать "на лету". Чтобы сделать фотографию в режиме HDR, нужно только включить соответствующий режим на своей фотокамере. У некоторых аппаратов даже есть специальная кнопка, которая активизирует режим съемки в HDR, например у зеркалок Sony серии SLT:

В большинстве других аппаратов этот режим задействуется через меню. Причем режим АвтоHDR есть не только у зеркалок, но и у многих мыльниц. При выборе режима HDR фотоаппарат сам делает 3 снимка подряд, затем производит совмещение трех изображений в одно. Если сравнивать с обычным режимом (например, просто Авто), режим AutoHDR в некоторых случаях позволяет ощутимо улучшить проработку оттенков в светах и тенях:

Вроде бы все удобно и замечательно, но у AutoHDR есть очень серьезный недостаток - если результат вас не устроит, вы не сможете ничего изменить (или сможете, но в очень небольших пределах). Выходной результат получается в формате Jpeg со всеми вытекающими последствиями - дальнейшая обработка таких фотографий без потери качества может быть затруднительна. Многие фотографы, вначале понадеявшись на автоматику, а потом покусав по этому поводу локти, начинают осваивать формат RAW и создание HDR-изображений при помощи специального программного обеспечения.

Как научиться делать HDR-изображения вручную?

Прежде всего нужно научиться использовать функцию брекетинга экспозиции .

Брекетинг экспозиции - это такой режим съемки, когда после съемки первого кадра (основного), для следующих двух кадров камера выставляет отрицательную и положительную коррекцию экспозиции. Уровень экспокоррекции можно задать произвольный, диапазон регулировки у разных камер может различаться. Таким образом на выходе получаются три изображения (нужно 3 раза нажимать на кнопку спуска затвора или делать 3 кадра в режиме серийной съемки).

Как включить брекетинг?

Режим брекетинга экспозиции включается через меню фотоаппарата (по крайней мере у Canon). Аппарат должен быть в одном из творческих режимов - P, AV (A), TV (S), M. В автоматических режимах функция брекетинга недоступна.

При выборе пункта меню AEB (Auto Exposure Bracketing) нажимаем кнопку "SET", а затем крутим управляющее колесико - при этом ползунки будут расползаться в разные стороны (или наоборот, сближаться). Таким образом задается ширина охвата экспозиции. У Canon EOS 5D максимальный диапазон регулировки - +-2EV, у более новых аппаратов он, как правило, больше.

В результате съемке в режиме брекетинга экспозиции получаются три кадра с разным уровнем экспозиции:

Базовый кадр
-2EV
+2EV

Логично предположить, что для того, чтобы эти три картинки потом нормально "склеились" в одну, камера должна стоять неподвижно, то есть на штативе - три раза нажать на кнопку спуска и при этом не сместить камеру при съемке с рук практически невозможно. Однако, если штатива нет (или не охота его таскать), вполне можно воспользоваться функцией брекетинга экспозиции в режиме серийной съемки - даже если смещение и будет, то очень небольшое. Большинство современных программ для HDR умеют компенсировать это смещение, чуть подрезая края кадра. Лично я почти всегда снимаю без штатива. Видимой потери качества из-за небольшого смещения камеры во время съемки серии я не наблюдаю.

Вполне возможно, что в вашей камере нет функции брекетинга экспозиции. В этом случае можно воспользоваться функцией коррекции экспозиции, вручную меняя ее значение в заданных пределах и делая при этом снимки. Еще вариант - перейти в ручной режим и менять значение выдержки. Естественно, в этом случае без штатива уже не обойтись.

Итак, мы наснимали кучу материала... Но эти изображения являются лишь "заготовками" для дальнейшей компьютерной обработки. Давайте рассмотрим "на одном квадратном миллиметре", как создается HDR-изображение .

Для создания одного HDR-изображения нам понадобятся три фотографии , сделанными в режиме брекетинга экспозиции и программа Photomatix (скачать пробную версию можно с официального сайта). Установка программы ничем не отличается от установки большинства Windows-приложений, поэтому на ней заострять внимание не будем.

Открываем программу и нажимаем кнопку Load Bracketed Photos

Нажимаем кнопку Browse и указываем программе исходные изображения. Также можно перетащить данные изображения в окошко методом Drag"n"Drop. Нажимаем ОК.

В красной рамке выделена группа настроек по совмещению изображений (если имела место межкадровая шевеленка), в желтой рамке - удаление "призраков" (если в кадр попал какой-то движущийся объект, он на каждом кадре серии будет расположен в разных местах, можно указать основное положение объекта, а "призраки" будут удалены), в голубой рамке - уменьшение шумов и хроматических аберраций. В принципе, настройки можно не менять - все подобрано оптимальным образом для статичных пейзажей. Нажимаем кнопку ОК.

Не пугайтесь, все нормально. Нажимаем кнопку Tone Mapping / Fusion.

