Зависимость поглощения (по энергии на 1 мггц для различных интенсивностей ультразвука от расстояния до излучателя (дистиллированная вода.  

В этой же связи стоит тот экспериментальный факт, что с уменьшением вязкости трансформаторного масла при его нагревании коэффициент поглощения не уменьшается (как это должно было бы быть для волн малой амплитуды), а увеличивается.  

Что касается изменения вязкости масел при низких температурах1, то, как следует из табл. 11, заимствованной из той же работы, резкое увеличение вязкости трансформаторного масла наблюдается уже при температурах ниже минус 30 С, а для турбинного Л при температуре минус 5 С.  

Для применения в силовых трансформаторах в СССР используют в основном совтол-10, представляющий собой смесь 90 % пента-хлордифенила и 10 % трихлорбензола, который имеет в рабочем интервале температур вязкость, близкую к вязкости трансформаторного масла. Однако по своим вязкостно-температурным свойствам совтол-10 значительно уступает гексолу, представляющему собой смесь 20 % пентахлордифенила и 80 % гексахлорбутадиена. Гек-сол не застывает при температуре до - 60 С и меньше подвержен влиянию загрязнений.  

Были проведены две серии опытов. Вязкость трансформаторного масла снижали добавлением в него растворителя - керосина и растворением в нем природного газа.  

Вязкость трансформаторного масла строго нормируется. Трансформаторное масло, поступающее на предприятия, тщательно сушат в специальных установках и многократно фильтруют. Пробивное напряжение масла перед заливкой в трансформатор должно быть не менее 50 кВ при расстоянии между двумя электродами в стандартном пробойнике 2 5 мм.  


В большинстве случаев для этой цели используется сухое трансформаторное масло (ГОСТ 982 - 56), обладающее хорошими электроизоляционными свойствами. Вязкость трансформаторного масла невелика, вследствие чего его конвекция и циркуляция обеспечивают хорошее охлаждение аппаратуры, что особенно важно для приборов с нагревающимися в процессе работы элементами. Масло также защищает аппаратуру от атмосферных влияний и от вредного действия химически агрессивной среды.  

Основным достоинством трансформаторного масла являются его высокие изоляционные свойства и способность предохранить от коррозии охлаждаемый тракт. Однако вязкость трансформаторного масла значительно выше вязкости воды. Поэтому для создания циркуляции масла, по эффективности соизмеримой с циркуляцией воды, требуются большие диаметры трубопроводов и более высокий напор. Давление масла в трубопроводе ограничено 3 - 4 кгс / см2, так как из-за хорошей смачиваемости металлических поверхностей, оно при больших давлениях способно просачиваться сквозь незначительные неплотности, практически всегда имеющие место в сочленениях трубопроводов.  

В технических нормах в качестве одного из параметров, характеризующих данное масло, указывается значение v20, однако на фиг. Поэтому вязкость очищенного трансформаторного масла при 20 С определим приближенно, используя, например, формулу (I, 56) Гросса.  

Эффективность теплоотвода. / - кремнийорганической жидкостью большой вязкости. 2 - трансформаторным маслом. 3, 4 и 5 - фторорганиче-скими жидкостями (С4Р9 зМ, CSF16O и C6F120.| Применение холодильной установки для охлаждения трансформатора.  

Это может быть особенно ценным для трансформаторов предельных мощностей, которые иначе были бы нетранспортабельными. Нужно отметить, что вязкость трансформаторного масла возрастает при понижении температуры, поэтому коэффициент теплоотдачи от обмоток к маслу будет ниже, чем в обычных системах масляных трансформаторов.  

Если полость статора заполнена трансформаторным маслом, то во время пуска в зимнее время необходимо создать минимальную нагрузку или, если это допустимо, произвести пуск в режиме холостого хода и продолжать работу электродвигателя в этом режиме для прогрева всего объема масла до 15 - 20 С без подачи охлаждающей жидкости в систему охлаждения. Это необходимо по той причине, что вязкость трансформаторного масла при низких температурах велика и циркуляция его по всему контуру будет затруднена, что может привести к местным перегревам и к обугливанию изоляции обмотки даже в том случае, когда температура масла в точках замера еще не достигнет предельных значений.  

