Жидкость, используемая в теплоэнергетике, подлежит обязательному очищению как перед ее применением, так и после него. Прохождение через очистительные сооружения позволяет защитить трубы и котлы от возникновения коррозий, образования накипи, а также обеззаразить стоки для дальнейшего их возврата в окружающую среду. Только специалист сможет определить этапы и что применяется для водоподготовки на ТЭЦ после полного химико-биологического анализа. Это позволит выявить необходимость использования определенных реагентов и составить оптимальную схему очистительного сооружения.

На сегодняшний день цель реконструкции системы химической водоподготовки ТЭЦ заключается в получении более качественного сырья при минимальной затрате средств. Учеными предлагаются новые способы фильтрации жидкости, применение безопасных окислителей и нейтрализаторов.

Назначением химического цеха является обеспечение качества технической воды, исходной воды, забираемой из водотоков (водоемов), для подготовки растворов и использования их в системе очистки котлов и поверхностей нагрева, для обеспечения очистки сточных вод от взвешенных веществ и качества очистки стоков на выпусках в открытые водные объекты.

Химическая очистка воды осуществляется в несколько ступеней и включает предварительное ее осветление в осветлителях с применением коагулянта и флокулянта, пропускание через механические катионитовые и анионитовые фильтры. Материал загрузки механических фильтров - кварцевый песок, антрацит; ионитовых фильтров -сульфоуголь (СК-01, СК-2), катиониты КУ-2 и КУ-2-8 в Na-форме, анионит АВ-17-8 и др.

Осветление и умягчение воды

Перед тем, как вода поступит в осветлители, необходимо пропустить её через песколовки. В основном на ТЭЦ используются горизонтальные песколовки, которые рассчитаны на задержание песка размером 0.25 мм, что составляет 65% всего количества песка в сточных водах (рис.3).

Широко применяют отстойник-флокулятор. Внутри отстойника имеется камера флокуляции, в которую через центральную трубу поступает сточная вода. В камере флокуляции происходит эжекция воздуха, частичное окисление органических веществ, хлопьеобразование и сорбция загрязнений. В отстойной зоне вода проходит через слой взвешенного осадка, где задерживаются мелкодисперсные примеси. Выпавший осадок удаляется под действием гидростатического напора.

Рис.4.

Далее чтобы избежать быстрого износа оборудования, необходимо избавиться от жесткости воды. Наиболее эффективным способом борьбы с высокой жесткостью является применение автоматических фильтров-умягчителей. В основе их работы лежит ионообменный процесс, при котором растворенные в воде "жесткие" соли заменяются на "мягкие", которые не образуют твердых отложений.

На электростанциях с открытой системой теплоснабжения согласно схеме рис. 4 вода подвергается содоизвесткованию и коагуляции в осветлителе и собирается в бак осветленной воды, откуда насосами подается на механический фильтр и далее сверху и снизу на двухпоточно-противоточный водород-катионитный фильтр, глубокоумягченная вода отбирается из средней дренажной системы.

Рис. 4. Схема умягчения с утилизацией стоков (ТЭЦ с открытой системой водоснабжения)

1 - осветлитель обессоливающей установки; 2 - бак осветленной воды; 3 - насос осветленной воды; 4 - двухпоточно-противоточный водород-катионитный фильтр; 5 - бак отработавшего раствора кислоты и взрыхляющих вод обессоливающей установки; 6 - насос перекачки отработавших вод в осветлитель; 7 - декарбонизатор; 8 - бак декарбонизированной воды; 9 - насос декарбонизированной воды; 10 - исходная вода; 11 - умягченная вода на обессоливание; 12 - взрыхляющие воды обессоливающей установки; 13 - раствор кислоты;14 - шлам; 15 - растворы соды, извести и коагулянта


Водоподготовка – это самый важный вопрос в теплоэнергетике. Вода является основой работы таких предприятий, поэтому ее качество и содержание тщательно контролируется. ТЭЦ очень важны для жизни города и жителей, без них невозможно существовать в холодный период года. От качества воды зависит деятельность ТЭЦ. Работа теплоэнергетики на сегодняшний день невозможна без водоподготовки. Вследствие парализации системы, возникает поломка оборудования, и как результат, плохо очищенная, некачественная вода, пар. Это может возникнуть из-за некачественной очистки и смягчения воды. Даже если постоянно удалять накипь, то это не убережет вас от перерасхода топливных материалов, формирования и распространения коррозии. Единственное и самое эффективное решение всех последующих проблем – это тщательная подготовка воды к использованию. При разработке системы для очистки нужно учитывать источник поступления воды.

Существует два типа нагрузки: тепловая и электрическая. При наличии тепловой нагрузки электрическая находится в подчинении первой. При электрической нагрузке ситуация обратная, она не находится в зависимости от второй и может работать без ее присутствия. Бывают ситуации, в которых совмещают оба вида нагрузки. При водоподготовке этот процесс полностью использует все тепло. Вывод можно сделать такой, что КПД на ТЭЦ значительно превышает его на КЭС. В процентном соотношении: 80 к 30. Еще один важный момент: тепло на большие расстояния передать практически невозможно. Именно поэтому ТЭЦ должна строиться вблизи или на территории города, который будет ею пользоваться.