И вот мы получили уже что-то похожее на то, что мы хотели увидеть. Дальше алгоритм простой - в нижнем окне список предустановленных настроек, выбираем среди них такую, которая нам больше всего придется по вкусу. Затем используем инструменты в левой колонке для тонкой настройки яркости, контрастности и цветов. Единой рекомендации нет, для каждой фотографии настройки могут быть совершенно разными. Не забываем следить за гистограммой (вверху справа) - чтобы она оставалась "симметричной".

После того, как мы наигрались с настройками и получили удовлетворяющий нас результат, нажимаем кнопку Process (в левой колонке под панелью инструментов). После этого программа создаст полноразмерный "чистовой" вариант, который мы можем сохранить на жесткий диск.

Фотографии по умолчанию сохраняются в формате TIFF, 16 бит на канал. Далее полученное изображение можно открыть в программе Adobe Photoshop и выполнить окончательную обработку - сделать выравнивание горизонта (), убрать следы пыли на матрице (), скорректировать цветовые оттенки или уровни и так далее, то есть подготовить фотографию к печати, продаже, публикации на веб-сайте.

Еще раз сравним что было с тем, что стало:


Важное замечание! Лично я считаю, что обработка фотографии должна лишь компенсировать неспособность камеры передать красоту пейзажа из-за технического несовершенства. Особенно это касается HDR - уж больно велик соблазн "сгустить краски!" Многие фотографы, обрабатывая свои работы не придерживаются этого принципа и стремятся приукрасить и без того красивые виды, в итоге часто получается безвкусица. Яркий пример - фотография на главной странице сайта HDRSoft.com (откуда скачивается Photomatix)

Фотография из-за такой "обработки" совершенно потеряла реалистичность. Такие картинки когда-то действительно были в диковинку, но сейчас, когда технология стала более доступной и прочно вошла в обиход, такие "творения" смотрятся как "дешевая попса".

HDR при грамотном и умеренном использовании может подчеркнуть реализм пейзажа, но далеко не всегда. Если умеренная обработка не позволяет вогнать гистограмму в отведенное до нее пространство, возможно, есть смысл даже не пытаться ее усиливать. При усилении обработки мы, возможно, сможем добиться "симметричной" гистограммы, но картинка все равно потеряет реалистичность. Причем, чем жестче условия и чем сильнее обработка, тем труднее эту реалистичность сохранить. Рассмотрим два примера:

Если дать солнцу подняться еще выше, то придется выбирать между расползанием его в окромную белую дыру вполнеба, либо дальнейшим уходом от реальности (при попытке сохранить его видимый размер и форму).

Как еще можно избежать пере/недосветов, не прибегая к HDR?

Все что описано ниже - скорее частные случаи, чем правила. Тем не менее, зная о подобных приемах съемки можно, зачастую, спасти фотографии от пере/недоэкспозиции.

1. Использование градиентного фильтра

Это светофильтр, который наполовину прозрачный, наполовину затененный. Затененный участок совмещается с небом, прозрачный - с землей. В итоге, разница в экспозиции становится намного меньше. Градиентный фильтр полезен при съемке закатов/рассветов над лугами.

2. Пропустите солнце через листья, ветки

Очень полезным может быть прием, когда выбирается такая точка съемки, при которой солнце светит сквозь кроны деревьев. С одной стороны, солнце сохраняется в пределах кадра (если этого требует задумка автора), с другой - оно намного меньше слепит камеру.

Кстати, никто не запрещает комбинировать данные приемы съемки с HDR, получая при этом тонально богатые фотоагрфии рассветов и закатов:)

3. В первую очередь спасайте света, тени потом можно "вытянуть" в Фотошопе

Известно, что при съемке высококонтрастных сюжетов фотоаппарату часто не хватает динамического диапазона, в итоге тени недосвечиваются, а света пересвечиваются. Чтобы повысить шансы на восстановление фотографий до презентабельного вида рекомендую использовать отрицательную экспокоррекцию таким образом, чтобы не допускать переэкспозиции. В некоторых фотоаппаратах для этой цели есть режим "приоритет светлых оттенков".

Недосвеченные тени достаточно легко можно "вытянуть", например, в программе Adobe Photoshop Lightroom.

После открытия фотографии в программе, вам нужно взять ползунок Fill Light и сдвинуть его вправо - это позволит "вытянуть" тени.

На первый взгляд, результат такой же как и при использовании брекетинга и HDR, однако, если рассмотреть фотографию поближе (в 100% масштабе) нас ждет разочарование:

Уровень шумов на "воскрешенных" участках просто непотребный. Для его уменьшения, разумеется, можно воспользоваться инструментом Noise Reduction, но при этом может ощутимо пострадать детализация.

А вот для сравнения тот же участок фотографии из варианта с HDR:

Разница есть! Если вариант с "вытянутыми" тенями годится в лучшем случае для печати форматом 10*15 (или просто публикации в Интернете), то HDR-версия вполне пригодна для печати большим форматом.

Вывод простой: хотите действительно качественных фотоснимков - иногда придется попотеть. Но теперь вы, по крайней мере, знаете как это делается! На этом, я считаю, можно закончить и, разумеется, пожелать вам побольше удачных кадров!