Эксплуатация электродвигателей, полость статора у которых заполнена трансформаторным маслом или для отвода тепла используется водяное охлаждение, в зимнее время на открытых площадках или в неотапливаемых помещениях имеет ряд отличительных особенностей. Это обусловлено тем, что при низких температурах вязкость трансформаторного масла повышается, а вода может замерзнуть в системе охлаждения, если не принять надлежащих мер предосторожности.  

Снижение вязкости при заданной температуре вспышки достигается сужением фракционного состава; внедрение этого мероприятия ограничено, так как при этом уменьшается выход масла. В последние годы за рубежом намечается тенденция снижения вязкости трансформаторных масел даже при условии некоторого понижения температуры вспышки.  

Трансформаторное масло представляет собой очищенную фракцию нефти, то есть является минеральным маслом. Его получают посредством перегонки нефти, где данная фракция кипит при 300 - 400°С. В зависимости от сорта исходного сырья свойства трансформаторных масел получаются различными. Масло отличается сложным углеводородным составом, где средний вес молекул варьируется от 220 до 340 а.е.м. В таблице приведены основные компоненты и их процент в составе трансформаторного масла.

Свойства трансформаторного масла, как электрического изолятора, определяются главным образом значением . Поэтому наличие воды и волокон в масле полностью исключается, поскольку любые механические примеси ухудшают данный показатель.

Температура застывания трансформаторного масла - от -45°С и ниже, это важно для обеспечения его подвижности в низкотемпературных условиях эксплуатации. Эффективному отводу тепла способствует наиболее низкая вязкость масла даже при температурах от 90 до 150°С в случае вспышек. Для разных марок масел эта температура может быть 150°С, 135°С, 125°С, 90°С, не ниже.

Крайне важным свойством трансформаторных масел является их стабильность в условиях окисления, трансформаторное масло должно сохранять требуемые параметры на длительный период работы.

Что касается конкретно РФ, то здесь все сорта трансформаторных масел, применяемых на промышленном оборудовании, обязательно ингибированы антиокислительной присадкой - ионолом (2,6-дитретичный бутилпаракрезол, известный еще как агидол-1). Присадка взаимодействует с активными пероксидными радикалами, возникающими в цепи окислительной реакции углеводородов. Так, ингибированные трансформаторные масла имеют при окислении ярко выраженный индукционный период.

Сначала восприимчивые к присадкам масла окисляются медленно, поскольку возникающие цепи окисления прерываются ингибитором. Когда присадка истощена, масло окисляется с обычной скоростью, как без присадки. Чем больше индукционный период окисления масла, тем выше и эффективность присадки.

Немало эффективность присадки связана и с углеводородным составом масла, и с наличием примесей неуглеводородного рода, способствующих окислению, коими могут выступать азотистые основания, нефтеновые кислоты и кислородосодержащие продукты окисления масла.

Когда нефтяной дистиллят очищают, содержание ароматических углеводородов снижается, устраняются неуглеводородные включения, и в итоге стабильность ингибированного ионолом трансформаторного масла повышается. Между тем, существует международный стандарт «Спецификация на свежие нефтяные изоляционные масла для трансформаторов и выключателей».




Трансформаторное масло обладает горючестью, оно биоразлагаемо, почти не обладает токсичностью и не вредит озоновому слою. Плотность трансформаторного масла лежит в пределах от 840 до 890 килограмм на кубометр. Одно из важнейших свойств - вязкость. Чем выше вязкость, тем выше электрическая прочность. Вместе с тем, для нормальной работы в и в выключателях, масло не должно быть очень вязким, иначе охлаждение трансформаторов не будет эффективным, а выключатель не сможет быстро разорвать дугу.




Здесь нужен компромисс относительно вязкости. Обычно кинематическая вязкость при температуре 20°С, у большинства трансформаторных масел лежит в диапазоне от 28 до 30 мм2/с.




Прежде чем заполнить маслом аппарат, масло очищают при помощи глубокой термовакуумной обработки. Согласно действующему руководящему документу "Объем и нормы испытаний электрооборудования" (РД 34.45-51.300-97), концентрация воздуха в трансформаторном масле, заливаемом в трансформаторы с азотной или пленочной защитой, в герметичные измерительные трансформаторы и в герметичные вводы, не должна быть выше 0,5 (определяется методом газовой хроматографии), а максимальное содержание воды - 0,001% массы.