Недостатки водоподготовки на ТЭЦ

Отрицательным моментом у процесса водоподготовки является образование нерастворимого осадка, образующегося при нагревании воды. Удаляется он очень сложно. Во время избавления от налета происходит остановка всего процесса, разбирается система, и только после этого можно качественно очистить труднодоступные места. Чем же вредит накипь? Она мешает теплопроводимости и, соответственно, возрастают затраты. Знайте, что даже при незначительном количестве налета, увеличится расход топлива.

Непрерывно устранять накипь невозможно, но делать это необходимо каждый месяц. Если этого не делать, то слой накипи будет постоянно увеличиваться. Соответственно, чистка оборудования потребует намного больше времени, усилий и материальных затрат. Чтобы не останавливать весь процесс и не нести убытки, необходимо регулярно следить за чистотой системы.

Признаки потребности в очистке:

  • будут действовать датчики, защищающие систему от перегревов;
  • блокируются теплообменники и котлы;
  • возникают взрывоопасные ситуации и свищи.

Все это – негативные последствия не удаленной вовремя накипи, которые приведут к поломкам и убыткам. В течении короткого времени вы можете потерять оборудование, которое стоит немалых денег. Очистка от накипи несет за собой ухудшение качества поверхности. Водоподготовка не устраняет накипь , это можете сделать только вы с использованием специального оборудования. При поврежденных и деформированных поверхностях накипь в дальнейшем образуется быстрее, также появляется коррозийный налет.

Водоподготовка на мини теплоэлектроцентралях

Подготовка питьевой воды включает в себя массу процессов. Перед началом водоподготовки следует провести тщательный анализ химического состава. Что же он из себя представляет? Химический анализ показывает количество жидкости, нуждающееся в ежедневной очистке. Указывает на те примеси, которые должны быть ликвидированы первыми. Подготовка воды на мини теплоэлектроцентралях не может быть осуществлена в полном объеме без такой процедуры. Жесткость воды – немаловажный показатель, который обязательно нужно определять. Многие проблемы состояния воды связаны с ее жесткостью и наличием отложений железа, солей, кремния.

Большой проблемой, с которой сталкивается каждая ТЭЦ, является присутствие примесей в воде. К ним можно отнести калиевые и магниевые соли, железо.

Главной задачей ТЭЦ является обеспечение жилых объектов населенного пункта нагретой водой и отоплением. Подготовка воды на таких предприятиях подразумевает использование смягчителей, дополнительных фильтрующих систем. Каждый этап очистки включает прохождение воды через фильтры, без них процесс невозможен.

Этапы водоочистки:

  1. Первый этап – осветление. В первую очередь вода осветляется, так как она поступает в систему мини ТЭЦ очень грязная. На этом этапе находят применение отстойники и механические фильтры. Принцип работы отстойников в том, что твердые примеси опускаются книзу. Фильтры состоят из нержавеющих решеток и имеют разные размеры. Первыми улавливаются крупные примеси, далее идут решетки среднего размера. Последними улавливаются самые мелкие примеси. Также важным является применение коагулянтов и флокулянтов, с помощью которых уничтожаются разного рода бактерии. Благодаря промывке чистой водой такие фильтры могут быть готовы к следующему использованию.
  2. Второй этап – это дезинфекция и обеззараживание воды. На данной стадии применяется ультрафиолетовая лампа, обеспечивающая полное облучение всего объема воды. Благодаря ультрафиолету гибнут все болезнетворные микроорганизмы. Второй этап также включает в себя дезинфекцию, в процессе которой используют хлорку или же безвредный озон.
  3. Третий этап – смягчение воды. Для него характерно применение в домашних условиях ионообменных систем, электромагнитных смягчителей. Каждый имеет свои достоинства и недостатки. Популярным является реагентное отстаивание, недостатком которого является формирование отложений. Эти нерастворимые примеси в дальнейшем очень сложно удалить.
  4. Четвертый этап – обессоливание воды. На этом этапе применяются анионные фильтры: декарбонизаторы, электродиадизаторы, обратный осмос и нанофильтрация. Процесс обессоливания возможен любым из вышеперечисленных стандартных способов.
  5. Пятый этап – это деаэрация. Это обязательный этап, который следует после тонкой очистки. Системы для очистки от газовых примесей бывают вакуумного типа, а также атмосферные и термические. В результате действия деаэраторов происходит устранение растворенных газов.

Пожалуй, это все самые важные и нужные процессы, которые проводятся для подпиточной воды. Далее следуют общие процессы для подготовки системы и ее отдельных компонентов. После всего вышеперечисленного следует продувка котла, в ходе которой используются промывные фильтры. По окончанию водоподготовка мини ТЭЦ включает промывку пара. В ходе этого процесса используются химические реагенты, обессоливающие воды. Они достаточно разнообразны.

В Европе водоподготовка на мини ТЭЦ нашла очень широкое применение. Благодаря качественному проведению этого процесса увеличивается коэффициент полезного действия. Для лучшего эффекта необходимо комбинировать традиционные, проверенные методы очистки и новые, современные. Только тогда можно достичь высокого результата и качественной водоподготовки системы. При грамотном использовании и постоянном усовершенствовании система мини ТЭЦ будет служить долго и качественно, а главное без перебоев и поломок. Не меняя элементов, и без ремонтов срок эксплуатации от тридцати до пятидесяти лет.