светочувствительных сенсоров фотоаппаратов. В связи с этим говорилось и о т. н. (фотопленки или матрицы неважно).

Теперь рассмотрим понятие динамического диапазона с физической точки зрения, т. е. исходя из устройства матрицы цифрового фотоаппарата.

Динамический диапазон ПЗС-матрицы.

Для того, чтобы сенсор был чувствителен к большому диапазону освещенностей объекта съемки, т. е. мог воспроизводить как темные (теневые) его стороны, так и светлые (яркости) адекватно, пропорционально, у каждого пиксела должна быть потенциальная яма достаточной емкости. Такая потенциальная яма должна быть способной удерживать минимальный заряд при попадании на света от слабо освещенной части объекта, и в то же время могла вмещать большой заряд если освещенность части объекта велика.

Эту способность потенциальной ямы накапливать и удерживать заряд определенной величины называют глубиной потенциальной ямы. Как раз глубиной потенциальной ямы определяется матрицы.


Схематичное изображение бокового дренажа.

Использование дренажа ведет к усложнению конструкции ПЗС-элементов, но это оправдано тем вредом, который наносится изображению благодаря блюмингу.

Еще одна проблема, ухудшающая качество изображения, получаемого ПЗС-матрицей - т. н. залипшие пикселы (stuck pixels), у нас их часто называют «битыми». Эти пикселы появляются при любой выдержке, в отличие от шума, имеющего хаотический характер, локализуются в одном и том же месте. Связаны они с некачественно изготовленными ПЗС-элементами, в которых даже при минимальном времени засветки происходит лавинообразный срыв электронов в потенциальную яму. Проявляются они на каждом снимке в виде точек, значительно отличающихся по цвету от рядом расположенных.

«Небо пропало»… вам знакома такая мысль, когда вы смотрите на свой снимок и мысленно сравниваете его с тем, что видели на самом деле? Или наоборот, небо красивое, а все остальное скрыто в глубокой тени. Так что же делать? В чем причина? Причина в динамическом диапазоне! А что это такое, можно ли исправить ситуацию и как сделать — читайте в этой статье! Все не так сложно как кажется!

Динамический диапазон — это способность некоего устройства, в нашем случае фотоаппарата, передать без искажений и потерь одновременно яркие и темные участки изображения. Другими словами — это диапазон яркостей между самой темной и самой светлой точкой изображения, которую в состоянии зафиксировать устройство. На практике динамический диапазон характеризует возможность камеры выделять детали в тени и на свету.

Динамический диапазон в фотографии так же известен как «фотографическая широта». Если диапазон устройства мал, то какая то часть изображения не сможет оказаться правильно переданной. С технической точки зрения, в фотографии это обозначает, что часть градаций яркости изображения не будет зафиксирована фотопленкой или матрицей цифрового фотоаппарата и будет потеряна.

Например, при съемке интерьера комнаты с частью яркого окна — интервал по яркости отдельных участков очень велик. Фотопленка или матрица правильно передаст либо изображение в комнате, а окно будет забито не прорисованным белым либо, наоборот, окно и вид за окном прорисуется, а комната окажется черной. Другой пример, очень часто встречаемый — съемка пейзажа или архитектуры, когда вы получаете прорисованное сочное небо, но все остальное (например, лес, речка на переднем плане) погружено в глубокую тень или наоборот, лес прорисован замечательно, а небо превратилось в блеклое невыразительное пятно.

Происходит это потому, что разница между самой темной и самой яркой точкой самого изображения гораздо больше, чем диапазон между самой светлой и самой темной точкой, которую в состоянии зафиксировать ваш фотоаппарат.

В фотографии, динамический диапазон измеряется в стопах или ф-стопах (f-stop). Суть одна и та же. Под одним стопом понимается изменение экспозиции на одну ступень или говоря иначе — изменение светового потока вдвое. Например разница между двумя экспозициями при одинаковой выдержке и диафрагме 5.6 в первом случае и 8 во втором — и будет равна одному стопу.

Вернемся снова к примеру с пейзажем. Почему мы одновременно видим четко и лес со всеми деталями и небо с малейшими перистыми облачками? Потому что человеческий глаз способен различить разницу между самыми темными и самыми яркими участками в 12-14 ступеней, то есть динамический диапазон нашего глаза — 12-14 стопов. В фотографии же самый большой динамический диапазон имеет черно белая пленка — около 10 стопов. Цветная негативная пленка имеет динамический диапазон около 7 стопов, а слайдовая всего 4-5 стопов. Матрицы цифровых фотоаппаратов имеют различный динамический диапазон. На сегодняшний день, у самых дорогих моделей он достигает значения в 8 стопов, но у подавляющего большинства цифровиков диапазон составляет от 4 до 6 стопов.

На лицо проблема недостаточного динамического диапазона у наших фотокамер. А раз есть проблема, то должно быть и решение. О возможных решениях и пойдет речь далее. Но хотелось бы предупредить, что для полного понимания статьи вам желательно иметь хотя бы минимальные знания об экспозиции и минимальный опыт работы в Photoshop или другом графическом редакторе, особенно в работе со слоями и масками слоев.