Для силовых трансформаторов без пленочной защиты и для негерметичных вводов допустимо содержание воды не более 0,0025% массы. Что касается содержания механических примесей, определяющего класс чистоты масла, то оно не должно быть для оборудования напряжением до 220кВ хуже 11-го, а для оборудования напряжением выше 220 кВ - не хуже 9-го. Пробивное напряжение, в зависимости от рабочего напряжения, приведено в таблице.


Когда масло залито, то пробивное напряжение на 5 кВ ниже, чем у масла до заливки в оборудование. Допустимо снижение класса чистоты на 1 и увеличение процента воздуха на 0,5%.

Условия окисления (метод определения стабильности - по ГОСТу 981-75)






Температура застывания масла определяется при испытаниях, когда пробирку с загустевшим маслом наклоняют на 45°, и масло остается на том же уровне в течение минуты. Для свежих масел эта температура не должна быть ниже -45°С.

Данный параметр имеет ключевое значение для . Тем не менее, в разных климатических зонах требования к температуре застывания различны. Например, в южных регионах допускается применять трансформаторное масло с температурой застывания -35°С.

В зависимости от условий эксплуатации оборудования, нормативы могут варьироваться, возможны в некоторых пределах отступления. Так, например, арктические сорта трансформаторного масла не должны застывать при температуре выше -60°С, а температура вспышки снижается до -100°С (температура вспышки - температура, при которой нагретое масло производит пары, становящиеся легко воспламеняемыми при перемешивании с воздухом).

Вообще, температура вспышки не должна быть ниже 135°С. Также важны такие характеристики, как температура воспламенения (масло воспламеняется и горит при ней в течение 5 и более секунд) и температура самовоспламенения (при температуре 350-400°С масло воспламеняется даже в закрытом тигле при наличии воздуха).

Трансформаторное масло обладает теплопроводностью от 0,09 до 0,14 Вт/(м×К), и она снижается с ростом температуры. Теплоемкость же с ростом температуры возрастает, и может быть от 1.5 кДж/(кГ×К) до 2.5 кДж/(кГ×К).

С коэффициентом теплового расширения связаны нормативы по размерам расширительного бака, и данный коэффициент находится в районе 0,00065 1/К. Удельное сопротивление трансформаторного масла при 90°С и в условиях напряженности электрического поля 0.5 МВ/м в любом случае не должно быть выше 50 Гом*м.

Равно как и вязкость, удельное сопротивление масла с ростом температуры снижается. Диэлектрическая проницаемость - в пределах от 2,1 до 2,4. Тангенс угла диэлектрических потерь, как было сказано выше, связан с наличием примесей, так для чистого масла он не превышает 0,02 при 90°С в условиях частоты поля 50 Гц, а в окисленном масле может превышать 0.2.

Электрическую прочность масла измеряют во время испытаний на пробой 2,5 мм разрядника с диаметром электродов 25,4 мм. Результат не должен быть ниже 70 кВ, и тогда электрическая прочность составит не менее 280 кВ/см.


Несмотря на принятые меры, трансформаторное масло может поглощать газы, и растворять в себе значительное их количество. В обычных условиях в одном кубическом сантиметре масла легко растворится 0,16 миллилитров кислорода, 0,086 миллилитров азота и 1,2 миллилитра углекислоты. Очевидно, кислород начнет окислять мало. Если газы наоборот выделяются, это признак появления дефекта обмотки. Так, по наличию растворенных в трансформаторном масле газов, посредством хроматографического анализа выявляют дефекты трансформаторов.

Сроки службы трансформаторов и масла не связаны напрямую. Если трансформатор способен работать безотказно лет 15, то масло каждый год желательно очищать, а через 5 лет - регенерировать. Однако, для предотвращения быстрого истощения ресурса масла предусмотрены вполне определенные меры, принятие которых значительно продлит срок службы трансформаторного масла:

    Установка расширителей с фильтрами для поглощения воды и кислорода, а также выделяемых из масла газов;

    Избегание рабочего перегрева масла;

    Периодические чистки;

    Непрерывная фильтрация масла;

    Введение антиокислителей.

Высокие температуры, реакции масла с проводниками и диэлектриками, - все это способствует окислению, которое и призвана предотвращать антиокислительная присадка, о которой упоминалось в начале. Но регулярная очистка все равно требуется. Качественная очистка масла возвращает его в пригодное для использования состояние.