Системы водоподготовки для ТЭЦ

Еще некоторая важная информация, которую хотелось бы донести до читателя по поводу системы водоподготовки на ТЭЦ и их водоподготовительных установках. В данном процессе используются разные виды фильтров, важно ответственно отнестись к его выбору и использовать подходящий. Зачастую применяются несколько разных фильтров, которые последовательно соединены. Это делается для того, чтобы стадии смягчения воды и удаления из нее солей, прошли хорошо и эффективно. Применение ионообменной установки чаще всего осуществляется при очистке воды с высокой жесткостью. Визуально он имеет вид высокого цилиндрического бака и часто используется в промышленности. В состав такого фильтра входит еще один, но уже меньшего размера, он называется баком регенерации. Так как работа ТЭЦ беспрерывная, установка с ионообменным механизмом является многоступенчатой и имеет в своем составе до четырех разных фильтров. Система оборудована контроллером и одним блоком управления. Любой используемый фильтр оснащен личным регенерационным баком.

Задачей контролера является отслеживать количество воды, прошедшее сквозь систему. Также он контролирует объем воды, очищенный каждым фильтром, регистрирует период очистки, объем работы и ее скорость за определенное время. Контроллер передает сигнал далее по установке. Вода с высокой жесткостью следует на другие фильтры, а использованный картридж восстанавливают для последующего использования. Последний вынимается и переносится в бак для регенерации.

Схема водоподготовки на ТЭЦ

Основой ионообменного картриджа является смола. Ее обогащают несильным натрием. Когда вода вступает в контакт со смолой, обогащенной натрием, происходят трансформации и перевоплощения. Натрий замещается сильными жесткими солями. Со временем картридж наполняется солями, так и происходит процесс восстановления. Он переносится в регенерационный бак, где расположены соли. Раствор, в состав которого входит соль, очень насыщен (≈ 10%). Именно благодаря такому высокому содержанию солей жесткость устраняется из съемного элемента. После процесса промывки картридж снова наполнен натрием и готов к использованию. Отходы с высоким содержанием солей повторно очищают и только после этого могут быть утилизированы. Это является одним из недостатков подобных установок, так как требует значительных материальных затрат. Плюс же в том, что скорость очистки воды выше, чем у других подобных установок.

Смягчению воды нужно уделять особое внимание. Если подготовку воды сделать не качественно и сэкономить, то можно потерять намного больше и получить затраты несоизмеримые с экономией на водоподготовке.

Возник вопрос подоподготовки на ТЭЦ!? Не знаете куда обращаться?

Теплоэнергетика в современных условиях выжить без водоподготовки не сможет. Отсутствие очистки воды и умягчения может привести к поломке оборудования, некачественному пару или воде, и как результат, парализации всей системы. Постоянное удаление накипи застраховать вас от таких неприятностей, как повышенный расход топлива, образование и развитие коррозии, не может. Только водоподготовка на ТЭЦ может одним махом решить весь комплекс проблем.

Чтобы лучше разобраться в проблемах использования того или иного на теплоэнергоцентралях, начнем с рассмотрения основных понятий. Что такое теплоэнергоцентраль, и как там может помешать повышенная жесткость воды нормальной работе системы?

Итак, ТЭЦ или теплоэлектроцентраль представляет собой один из видов тепловой электростанции. Ее задача состоит не только в генерации электроэнергии. Это еще и источник тепловой энергии для системы теплоснабжения. С таких станций подают горячую воду и пар для обеспечения тепла в домах и на предприятиях.

Теперь пару слов о том, как работает теплоэлектростанция. Работает она, как конденсационная электростанция. Принципиальное различие водоподготовки на ТЭЦ состоит в том, что из генерируемого тепла ТЭЦ есть возможность часть отобрать для других нужд. Способы забора тепловой энергии зависит от типа паровой турбины, которая установлена на предприятии. Также на ТЭЦ можно регулировать то количество пара, которое вам необходимо отобрать.

Все, что отделено, потом концентрируется в сетевом подогревателе или подогревателях. Они уже передают энергию воде, которая идет дальше по системе для передачи своей энергии в пиковых водогрейных котельных и тепловых пунктах. Если на ТЭЦ такой отбор пара не производят, то такая ТЭЦ имеет право квалифицироваться, как КЭС.

Любая водоподготовка на ТЭЦ работает по одному из двух графиков нагрузки. Один из них тепловой, другой, электрический. Если нагрузка тепловая, то электрическая ей полностью подчинена. У тепловой нагрузки над электрической есть паритет.

Если нагрузка электрическая, то она не зависит от тепловой, возможно тепловой нагрузки нет вообще в системе.

Есть также вариант совмещения водоподготовки на ТЭЦ электрической и тепловой нагрузок. Это помогает остаточное тепло использовать в отоплении. В результате коэффициент полезного действия в ТЭЦ значительно выше, чем у КЭС. 80 против 30 процентов. И еще - при строительстве тепловой электростанции, нужно помнить, что передать тепло на дальние расстояния не получится. Поэтому ТЭЦ должна быть расположена в пределах города, который она питает.

У есть главный недостаток – это нерастворимый осадок, который образуется в результате нагрева такой воды. Удалить его не так просто. На ТЭЦ придется останавливать всю систему, иногда ее разбирать, чтобы качественно во всех поворотах и узких отверстиях почистить накипь.