Изменение динамического диапазона. Основа.

Для изменения динамического диапазона в фотографии традиционно используется градиентный, нейтрально серый фильтр. Часть этого фильтра абсолютно прозрачна, другая часть заполнена нейтрально серым. При этом нейтрально серый переходит в прозрачность плавно, градиентно. «Серая» часть фильтра ослабляет световой поток, тем самым снижая разницу контрастов изображения до значения сравнимого с динамическим диапазоном фотоаппарата. Все бы хорошо, но не на каждый фотоаппарат наденешь фильтр, да и что делать в сложных случаях, например, когда граница между темным и светлым участком изображения не совпадает с зоной «плавного перехода» фильтра, или когда темный участок вклинивается в светлый (например, высокий памятник на фоне яркого неба, или то же окно посреди стены в комнате).

Цифровая фотография дает гораздо больше возможностей увеличения динамического диапазона снимка. Об этих способах и пойдет речь далее. Но в начале об общем принципе, на котором основан любой, описанный далее, способ.

Для работы потребуется как минимум 2 версии одного и того же изображения — недоэкспонированная и переэкпонированная. На недоэкспонированной будут хорошо проработаны тени, а на переэкспонированной — детали в светлых областях. Затем, пользуясь Photoshop мы «сведем» эти версии в одну и расширим динамический диапазон итогового снимка за счет комбинирования «недодержанной» и «передержанной» версии. На английском подобная техника называется Image Blending, то есть «смешивание изображений».

Следует особо отметить, что изображение на обоих снимках должно отличаться ТОЛЬКО экспозицией. В противном случае вам вряд ли удасться «свести» 2 разных снимка в один. Получить разные версии можно разными способами:

1) Экспозиционная вилка или брейкетинг (braсketing), так же называемая «мультиэкспозиция» или «экспиловка». Сейчас эта функция есть во многих цифровых фотоаппаратах, а не только в дорогих моделях. При использовании брейкетинга, вы задаете «вилку» относительно «нормальной» экспозиции, например в +/- 1/3 ступени (+/- 1/3 EV) . В в этом случае фотокамера сделает не один, а сразу 3 снимка — один с «нормальной» экспозицией, второй с экспозицией увеличенной на 1/3 EV (передержанный) , третий с экспозицией уменьшенной на 1/3 EV (недодержанный).

2) Компенсация экспозиции . Суть похожа на брейкетинг. Только вы задаете не вилку, а просто смещение экспозиции в большую или меньшую сторону относительно «нормальной». И камера делает один снимок, но со «смещенной» экспозицией. В некоторых случаях это может быть удобнее чем брейкетинг, потому что вы сможете задать разное смещение для снимков. Например сделать переэкспонированный снимок со смещением в + 1 EV, а недоэспонированный со смещением в -2/3 EV.

3) Съемка в RAW формат . Самый простой способ получить необходимые «версии». Любой конвертор RAW имеет функцию компенсации экспозиции. Вам надо всего лишь отконвертировать RAW файл 2 раза, с разными установками компенсации экспозиции. С двумя полученными в результате файлами мы и будем работать далее. Но к сожалению RAW формат поддерживают далеко не все фотоаппараты.

4) Коррекция JPEG. Допустим у вас есть только JPEG файл. Тогда, в графическом редакторе, вы можете создать 2 версии используя, например, коррекцию уровней (Levels) или кривых (Curves). В одном случае путем коррекции «вытянем» темные участки, во втором светлые. Но не забывайте что формат JPEG «выкидывает» из графического файла всю «лишнюю» информацию, поэтому возможности по его «вытягиванию» весьма ограничены. Перед тем как начать корректировать JPEG файл, лучше переведите его в TIFF или BMP — качества фотографии это не прибавит, но при редактировании на изображение не будет влиять алгоритм сжатия JPEG.

Важное замечание для съемки с брейкетингом или компенсацией экспозиции — вы обязательно должны использовать штатив! Потому что достаточно мизерного смещения камеры в промежутке между снимками и вы не сможете нормально «свести» полученные снимки в итоговый. При съемке лучше выставить на фотокамере режим «приоритет диафрагмы» и пользоваться ручной фокусировкой или автофокусом по центральной точке. Таким образом снимки будут иметь одинаковую глубину резкости, сами кадры будут идентичны и будут иметь различие только в экспозиции, что нам и требуется.

Компенсация экспозиции в
конверторе RAW (Photoshop CS2).

Теперь приступим к главному — обработке полученных версий в Adobe Photoshop. В принципе основные способы обработки, описанные ниже, построены на работе со слоями (Layers) и маскированием, так что подойдет любой графический редактор, поддерживающий слои и маски слоев.