Что же может послужить поводом для изъятия из эксплуатации трансформаторного масла? Это могут быть загрязнения масла постоянными веществами, наличие которых не привело к глубоким изменениям в масле, и тогда достаточно провести механическую очистку. Вообще, существует несколько методов очистки: механический, теплофизический (перегонка) и физико-химический (адсорбция, коагуляция).

Если произошла авария, резко снизилось пробивное напряжение, появился нагар, или хроматографический анализ выявил неполадки, трансформаторное масло очищают прямо в трансформаторе или в выключателе, просто отключив аппарат от сети.

При регенерации отработанного трансформаторного масла получают до 3 фракций базовых масел для приготовления других товарных масел, таких как моторные, гидравлические, трансмиссионные масла, смазочно-охлаждающие жидкости и пластичные смазки. В среднем после регенерации получается 70-85% масла, в зависимости от применяемого технологического способа. Химическая регенерация является при этом более дорогостоящей. При регенерации трансформаторного масла возможно получить до 90% базового масла идентичного по качеству свежему.

Введение

Любой инженер-энергетик не понаслышке знает, что такое трансформатор, и как он устроен. Что же нужно для надежной работы трансформатора? Одним из критериев является трансформаторное масло. Данная работа поможет больше узнать про трансформаторное масло. Она расскажет не только о самом масле, но и о методах его сушки, а также о технических требованиях при эксплуатации.

Трансформаторное масло

Физические показатели

Плотность трансформаторных масел колеблется в пределах 800-890 кг/м 3 и зависит от его химического состава. Чем больше в масле полициклических ароматических и нафтеновых углеводородов, тем выше его плотность. Молекулярная масса трансформаторных масел колеблется в пределах 230-330 и зависит от их фракционного и химического состава. При близком фракционном составе чем больше в масле ароматических углеводородов, тем меньше молекулярная масса и плотность, то есть по мере углубления очистки масла снижается плотность и увеличивается его молекулярная масса.

Молекулярная масса масел определяется эбуллиоскопическим или криоскопическим методами. Оба метода основаны на законах о разбавленных растворах: первый на измерении повышения температуры кипения чистого растворителя, а второй на измерении понижения температуры кристаллизации чистого растворителя. Поскольку полициклические ароматические и нафтеноароматические углеводороды склонны к ассоциации, молекулярную массу определяют при разной концентрации масла в растворителе и истинную молекулярную массу рассчитывают экстраполяцией к нулевой концентрации.

Показатель преломления характеризует изменение скорости света при переходе из одной среды в другую и измеряется отношением синуса угла падения света к синусу угла его преломления. Показатель преломления зависит от длины волны света и температуры и при заданных значениях этих параметров является характеристикой вещества. Подобно плотности значение показателя преломления снижается при углублении очистки. При близких фракционном составе и вязкости масел показатель преломления удовлетворительно характеризует содержание ароматических углеводородов.

Вязкость характеризует свойство жидкости оказывать сопротивление при перемещении одной части жидкости относительно другой (рисунок 1).

Обычно пользуются понятием кинематической вязкости, представляющей собой отношение динамической вязкости к плотности; за единицу ее принимают в системе СИ 1 м 2 /с.

Вязкость иногда выражают в других единицах - градусах Энглера. За рубежом пользуются градусами Сейболта и Редвуда.

В практике часто важно знать вязкость масла при низких температурах, экспериментальное определение которой сложно. С этой целью определяют вязкость при двух положительных температурах, соединяют значения их прямой на номограмме и экстраполируют до искомой температуры (рисунок 1).

Рисунок 1

Следует учитывать, что номограмма построена исходя из предположения, что в принятом интервале температур масло проявляет себя как ньютоновская жидкость.

При температурах, близких к температуре застывания, проявляется аномалия вязкости. Пользоваться номограммой можно до температур на 10-15 °С выше температуры застывания.

На практике широкое применение нашел индекс вязкости по Дину и Девису. Эти авторы предложили сравнивать вязкость испытуемого масла с вязкостью масляных дистиллятов, полученных из американских нефтей Пенсильванского и Мексиканского заливов. Индекс вязкости первого масла принимается за 100, а второго за 0.

Все масла при 98,9 °С должны иметь одинаковую вязкость.

Плотность, показатель преломления и вязкость масел находятся в зависимости от химического и в первую очередь углеводородного состава масел при близком фракционном составе.

Температура вспышки трансформаторных масел определяется в закрытом тигле в аппарате Мартене--Пенского.