Как мы уже знаем, главный минус накипи – ее плохая теплопроводимость. Из-за этой особенности и возникают основные расходы и проблемы. Даже легкий налет накипи на поверхностях нагревательных поверхностей или нагревательных элементов вызывают резкий рост расходов топлива.

Устранять накипь постоянно не получится, это можно будет делать хотя бы раз в месяц. Расходы топлива при этом будут постоянно расти, да и работа ТЭЦ оставляет желать лучшего, все отопительно-нагревательное оборудование медленно, но верно покрывается накипью. Чтобы потом ее почистить, придется останавливать всю систему. Терпеть убытки от простоев, но чистить накипь.

О том, что пришло время для чистки вам сообщит само оборудование. Начнут внезапно срабатывать системы защиты от перегрева. Если и после этого не удалить накипь, то она полностью блокирует работу теплообменников и котлов, возможны взрывы, образование свищей. Вы всего-то за несколько минут можете лишиться дорогостоящего промышленного оборудования. И восстановить его невозможно. Только покупать новое.

Да и потом, любая очистка от накипи, это всегда испорченные поверхности. Можно использовать водоподготовку на ТЭЦ, но она за вас накипь не устранит, потом все равно придется отчищать ее с помощью механического оборудования. Имея такие покореженные поверхности, мы рискуем получить резкое развитие не только образования накипи, но еще и коррозии. Для оборудования теплоэлектроцентрали, это большой минус. Поэтому и задумались о создании установки водоподготовки на ТЭЦ .

Водоподготовка на мини ТЭЦ

Если говорить в общем, то состав такой будет зависеть, прежде всего, от химического анализа воды. Он покажет оббьем воды, который нужно очищать каждый день. Она покажет примеси, которые нужно устранить, прежде всего. Обойтись без такого анализа при составлении водоподготовки на мини ТЭЦ нельзя. Даже степень жесткости воды он покажет. Мало ли вдруг вода не настолько жесткая, как вам кажется, и проблема в кремниевых или железистых отложениях, а вовсе не в солях жесткости.

В большинстве своем для оборудования ТЭЦ большую проблему составляют примеси, которые находятся в подпиточной воде. Это те самые соли кальция и магния, а также соединения железа. А это значит, что обойтись без обезжелезивателя и электромагнитного умягчителя воды АкваЩит, как минимум будет сложно.

ТЭЦ, как известно, обеспечивает теплой водой и отоплением дома в городе. Поэтому водоподготовка на мини ТЭЦ всегда будет включать в себя не только стандартные . Здесь без вспомогательных фильтров для воды никак не обойтись. Примерно, всю схему водоподготовки можно представить в виде таких этапов, и содержащихся в них фильтрах.

Для ТЭЦ используют воду из первичных источников, очень загрязненную, поэтому первым этапом водоподготовки на мини ТЭЦ будет осветление. Здесь в большинстве случаев используют механические фильтры, а также отстойники. Последние думаю, понятны всем, там воду отстаивают, чтобы примеси твердые оседали.

Механические фильтры включают в себя несколько решеток из нержавеющей стали. Они улавливают в воде все твердые примеси. Сперва, это крупные примеси, потом средние и в конце совсем мелкие, размером с песчинку. Механические фильтры могут использовать с коагулянтами и флокулянтами, чтобы очищать воду и от вредных бактериологических примесей.

Восстанавливают механические фильтры с помощью обычной обратной промывки простой водой.

Следующий этап водоподготовки на мини ТЭЦ - устранение вредных бактерий и вирусов или дезинфекция. Для этого могут использовать, как дешевую, но вредную хлорку, так и дорогой, но безвредный при полном испарении. озон.

Другой вариант обеззараживания воды – использование ультрафиолетового фильтра. Здесь основу составляет ультрафиолетовая лампа, которая облучает всю воду, проходящую через специальную кювету. Проходя, через такой фильтр вода облучается, и в ней погибают все бактерии и вирусы.

После обеззараживания наступает этап . Здесь могут использоваться самые разные фильтры для воды. Это могут быть ионообменные установки, электромагнитный умягчитель воды Акващит или его магнитная вариация. О преимуществах и минусах каждой установки расскажем чуть позже.

Кроме стандартных фильтров можно еще использовать реагентное отстаивание. Но добавление различных примесей, может вылиться потом в образование не растворимых отложений, которые очень плохо удаляются.

После этапа умягчения настает время для обессоливания воды. Для этого в ход идут анионные фильтры, возможно применение декарбонизатора, электродиадизатора, ну и стандартно обратного осмоса или нанофильтрации.

После тонкой очистки воды, нужно в обязательном порядке из воды убрать остаточные растворенные газы. Для этого проводят деаэрацию воды. Здесь могут применять термические, вакуумные, атмосферные деаэраторы. То есть все, что нужно для подпиточной воды, мы сделали. Теперь остаются уже общие действия по подготовке непосредственно самой системы.

Потом в силу вступает этап продувки котла, для этого используют промывные фильтры для воды и последним этапом водоподготовки на мини ТЭЦ является промывка пара. Для этого применяют целый набор химических реагентов для обезсоливания.

В Европе использование качественной водоподготовки на мини ТЭЦ помогает получить коэффициент полезного действия потерь в размере всего лишь четверть процента в день. Как раз комбинирование традиционных методов умягчения воды и очистки с новейшими технологиями помогает достигнуть таких высоких результатов работы системы водоподготовки на мини ТЭЦ. И при этом сама система бесперебойно может прослужить до 30-50 лет, без кардинальных замен этапов.