Открываем одновременно обе версии в Photoshop. Выбираем инструмент «Перемещение» и удерживая на клавиатуре Shift — перетаскиваем одно изображение поверх второго. SHIFT в данном случае нужен для того, чтобы верхний слой встал четко поверх нижнего, таким образом избавив нас от лишней работы по «подгонке» границ кадров. Теперь имеем одно изображение с двумя слоями,точно расположенными друг поверх друга — на одном слое недоэкспонированная версия, на другом переэкспонированная.

Способы описанные ниже рассчитаны на то, что переэкспонированная (темная) версия находится поверх недоэкспонированной. Но забегая вперед скажу — можно расположить слои наоборот, тогда все ваши действия так же будут «наоборот», например, в случае «рисования по маске», маску первоначально создать в режиме Reveal All а не Hide All и рисовать по ней не черной а белой кистью.

Теперь все предварительные работы закончены и можно приступать к «смешиванию».

Первый способ — рисование по маске

Самый «классический» способ, еще давным давно описанный на сайте Luminous Landscape . Располагаем слои друг над другом, как говорилось ранее.

Добавляем к верхнему слою маску в режиме Hide All (Скрыть все) через меню — Layer / Add Layer Mask / Hide All или удерживая ALT кликнув на иконке в палитре слоев. Теперь выбираем инструмент Кисть (Brush) и белый цвет для нее. Нам потребуется кисть достаточно большого размера, с размытыми краями.

Переключаемся на маску слоя (достаточно кликнуть на прямоугольной черной иконке маски у соответствующего слоя) и начинаем по ней «рисовать» кистью, по тем областям которые на наш взгляд излишне светлые на нижнем слое (небо и вода).

При этом мы на самом деле просто «открываем» те части темного верхнего слоя, где проходит кисть и наш верхний слой в этих местах становиться непрозрачный, закрывая нижний, светлый слой. За счет того что кисть имеет размытые края, переход к «прозрачности» получается плавный, что визуально скрадывает разницу тонов на разных слоях. Плавность зависит от степени размытости краев кисти и ее размера. Попробуйте интереса ради воспользоваться простой кистью, с четкими контурами и сразу увидите разницу.

Рисование по маске — один из самых точных способов, но и самый трудоемкий. Обратите внимание на ветки. Ветки и небо создают настоящий орнамент. По идее, чтобы получить идеальный конечный вариант, нам надо показать только небо, а ветки не трогать. Придется переключаться на более тонкую кисточку и выполнять весьма кропотливую и сложную работу по «обрисовыванию» веток.

Кстати в нашем примере удобнее делать как раз наоборот, то есть расположить «светлый» слой выше темного, создать маску в режиме «Показать все» и рисовать черной кистью по темным областям.

Хотя это и самый сложный способ, но знать его нужно. Есть более легкие способы, которые и описаны далее, позволяющие создать необходимую маску для верхнего слоя, но во многих случаях все равно придется выполнять «окончательную доводку» итогового снимка путем рисования по маске..

Второй способ — маска на базе слоя

Один из самых простых способов, так же описанный на Luminous Landscape . Так же как и ранее, вначале создаем наши слои и добавляем к верхнему слою маску. Только на этот раз маску создаем в режиме Reveal All (Показать все). После этого переключаемся на нижний слой, делаем «выделить все» (CTRL+A), затем копируем выделение в системный буфер (CTRL+C).

Теперь, удерживая клавишу ALT, кликаем на прямоугольной иконке нашей маски в палитре слоев. Все изображение стало белым. Мы переключились на режим редактирования маски. Вставляем на маску изображение из буфера (CTRL+V). Появилась наша фотография, но только в черно-белом виде- это и есть наша маска.

Собственно маска уже создана. Если вы снова переключитесь на нижний слой то увидите оба слоя уже в смешанном варианте. Но эта маска слишком «детальная» и грубая. Изображение получается «невнятным». Поэтому снова переключимся на маску и воспользуемся фильтром Gaussian Blur (размытие по Гауссу) . Меняя значение Gaussian Blur мы размываем маску, создавая плавные переходы и более общие «зоны маскирования», без резких границ.

Причем обратите внимание на то, что чем выше степень размытия, тем сильнее наша маска будет меняться сторону выделения ярких и темных областей фотографии.

В конце концов опять переключаемся на нижний слой и контролируем результат. Если результат в каких то областях все еще вас не удовлетворяет, отшлифуйте его при помощи дополнительного рисования по маске.

Третий способ — color range

Третий способ описывает Дмитрий Рудаков в photoshop /tutorials/dynamicrange/»>статье на сайте Photoscape. Так же как и прежде располагаем слои друг над другом, но маску пока не добавляем.

Затем воспользуемся Color Range (Диапазон цвета) из меню Select. В параметрах выберем Shadows (Тени), так как в нашем конкретном случае, мы будем маскировать затемненные области. После того как мы нажмем ОК, все теневые зоны на нашей фотографии окажутся выделенными. Если где то, что то оказалось забыто, или наоборот, захватили лишнего — это можно быстро подкорректировать при помощи Quick Mask (Быстрая маска) или вручную, инструментами для работы с выделенными областями.