Температурой вспышки называется температура, при которой шары масла, нагреваемого в стандартных условиях, вспыхивают при поднесении к ним пламени.

Температура вспышки для обычных товарных масел колеблется в пределах 130--170, а для арктического масла--от 90 до 115 °С и зависит от фракционного состава, наличия относительно низкокипящих фракций и в меньшей степени от химического состава.

Температуры вспышки масел находятся в зависимости от упругости их насыщенных паров. Чем ниже упругость паров, чем выше температура вспышки, тем лучше можно дегазировать и осушать масло перед заливом в высоковольтное оборудование. Минимальная температура вспышки масел регламентируется не столько по противопожарным соображениям, сколько с точки зрения возможности глубокой их дегазации.

В отношении пожарной безопасности большую роль играет температура самовоспламенения; это температура, при которой масло при наличии воздуха загорается самопроизвольно без поднесения пламени. У трансформаторных масел эта температура около 350--400 °С.

У отечественных трансформаторных масел упругость насыщенных паров при 60 °С колеблется от 8 до 0,4 Па. У зарубежных масел, как правило, упругость паров ниже и составляет от 1,3 до 0,07 Па.

Вязкость трансформаторного масла является важным физиче­ским параметром, определяет процесс теплоотдачи обмоток и магнитопроводов в трансформаторах и дугогасящую способность выклю­чателей Для хорошей циркуляции масла в трансформаторах, улучшающей охлаждение обмоток и магнитопроводов, необходимы масла с малой вязкостью. В свою очередь у масла, как и других жидких диэлектри­ков, вязкость сильно возрастает при понижении температуры. При температу­ре 20°С вязкость трансформаторного масла должна быть не более 4,2°Э и не выше 2°Э при температуре 50°С.

Для измерения условной вязкости – ВУ масла применяется вискозиметр Энглера, схема которого показана на рис. 3. Латунный сосуд – 2 помещен внутрь металлического сосуда 1 так, чтобы между ними имелось пространство, заполненное водой. Оба сосуда в центре имеют отверстия, сквозь которые пропущена калиброванная трубка – 3

Схема вискозиметра Энглера.

с диа­метром внутреннего отверстия 2-3 мм. Это отверстие закрывается пробкой - 4. Латунный сосуд за­полняется испытуемой жидкостью по указательные штифты – 5. Одно­временное касание маслом всех трех остриев служит признаком правильной установки на столе, неточность установки выправляют установочными винтами на ножках прибора. Наружный сосуд 1 служит водяной баней, отку­да нагретая на электрической плитке вода равномерно передает тепло маслу. Воду перемешивают мешалкой. Благодаря значитель­ной теплоемкости воды не происходит резких колебаний температу­ры масла во время испытаний.

Перед испытаниями трансформаторного масла вискозиметр Энглера должен быть тщательно промыт и просушен. Вставив пробку - 4 в калиброванную трубку - 3 и установив под сливным отверстием мерную колбу с отметкой на узком горлышке объема в 200мл, заливают масло в латунный сосуд. Закрыв крышку, нагревают воду, перемешивая ее мешалкой - 5. Когда установится требуемая температура масла, что отмечается термометром – Т 2, сливают в колбу масло до отметки-200 мл. При этом пену во внимание не принимают. Время вытекания этого объема масла засекают секундомером.

Вязкостью масла в градусах Энглера называется отношение времени истечения 200 миллилитров масла, нагретого до температуры 50 0 С, к времени истечения такого же объема дистиллированной воды при температуре 20 0 С.

Время истечения 200 мл. воды при температуре 20 0 С называют водным числом прибора.

Наряду с условной вязкостью различают динамическую и кине­матическую. Динамическая вязкость -η вычисляется по формуле:

, Па. с,

где f – сила в (Н), действующая на твердый шарик.

Эта сила равна весу твердого шарика за вычетом (на основании закона Архимеда) веса жидкости объема шарика; r, - радиус шарика, мм; V - скорость движения шарика, м/с;

,

где k - поправочный коэффициент, учитывающий влияние стенок сосуда; r, - радиус сосуда, м; l. - высота сосуда, м; ν - кинематическая вязкость,м/с вычисляется по формуле:

,

где ρ - плотность испытуемой жидкости, кг/м 3 . Кинематическую вязкость часто измеряют в стоксах (Ст) = 10 -4 м 2 /с.