А теперь вернемся к системе водоподготовки для ТЭЦ и к водоподготовительной установке для ТЭЦ. Здесь используют весь спектр фильтров, главное это правильно выбрать необходимый прибор. Чаще всего система требует применения ни одного, а сразу нескольких фильтров, соединенных последовательно, чтобы вода прошла и стадию умягчения, и стадию обезсоливания.

Самым наиболее используемым является ионообменная установка. В промышленности такой фильтр выглядит как высокий бак в виде цилиндра. Он в обязательном порядке снабжен баком поменьше, это бак регенерации фильтра. Поскольку ТЭЦ работает с водой круглые сутки, то ионообменная установка будет многоступенчатой и включать в себя будет не один, а иногда и три, и четыре фильтра. На всю эту систему приходится один блок управления или контроллер. Каждый фильтр при этом снабжен своим баком регенерации.

Контроллер тщательно следит за тем, сколько воды прошло через установку. Сколько очистил тот или иной фильтр, четко фиксирует время очистки, скорость очистки, по истечении определенного срока очистки или определенного обьема, она подает сигнал на установку. Жесткую воду перераспределяют на другие фильтры, а загрязненный картридж направляют на восстановление. Для этого из установки его вынимают и переносят в бак для регенерации.

Сам процесс системы водоподготовки для ТЭЦ проходит по следующей схеме. Сердце такого ионообменного картриджа – смола, обогащенная слабым натрием. Когда с ней контактирует жесткая вода, происходят метаморфозы. Сильные соли жесткости заменяют слабый натрий. Постепенно картридж весь забивается солями жесткости. Это и есть время для восстановления.

Когда картридж переносят в бак регенерации, там уже в растворенном виде находятся таблетки соли высокой степени очистки. Соляной раствор, который получается в результате очень насыщенный. Процент содержания соли не менее 8-10 процентов. Но только таким большим количеством солей можно устранить из картриджа сильные соли жесткости. В результате промывки образуются сильносоленые отходы, и картридж, вновь наполненный натрием. Его отправляют работать, а вот с отходами возникает проблема. Чтобы их утилизировать, их нужно повторно очистить, то есть снизить степень солености и получить разрешение на утилизацию.

Это большой минус установки, да и расходы на соли получаются немалыми, что тоже дает дорогое обслуживание установке. Зато скорость очистки воды у этого умягчителя самая высокая.

Следующий популярный вариант системы водоподготовки для ТЭЦ – электромагнитный умягчитель воды АкваЩИт. Здесь основную работу выполняет электрический процессор, плата и мощные постоянные магниты. Все это в комплексе создает мощное электромагнитное поле. В воду эти волны поступают по проводке, намотанной с двух сторон от прибора. Причем, нужно помнить, что наматывать провода нужно в разные стороны друг от друга. Каждый провод должен быть обмотан вокруг трубы, не менее семи раз. Эксплуатируя этот прибор, нужно в обязательном порядке следить, что вода не попадала на проводку.

Сами концы проводов нужно обязательно закрыть изоляционными кольцами или обычной изолентой. Так вот, вода проходит по трубе, ее облучают электромагнитные волны. Многим кажется, что влияние подобного – мифическое. Однако, соли жесткости под его влиянием начинают трансформироваться, теряют былую форму и превращаются в тонкие и острые иголки.

Получив новую форму, прилипать к поверхностям оборудования становится неудобно. Тонкое узкое тело иголки не держится на поверхностях. Но зато отлично отдирает старую накипь от стенок оборудования. И делает это тонко и качественно, не используя при этом ни каких вспомогательных средств. Такая работа является главным козырем электромагнитного умягчителя воды АкваЩит. Он сделает и свою работу, то есть умягчит воду и старую накипь уберет очень качественно. И для этого не придется покупать средства от накипи. Все обеспечат мощные постоянные магниты из редкоземельных металлов и электрический ток.

У данного прибора большое количество преимуществ перед другими установками. За ним не нужно ухаживать, он все делает сам. Он полностью уберет из вашего обихода такое понятие, как очистка от накипи. Он в состоянии работать с любыми поверхностями, главное только монтировать его на чистый отрезок трубы.

Потом электромагнитный прибор может проработать без замен в течение четверти столетия. Такое долгое использование гарантируют как раз редкоземельные металлы, которые со временем не теряют практически своих магнитных свойств. Здесь даже привыкания воды к магнитному воздействию нет. Правда, такой прибор не работает со стоячей водой. Также если вода течет одновременно более, чем в двух направлениях, магнитное поле также не работает.

И наконец, пару слов об обратном осмосе, как системе водоподготовки для ТЭЦ. Обойтись при производстве подпиточной воды без этой установки нельзя. Только она гарантирует практически стопроцентную очистку воды. Здесь есть сменные мембраны, которые позволяют получить воду с заданными характеристиками. Но при этом, прибор нельзя применять самостоятельно. Только в комплекте с другими умягчителями, что делает установку более дорогой. Но стопроцентная компенсирует все минусы дороговизны.

Мы подробно рассмотрели все системы водоподготовки для ТЭЦ. Ознакомились со всеми возможными умягчителями, которые могут использоваться в этой системе. Теперь вы сможете легко ориентироваться в мире умягчения.