Мы почти готовы для того чтобы создать маску слоя, но вначале надо немного «размыть» выделенную область, чтобы переход к прозрачности был плавный. Для этого следует выбрать функцию Feather (Размыть выделение) из меню Select. В появившемся меню вводим необходимое значение. При этом можно руководствоваться следующим правилом — чем больше мелких «перемешанных» деталей (веточки на фоне неба и воды в нашем случае) тем меньшее значение стоит вводить. Возможно вам потребуется попробовать разные значения, и экспериментальным путем добиться оптимального результата.

После того как выделенная область размыта, создаем маску в режиме Hide Selection (Скрыть выделенное) из меню Layers или кликая по иконке на палитре слоев, удерживая при этом Alt. Наша маска создана!

И опять же, если результат нужно подкорректировать, то выбираем мягкую кисть и переключившись на маску доделываем работу.

Результат

В итоге мы получили снимок, на котором и небо не «засвечено» и передний план хорошо различим, а не скрыт во мраке. За счет смещенной экспозиции на двух снимках, мы расширили динамический диапазон итогового изображения на 1.5-2 ступени.

Итоговый снимок, с расширенным
динамическим диапазоном

Вы могли заметить, что все описанные выше способы есть ни что иное, как создание необходимой слой-маски. Различие между всеми описанными способами в основном лишь в удобстве использования. Результат же будет примерно одинаков.

Главное — это понять саму идею, а способов создания маски можно придумать еще пару десятков.

После расширения диапазона мы можем продолжить работать уже с итоговой фотографией, править кривые, уровни, яркость, насыщенность и т.п.

Альтернативные способы

Смешивание изображений при помощи слой маски не единственная технология. Один из альтернативных способов описан в статье Константина Афанасьева — Цифровая камера — расширение динамического диапазона . В ней предлагается вначале определенным образом отредактировать кривые на слоях, а затем выставить для каждого слоя соответствующий режим наложения.

Кроме того, для совсем ленивых можно предложить «автоматизаторы», то есть различные plug-in, photoshop actions и отдельные программы для расширения «ДД», например:

  • Dynamic Range Increase — DRI Pro — небольшой плагинчик от Fred Miranda . К сожалению плагин платный и не имеет «пробной» версии. Но с другой стороны 20$ — не такие большие деньги за «удобство»
  • Erik Krause Actions — бесплатный набор action для фотошопа. Перед использованием настоятельно советую прочитать readme файл из архива с акшенами
  • Photomatix — отдельная программа которая кроме расширения динамического диапазона выполняет еще и другие полезные функции. Вроде бы может работать с RAW, но как то странно, не через основное меню

Определение


Ввиду смысловой схожести таких фотографических параметров, как динамический диапазон и фотографическая широта, в применении этой терминологии существует изрядная путаница. Природа этой путаницы — в непонимании отношения реальных яркостей к их отображению на плёнке или в цифре. Попробую внести ясность.

Фотографическая широта — максимально возможный диапазон внешних яркостей, которые может каким либо образом зафиксировать фотоустройство (фотоаппарат, в том числе и цифровой, сканер и т.п.) внутри одного кадра.

Динамический диапазон — максимально возможный полезный диапазон оптических плотностей плёнки, фотобумаги и т.п. или максимально возможный полезный диапазон количеств электронов, могущих помещаться в каждом пикселе электронной матрицы фотоустройства.

Таким образом, термин «фотографическая широта» применяется для оценки запечетлеваемого диапазона внешних яркостей, а динамический диапазон — для оценки физических свойств внутреннего носителя (оптическая плотность плёнки, ёмкость и шумность пикселей матрицы и т.п.).

Примеры :

Фотографическая широта плёнки (контрастность) — способность её фиксировать некоторый диапазон внешних яркостей. Приблизительные значения для негативов 2,5-9 EV, для слайдов 2-4 EV, для киноплёнки 14EV.
Динамический диапазон плёнки (диапазон оптических плотностей) — её способность в некотором диапазоне изменять свою прозрачность (оптическую плотность) в зависимости от воздействия внешней яркости. Приблизительные значения для негативов 2-3D, для слайдов 3-4D.

Фотографическая широта фотобумаги (контрастность) — способность её фиксировать некоторый диапазон внешних яркостей (от фотоувеличителя). Типичные значения для чёрно-белых бумаг: 0,7-1,7 EV.
Динамический диапазон фотобумаги
(диапазон оптических плотностей) — её способность в некотором диапазоне изменять степень отражения (оптическую плотность) в зависимости от внешней яркости (от фотоувеличителя). Типичные значения от 1,2 до 2,5D.

Фотографическая широта матрицы цифрового аппарата — способность её фиксировать некоторый диапазон внешних яркостей. У цифрокомпактов 7-8 EV, у зеркалок 10-12 EV.
Динамический диапазон матрицы цифрового фотоаппарата — способность пикселей матрицы в некотором количественном диапазоне накапливать разное количество электронов в зависимости от уровня внешней яркости. Динамический диапазон цифрокомпактов — 2,1-2,4D, а зеркалок — 3-3,6D.