Для измерения вязкости кроме вискозиметра Энглера ис­пользуют шариковые вискозиметры, ротационные, пластовискозиметры, электроротационные и капиллярные.

Шариковые вискозиметры основаны на измерении скорости по­гружении стального шарика в испытуемой жидкости.

Ротационные вискозиметры конструктивно состоят из двух ци­линдров: наружного неподвижного и внутреннего, вращающегося во­круг вертикальной оси под действием определенной силы. Про­странство между ними заполнено испытуемой жидкостью. По затрате мощности на вращение внутреннего цилиндра или по степени замед­ления вращения его определяют вязкость жидкости. При определен­ном конструктивном исполнении ротационного вискозиметра можно совместить определение вязкости и удельного электрического со­противления испытуемой жидкости по току утечки между цилиндра­ми.

Пластовискозиметры способны, наряду с вязкостью, опреде­лять предел прочности.

Электроротационные вискозиметры позволяют непосредственно отсчитывать величину вязкости по шкале измерительного прибора.

Капилярные вискозиметры служат для измерения кинемати­ческой вязкости.

От кинематической вязкости (м 2 /с) к условной вязкости (°Э) можно перейти, используя таблицу 2.

Таблица 2

Кинематическая вязкость Град Э Кинематическая вязкость Град Э Кинематическая вязкость Град Э
м 2 /с сСт ВУ м 2 /с сСт ВУ м 2 /с сСт ВУ
0.000001 1.00 1.00 0.000024 24.0 3.43 0.000054 54.0 7.33
0.000002 2.00 1.10 0.000025 25.0 3.56 0.000055 55.0 7.47
0.000003 3.00 1.20 0.000026 26.0 3.68 0.000056 56.0 7.60
0.000004 4.00 1.29 0.000027 27.0 3.81 0.000057 57.0 7.73
0.0000045 4.5 1.34 0.000028 28.0 3.95 0.000058 58.0 7.86
0.000005 5.0 1.39 0.000029 29.0 4.07 0.000059 59.0 8.00
0.0000055 5.5 1.43 0.000030 30.0 4.20 0.000060 60.0 8.13
0.000006 6.0 1.48 0.000031 31.0 4.33 0.000061 61.0 8.26
0.0000065 6.5 1.53 0.000032 32.0 4.46 0.000062 62.0 8.40
0.000007 7.0 1.57 0.000033 33.0 4.59 0.000063 63.0 8.53
0.0000075 7.5 1.62 0.000034 34.0 4.72 0.000064 64.0 8.66
0.000008 8.0 1.67 0.000035 35.0 4.85 0.000065 65.0 8.80
0.0000085 8.5 1.62 0.000036 36.0 4.98 0.000066 66.0 8.93
0.000009 9.0 1.76 0.000037 37.0 5.11 0.000067 67.0 9.06
0.0000095 9.5 1.81 0.000038 38.0 5.24 0.000068 68.0 9.20
0.000010 10.0 1.86 0.000039 39.0 5.37 0.000069 69.0 9.34
0.000015 15.0 2.37 0.000045 45.0 6.16 0.000075 75.0 10.15
0.000020 20.0 2.95 0.000050 50.0 6.81 . 0.000080 80.0 10.8


При > 8 . 10 –5 м 2 /с (80 сСт) переход от одной системы к другой производится по формуле.

Трансформаторные масла

Трансформаторные масла применяют для заливки силовых и измерительных трансформаторов, реакторного оборудования, а также масляных выключателей. В последних аппаратах масла выполняют функции дугогасящей среды.

Электроизоляционные свойства масел определяются в основном тангенсом угла диэлектрических потерь. Диэлектрическая прочность трансформаторных масел в основном определяется наличием волокон и воды, поэтому механические примеси и вода в маслах должны полностью отсутствовать. Низкая температура застывания масел (-45 °С и ниже) необходима для сохранения их подвижности в условиях низких температур. Для обеспечения эффективного отвода тепла трансформаторные масла должны обладать наименьшей вязкостью при температуре вспышки не ниже 95, 125, 135 и 150 °С для разных марок.