Теплоэнергоцентрали призваны обеспечивать город теплом и горячей водой. С их помощью генерируется энергия, которая питает заводы, магазины, жилые дома. Основной движущей силой теплоцентралей являются парогенераторы. И в отличие от обычных котельных, которые работают на воде, к качеству пара предьявляются требования намного выше. Таким образом, водоподготовка на ТЭЦ – удовольствие дорогое, и подлежит тщательной подготовке для правильного запуска в работу всей системы.

Оптимальная схема водоподготовки на мини ТЭЦ

Составит эффективную схему доведения воды до нужного качества на ТЭЦ вопрос многих миллионов денежных средств. Объемы очищаемой воды за каждый день огромны, качество входящей воды может быть разным, а бюджет на все эти входящие данные достаточно мал.

Лучше всего будет работать очистительная система с такими этапами, при условии забора воды из первичного источника, без какой либо первичной очистки.

Для получения высококачественного пара придется потрудиться. В чем принципиальная разница, между водоподготовкой на мини ТЭЦ и той же сферой на обычной котельной? Любая жидкость, попадающая в котел или парообразователь в обязательном порядке должна быть мягкой, как минимум. Причем воду очищают как до момента входа в систему, так и после выхода из системы. Связано это с тем, что после очищения остается масса отходов. И чтобы их скинуть, придется их дочистить.

Актуальность очистных схем доказывать не нужно. Они помогут обезопасить и трубы, и котлы, и непосредственно паровые турбины от коррозии и повреждений, вызванных ненужными примесями. Точно так же схема помогает решить проблему с образованием известкового налета. Собирать систему без привлечения специалистов достаточно рискованно. Можно легко вывести из строя свою рабочую установку или же получить недоочищенную воду.

Но и специалист может ошибаться. Любой человек должен чем-то подкреплять свои выводы. И прежде всего, это касается состава приборов. Сперва, нужно оценить состав воды, а потом предлагать варианты. Это правило должен помнить любой заказчик.

Так или иначе, но главной задачей любой теплоцентрали в любой стране по-прежнему остается применение более качественного сырья. И постараться потратить на всю эту процедуру, как можно меньше денег.

Специалисты на сегодня предлагают:

Более всего на теплоцентралях в качестве доведения воды до этапа дегазации используют мембранный обратноосматический прибор. Это фильтр для тонкой чистки и работает только с подготовленной водой. Самый оптимальный прибор подобного рода поможет убрать почти все органические растворенные примеси, некоторые виды бактерий, и соли металлов.

Не менее важно воду для паровых турбин и обеззараживать. Если этого не делать, то очень быстро бактерии сделают свое черное дело. Поверхности турбин станут зелеными и скользкими.

Лучше всего в этом случае будет работать озонатор, как самый экологически чистый прибор. Он поможет получать деминерализованную воду с очень неплохой производительностью. И для этого не нужны химикаты. Озон, как известно, это кислород из трех атомов, который помогает окислять вещества, без выделения новых образований. Причем работает он, как с металлами, так и солями. Вода получается не только обеззараженной, но еще и насыщенной кислородом, что тоже дает свои плюсы. Озонатор потому массово используется в теплоцентралях и на мини ТЭЦ, что одним своим присутствием и работой помогает убрать из воды и лишние соли, и лишние ионы железа. После данного этапа, все, что понадобиться сделать - устранить растворенные газы. А в общем вода получается деминерализированной, и готовой к использованию. Плохо в озонировании то, что оно дорого стоит, перевозить генерирующие установки нельзя, да и затраты энергоносителей очень высокие. Потому массового использования у озонаторов пока нет.

Еще одной немаловажной особенностью современной и грамотной водоподготовки на ТЭЦ является автоматическое управление. На таких больших предприятиях обойтись без ручного управления очень важно. Люди – это постоянное возникновение проблем из-за пресловутого «человеческого фактора». Но и обойтись без них нельзя. Т.к. кто-то должен управлять и автоматами.

И еще одна очень важная проблема любой топливно-энергетической системы – известковые отложения. В мини ТЭЦ использовали в свое время и флокулянты с коагулянтами для устранения жесткости в полном объеме. Применяли и кипячение. Но тогда вся известь оставалась внутри котла. Облегчение для систем мини ТЭЦ настало только с изобретением безреагентных способов устранения известкового налета. Начиналась история с магнитного воздействия и ультразвука. Сегодня более, чем эффективно работают электромагнитные устранители накипного налета.

Особенности паровых теплоцентралей (ТЭЦ) и их очищения

Парогенераторы работают на исключительно чистом паре, избавленном от абсолютно любых примесей. Применение некачественного пара ведет к большим потерям при производстве, потерям КПД, и как следствие поломкам турбин. Потому качественная водоподготовка на ТЭЦ парового вида – одно из превалирующих направлений работы.

Огромную роль здесь играет метод устранения примесей из воды. Есть в работе подобного оборудования такая особенность, как зависимость очистных сооружений от страны-производителя паровых турбин и сопутствующего оборудования. При этом важно еще сохранять хрупкий баланс состава воды в паровых котлах.

Наиболее удобными очистными установками для такого вида теплоцентралей являются комплексные (например, комплекс Gendos ). С их помощью из воды можно устранить большее количество вредных примесей, и при этом химикаты будут впрыскиваться контролировано и дозировано и в автоматическом режиме. При работе с дезинфекторами, впрыскиваемые в воду реагенты можно менять, для обеспечения оптимальной очистки.