Фотографическая широта графического файла — Поскольку файл — это всего лишь способ хранения информации, то за счёт потери градаций в любой формат файла можно запихнуть любой диапазон внешних яркостей. Стандартные величины у формата восьмибитного JPEG — это 8 EV, у HDRI (Radiance RGBE) — до 252 EV. От количества бит, выделяемых для хранения каждого пикселя, этот параметр зависит лишь косвенно, поскольку способ упаковки информации в эти биты у разных форматов различен.
Динамический диапазон графического файла — способность файла хранить в себе некоторый диапазон значений каждого пикселя.

Фотографическая широта монитора — Поскольку монитор — это только устройство отображения, то этот параметр не имеет особого смысла. Ближайшим по смыслу параметром будет способность монитора отображать закодированный в графическом файле диапазон значений яркости. Но он зависит в основном от используемого цветового профиля и программы отображения, которые с тем или иным успехом втискивают всю (или не всю) фотографическую широту изображения, содержащуюся в файле, в рамки динамического диапазона монитора. Замечу, что чем большая фотоширота втиснута в динамический диапазон, тем менее контрастно выглядит изображение.
Динамический диапазон монитора (контрастность) — способность пикселя монитора в некотором диапазоне изменять свою яркость в зависимости от напряжения входящего сигнала. Динамический диапазон современных мониторов находится в пределах 2,3 - 3D (200:1 — 1000:1) .

Фотографическая широта матрицы сканера — способность её фиксировать некоторый диапазон яркостей отражённого от бумаги или пропущенного через плёнку света. Составляет от 6 EV у офисных планшетных до 16 EV у профессиональных барабанных сканеров.
Динамический диапазон матрицы сканера — способность пикселей матрицы сканера в некотором количественном диапазоне накапливать разное количество электронов в зависимости от яркости отражённого от бумаги или пропущенного через плёнку света. Динамический диапазон сканеров может принимать значения от 1,8D у офисных планшетников до 4,9D у профессиональных барабанных сканеров.

Примечание по сканеру : Поскольку лампа сканера создаёт постоянную освещённость сканируемого материала, верхняя граница яркости этого материала фиксирована (абсолютно белый лист или полностью прозрачная плёнка). Поэтому и верхняя граница динамического диапазона матрицы фиксирована, будучи подогнанной под эту максимальную яркость. Следовательно, величины фотографической широты и динамического диапазона совпадают. Кроме того, зная динамический диапазон плёнки (бумаги) и его сдвиг относительно полной прозрачности (абсолютной белизны), можно смело сравнить динамические диапазоны плёнки (бумаги) и сканера, и определить, сможет ли тот или иной сканер оцифровать плёнку (бумагу) без потерь градаций. Для справки: динамический диапазон вуали (максимальной прозрачнгости) фотоплёнок приблизительно составляет 0,1D.

Обшее примечание 1. Не все вышеперечисленные словосочетания реально используются, но они упомянуты для полноты картины, чтобы яснее можно было прочувствовать разницу между фотографической широтой и динамическим диапазоном.

Обшее примечание 2. Очевидно, что фотографическая широта и динамический диапазон для одного и того же аналогового фотоустройства или материала имеют разные величины, даже если их попытаться выразить в одинаковых единицах. Для цифровых же фотоустройств эти параметры имеют одну величину. Из-за этого понятие фотошироты обычно подменяется понятием динамического диапазона. К счастью, для цифровых фотоустройств это не критично.

Единицы измерения


Динамический диапазон измеряют по шкале, каждое следующее деление которой соответствует снижению измеряемого параметра в 10 раз, а фотографическую широту по шкале, каждое следующее деление которой соответствует снижению измеряемого параметра в 2 раза.

Исходя из понятия логарифма (показатель степени, в которую надо возвести одно число, чтобы получить другое), обе эти шкалы являются логарифмическими. В первом случае используется логарифм по основанию 10 (десятичный логарифм — log 10 или lg), во втором — по основанию 2 (двоичный логарифм — log 2 или lb).

Десятичный логарифм используется для компактности шкалы динамического диапазона и соответствия каждого следующего деления шкалы динамического диапазона зрительному ощущению падения яркости в 2 раза при фактическом десятикратном падении величины измеряемого параметра, а двоичный — для соответствия каждого следующего деления шкалы фотографической широты зрительному ощущению равномерного падения яркости при геометрически увеличивающимся падении количества света.

Размер динамического диапазона или фотографической широты записываются цифрой, обозначающей количество делений по соответствующей шкале между измеренными точками. При этом, если измерения проходят по шкале динамического диапазона, рядом с цифрой ставят обозначение D (2D, 2,7D, 4D, 4,2D), а если по шкале фотографической широты, то используется обозначение EV (Exposure Value — значение экспозиции) или просто количество ступеней или стопов (делений).

Часто динамический диапазон записывают просто как отношение, например 100:1 (2D) или 1000:1 (3D).