Наиболее важное свойство трансформаторных масел - стабильность против окисления, т. е. способность масла сохранять параметры при длительной работе. В России все сорта применяемых трансформаторных масел ингибированы антиокислительной присадкой - 2,6-дитретичным бутилпаракрезолом (известным также под названиями ионол, агидол-1 и др.). Эффективность присадки основана на ее способности взаимодействовать с активными пероксидными радикалами, которые образуются при цепной реакции окисления углеводородов и являются основными ее носителями. Трансформаторные масла, ингибированные ионолом, окисляются, как правило, с ярко выраженным индукционным периодом.

В первый период масла, восприимчивые к присадкам, окисляются крайне медленно, так как все зарождающиеся в объеме масла цепи окисления обрываются ингибитором окисления. После истощения присадки масло окисляется со скоростью, близкой к скорости окисления базового масла. Действие присадки тем эффективнее, чем длительнее индукционный период окисления масла, и эта эффективность зависит от углеводородного состава масла и наличия примесей неуглеводородных соединений, промотирующих окисление масла (азотистых оснований, нафтеновых кислот, кислородсодержащих продуктов окисления масла).

На рисунке показана зависимость длительности индукционного периода окисления трансформаторного масла при одной и той же концентрации присадки от содержания в нем ароматических углеводородов. Окисление проводилось в аппарате, регистрирующем количество поглощаемого маслом кислорода при 130 °С в присутствии катализатора (медной проволоки) в количестве 1 см 2 поверхности на 1 г масла с окисляющим газом (кислородом) в статических условиях. Происходящее при очистке нефтяных дистиллятов снижение содержания ароматических углеводородов, как и удаление неуглеводородных включений, повышает стабильность ингибированного ионолом трансформаторного масла.

Международная электротехническая комиссия разработала стандарт (Публикация 296) "Спецификация на свежие нефтяные изоляционные масла для трансформаторов и выключателей". Стандарт предусматривает три класса трансформаторных масел:

I - для южных районов (с температурой застывания не выше -30 °С), II - для северных районов (с температурой застывания не выше -45 °С) и III - для арктических районов (с температурой застывания -60 °С). Буква А в обозначении класса указывает на то, что масло содержит ингибитор окисления, отсутствие буквы означает, что масло не ингибировано.

В таблице приведены заимствованные из стандарта МЭК 296 требования к маслам классов II, II А, III, III А. Масла классов I и IA в России не производят и не применяют.

Требования Международной электротехнической комиссии к трансформаторным маслам классов II, НА, III, IIIA

Показатели Метод испытаний Требования к классам
II и IIA III и IIIA
Кинематическая вязкость, мм2/с, при температуре: 40°С ISO 3104 11,0 3,5
-30 °С 1800 -
-40 °С - 150
Температура, °С: вспышки в открытом тигле, не ниже ISO 2719 130 95
застывания, не выше ISO 3016 -45 -60
Внешний вид Определяется визуально в проходящем свете при комнатной температуре и толщине 10 см Прозрачная жидкость, не содержащая осадка и взвешенных частиц
Плотность, кг/дм3 ISO 3675 <=0,895
Поверхностное натяжение, Н/м, при 25 °С ISO 6295 См.прим.1
Кислотное число, мг КОН/г Поп.7.7 МЭК 296 <=0,03
Коррозионная сера ISO 5662 Не коррозионно
Содержание воды, мг/кг МЭК 733 См. прим. 2
Содержание антиокислительных присадок МЭК 666 Для классов II и III - отсутствие, для классов IIА и IIIA - см. прим. 3
Окислительная стабильность: кислотное число, мг КОН/г МЭК 1125А для классов II и III; <= 4
массовая доля осадка, % МЭК 1125 В для классов IIА и IIIA <= 0,1См.прим.4
Пробивное напряжение, кВ: в состоянии поставки МЭК 156 >= 30
после обработки >= 50 *
Тангес угла диэлектрических потерь при 90 °С и 40-60 Гц МЭК 247 <= 0,005
* Результат показывает, что загрязнения могут быть легко удалены обычными средствами обработки.
Примечания.1. Спецификация не нормирует этот показатель, хотя некоторые национальные стандарты включают требование не менее 40-Ю"3 Н/м. 2. Спецификация не нормирует этот показатель, хотя в некоторых странах существуют нормы 30 мг/кг при отгрузке партией и 40 мг/кг при отгрузке в бочках. 3. Тип и содержание антиокислителя согласовываются между поставщиком и потребителем. 4. Спецификация не нормирует этот показатель. Известно, что хорошие масла имеют индукционный пеоиод более 120 ч.