Кроме огромного вреда, который приносит паровому оборудованию комплекс солей, есть еще соли железа, которые дают свой вклад в этот вред. могут привести и к коррозии, и к ржавчине. И как следствие, к поломке оборудования.

Классический набор фильтров для систем водоподготовки на ТЭЦ обязательно должен включать и умягчители. Первичная вода из систем водоснабжения может обладать разными включениями, даже при обязательном условии, что такую воду чистят. Чаще всего включаются жесткость, соли железа и иногда бактерии.

Многие считают, что бактерии – это обязательно вирусы или болезнетворные бактерии, или бактерии гниения. Но сегодня очень часто в оборудовании постоянно работающем с водой есть еще и железистые бактерии. Вот они тоже могут создавать очаги заражения, только бороться с ними можно несколько иными путями. Иногда могут помочь и специальные флокулянты, впрыскиваемые в систему.

Что поможет исправить ситуацию с превышением концентрации солей железа? Как известно, они могут быть трех видов – двухвалентного железа, трехвалентного железа и железных бактерий. Трехвалентное железо самое удобное для выведения. Оно уже имеет окисленную форму и быстро выпадает в осадок.

В это же время двухвалентное присутствует в воде в виде растворенных солей. И самая большая сложность начинается тогда, когда нужно преобразовывать его в трехвалентное, то есть выпадающее в осадок. Для этого есть реагенты и есть окислители в виде воздуха. В теплоцентралях больше всего применяют безреагентные окислители, это безопаснее для турбин, да и меньше вопросов потом с устранением осадков и излишков, добавленных реагентов.

Обойтись без докотловой обработки воды котельные не могут. Это четко указано и в стандартах и в постановлениях гос. надзора. Любая теплоэнергоцентраль должна подобрать компанию, которая будет выполнять услуги по разработке и монтажу докотловой системы обработки воды.

Есть еще такое понятие, как внутрикотловая обработка подпиточной воды. Ее применяют для неэкранированных котлов на ТЭЦ с малой паропроизводительностью, при условии, что они работают на твердом топливе. При этом максимальный порог жесткости составляет 3 милиграмма на экв. литр.

Умягчать воду в таких системах не так принципиально, как предотвратить образование и развитие накипного осадка. Поэтому поиск умягчающих систем должен вестись именно в направлении очистителей от осадка. Но для этого подойдет и сам принцип умягчения – то есть устранения или преобразования солей жесткости. Лучше всего в использовать катионные фильтры или электромагнитные.

Еще одной проблемой при очистках воды является уровень кислотно-щелочного баланса. При умягчении он сильно снижается, а при высокой степени загрязнения он высок. Поэтому поддерживать нужный уровень следует постоянно. Если этого не делать, то стимулируется развитие коррозии. Так, что для нормальной работы ТЭЦ воду придется подщелачивать. Для этого в систему водоподготовки на ТЭЦ монтируют специальный датчик уровня. Вот он при превышении уровня будет впрыскивать в систему необходимое количество щелочи.

Для получения воды с очень высокой степенью очистки могут применять двухступенчатые установки мембранного типа, что позволяет получить практически пустую воду, без органических примесей. Останется только избавить ее от растворенных газов. Так, что обработка воды для энергоцентралей намного хлопотнее, чем любые другие системы, даже для крупных металлургических предприятий.

На сегодняшний день водоподготовка в энергетике остается важным вопросом отрасли. Водя является главным источником на ТЭС, включая ТЭЦ, к которому предъявлены повышенные требования. Наша страна расположена в холодной климатической зоне, зимой случаются сильные морозы. Поэтому ТЭС являются неотъемлемой частью комфортной жизни людей. ТЭЦ, паровые и газовые котельные страдают от жесткой воды, выводящей из строя дорогостоящее оборудование. Для более четкого понимания, разберемся с принципами работы ТЭЦ.

Принцип работы ТЭЦ

ТЭЦ (теплоэлектромагистраль) считается разновидностью ТЭС. Она генерирует электрическую энергию и является источником тепловой в системе теплоснабжения. С ТЭЦ в дома людей и на предприятия промышленности поступает горячая вода и пар.

Принцип ее работы схож с конденсационной электростанцией. Существует только одно важное отличие: часть тепла можно посылать на другие потребности. Количество отобранного пара регулируется на предприятии. Тепловая турбина определяет способ сбора энергии. В подогревателях собирают отделенный пар. Затем энергия передается воде, которая движется по системе. Она передает энергию в пиковые водонагревательные котельные и теплопункты.


Водоподготовка может иметь два графика нагрузки:
  • тепловая;
  • электрическая.

Если основной является тепловая нагрузка, тогда электрическая ей подчиняется. Если установлена электрическая нагрузка, то тепловая может даже отсутствовать. Возможен вариант совмещенной нагрузки, что дает возможность использовать остаточное тепло для отопления. Такие ТЭЦ обладают КПД 80%.

При возведении ТЭЦ учитывается отсутствие передачи тепла на большие расстоянии. Поэтому она располагается на территории города.