Формула же для измерения полезного динамического диапазона следующая: динамический диапазон равен десятичному логарифму из отношения максимальной величины измеряемого параметра к минимальному, то есть уровню шума:

D = lg(Max/Min)

Формула вычисления фотошироты аналогична, но вместо десятичного логарифма применяется двоичный.

Динамический диапазон цифровых устройств измеряют ещё и в децибеллах. Способ измерения практически аналогичен вышеописанному, поскольку децибел - тоже логарифмическая величина, и тоже вычисляется через десятичный логарифм. Но значение в децибелах будет в 20 раз больше (1D = 20 дб), и сейчас я объясню, почему.

Измерению в этом случае подвергается разница напряжений, в которые преобразовываются накопленные в каждом пикселе матрицы электроны. Впрочем, это напряжение пропорционально количеству накопленных электронов, но я упомянул напряжение не случайно. Дело в том, что в децибелах измеряют диапазоны только энергетических величин : мощностей, энергий и интенсивностей. И способ их вычисления полностью аналогичен вышеописанному за исключением умножения итогового числа на 10, потому что мы мерием не белы а децибелы, которые в 10 раз меньше.

Однако существует возможность померить в децибелах и амплитудные величины , такие как напряжение, ток, импеданс, напряженности электрического или магнитного полей и размахи любых волновых процессов. Но для этого надо учесть зависимость от них соответствующей им энергетической величины.

Вычислим зависимость мощности от напряжения . Мощность равна квадрату напряжения делённого на сопротивление, то есть она зависит от напряжения квадратично . Увеличивая напряжение в 2 раза мощность увеличивается в 4 раза. Значит, чтобы сохранить мощностную пропорцию, придётся мерить диапазон не напряжений, а квадратов этих напряжений:

lg(U max 2 /U min 2) = lg(U max /U min) 2 = 2*lg(U max /U min)

Мы получим значение в белах. Для перевода в децибелы умножаем на 10. В итоге полная формула принимает вид:

Децибелы = 20*lg(U max /U min)

Таким образом, у нас получается, что динамический диапазон в децибелах равен подсчитанному нами по шкале динамическому диапазону, умноженному на коэффициент 20.


Иногда из-за путаницы в терминологии динамический диапазон измеряют в единицах экспозиции (EV), ступенях или стопах, как фотографическую широту, а фотографическую широту — как динамический диапазон. Чтобы привести параметры к нормальному виду, приходится пересчитывать диапазон из одной шкалы в другую. Для этого необходимо вычислить цену деления одной шкалы в цифрах другой. Например, цену деления шкалы фотографической широты в цифрах шкалы динамического диапазона.

Кроме того, принимая во внимание логарифмичность шкал и зная динамический диапазон фотоустройства, можно вычислить его фотографическую широту, и наоборот, по его фотографической широте можно узнать его динамический диапазон. Для этого нужно опять же просто пересчитать диапазон из одной шкалы в другую.

Поскольку деления шкалы представляют собой степени, вычислим, в какую степень надо возвести десятку (размерность шкалы динамического диапазона), чтобы получить двойку (размерность шкалы фотографической широты). Берём десятичный логарифм от двойки и получаем цену одного деления шкалы фотографической широты в единицах шкалы динамического диапазона — приблизительно 0,301. Это число и будет коэффициентом перевода. Теперь, для перевода EV в D, следует EV умножить на 0,3, а для перевода из D в EV, следует D разделить на 0,3.

Замечу, что шкала фотографической широты применяется не только для измерения диапазонов, но и для измерения конкретных величин экспозиции. Поэтому она имеет условный ноль, который соответствует яркости света, падающего от объекта, освещённость которого составляет 2,5 люкса (для нормальной экспозиции объекта с таким освещением требуется диафрагма 1.0 и выдержка 1 сек. при чувствительности ISO 100). Таким образом, экспозиция вполне может принимать по этой шкале отрицательные значения в EV. Диапазон же, естественно, всегда положителен.

Битовая глубина цифрового фотоустройства.


При упоминаниях о динамическом диапазоне фотоустройств иногда упоминается их битовая глубина. Давайте разберёмся, что это такое.

Между максимальным и минимальным значениями существует большое количество градаций, соответствующих разным яркостям, воспринятым пикселем. Для цифровой фиксации градаций в двоичном представлении требуется некоторое количество бит. Это количество бит и называется битовой глубиной АЦП (аналого-цифрового преобразователя фотоустройства, преобразующего количество возбуждённых электронов в пикселе в ту или иную цифру).

В современных сканерах на каждый из трёх цветов выделяют обычно по 16 бит. В цифровых фотоаппаратах это значение несколько меньше. Но даже там битовая глубина является избыточной, потому что основным ограничением является не разрядность АЦП, а динамический диапазон пикселей, которые пока неспособны накапливать большее количество электронов, или же иметь более низкий показатель случайного теплового шума, чтобы не глушить полезные электроны. В результате, младшие биты избыточной битовой глубины заняты в основном значениями случайного теплового шума.