Проблемы ТЭЦ

Главный недостаток производства энергии на ТЭС – образование твердого осадка, выпадающего при нагреве воды. Что бы очистить систему, потребуется остановка и разборка всего оборудования. Накипь убирают на всех поворотах и в узких отверстиях. Кроме накипи, слаженной работе будут препятствовать коррозия, бактерии и прочее.

Накипь


Основной недостаток накипи – снижение теплопроводности. Даже ее незначительный слой приводит к большому расходу топлива. Постоянно удалять накипь не возможно. Допускается только ежемесячная чистка, которая несет убытки от простоя и портит поверхность оборудования. Количество потребляемого топлива будет увеличиваться, а оборудование будет быстрее выходить из строя.

Как определить, когда производить очистку? Оборудование сообщит само: сработают системы защиты от перегрева. Если не убрать накипь, в дальнейшем теплообменники и котлы не будут работать, образуются свищи или произойдет взрыв. Все дорогостоящее оборудование выйдет из строя без возможности восстановить его.

Коррозия

Главная причина коррозии – кислород. Циркуляционная вода должна иметь его на минимальном уровне – 0,02 мг/л. Если кислорода достаточно, то вероятность образовании на поверхности коррозии будет увеличиваться с ростом количества солей, особенно сульфатов и хлоридов.

Большие ТЭЦ имеют деаэраторные установки. На небольших установках используют корректировочные химические продукты. Значение pH воды должен лежать в диапазоне 9,5-10,0. С ростом pH происходит снижение растворимости магнетита. Особенно важно, если в системе присутствуют латунные или медные детали.

Пластик – источник локального выброса кислорода . Современные системы стараются избегать гибких пластиковых труб или создают специальные барьеры для кислорода.

Бактерии


Бактерии влияют на качество используемой воды и образуют некоторые виды коррозии (бактерии на металле и бактерии, снижающие сульфаты). Признаки роста бактерий:
  • специфический запах циркуляционной воды;
  • отклонение содержания химических веществ при дозировании;
  • коррозия медных и латунных компонентов, а так же батарей.

Бактерии поступают с грязью из почвы или при ремонте. Системы и нижняя часть батареи обладают благоприятными условиями для их роста. Дезинфекция проводится при полном отключении системы.

Водоподготовка для ТЭЦ

Справиться с перечисленными проблемами поможет водоподготовка в энергетике. На ТЭС устанавливают множество фильтров. Основная задача – найти оптимальное сочетание разных фильтров. Вода на выходе должна быть смягченной и обессоленной.

Ионообменная установка


Самый распространенный фильтр. Она представляет собой высокий цилиндрический бак с дополнительным регенерационным баком для фильтра. Круглосуточная работа ТЭЦ нуждается ионообменной установки с несколькими ступенями и фильтрами. Каждый из них имеет свой бак для восстановления. Вся система имеет общий контроллер (блок управления). Он следит за параметрами работы каждого фильтра: количество воды, скорость очистки, время очистки. Контроллер не пропускает воду через фильтры с полными картриджи, а посылает ее на другие. Грязные картриджи вынимаются и отправляются в бак для восстановления.

Картридж первоначально наполнен смолой со слабым натрием. При прохождении жесткой воды происходят химические реакции: сильные соли заменяются слабым натрием. Со временем в картридже скапливаются соли жесткости – следует провести его регенерацию.

В восстановительном баке растворены соли высокой степени. Выходит сильно насыщенный раствор соли (более 8-10%), который удаляет из картриджа соли жесткости. Сильносоленые отходы дополнительно очищаются, а потом утилизируются по специальному разрешению.

Плюсом установки является высокая скорость очистки. К минусам относятся дорогостоящее обслуживание установки, высокая стоимость соленых таблеток и затраты на утилизацию.

Электромагнитный умягчитель воды


Так же распространен на ТЭЦ. Основными элементами системы являются:
  • сильные постоянные магниты из редкоземельных металлов;
  • плата;
  • электрический процессор.

Перечисленные элементы создают сильное электромагнитное поле. С противоположных сторон прибор имеет намотанную проводку, по которой идут волны. Каждый провод наматывают более 7 раз на трубу. Во время эксплуатации следят, чтобы вода не контактировала с проводкой. Концы проводов изолируют.

Вода проходит по трубе и облучается электромагнитными волнами. Соли жесткости трансформируются в острые иголки, которым неудобно «прилипать» к поверхности оборудования из-за маленькой площади контакта. Дополнительно иголки качественно и тонко очищают поверхность от старого налета.

Основные преимущества:

  • самообслуживание;
  • не надо ухаживать;
  • срок эксплуатации более 25 лет;
  • отсутствие дополнительных затрат.

Электромагнитный умягчитель работает со всеми поверхностями. Основа установки – монтаж на чистый участок трубопровода.

Обратный осмос

На производстве подпиточной воды система обратного осмоса незаменима. Она единственная может очистить воду на 100%. В ней используется система различных мембран, обеспечивающие необходимые характеристики воды. Минусом становится отсутствие возможности самостоятельного использования. Установку обратного осмоса обязательно нужно дополнять умягчителями воды, что влияет на стоимость системы.

Только полная система водоподготовки и водоочистки гарантирует стопроцентный результат и компенсирует высокую стоимость оборудования.

Способ обработки воды оказывает сильное влияние на работу теплоснабжения. От него зависят экономические показатели эксплуатации и защитная функция системы. При строительстве или плановом ремонте ТЭЦ нужно уделять особое значение водообработке.