Все, что нужно знать о титане, а также о хроме и вольфраме

Многих интересует вопрос: какой самый твердый металл в мире? Это титан. Этому твердому веществу и будет посвящена большая часть статьи. Также немного ознакомимся и с такими твердыми металлами как хром и вольфрам.

9 интересных фактов о титане

1. Существует несколько версий, почему металл получил такое название. Согласно одной теории, его назвали в честь Титанов, бесстрашных сверхъестественных существ. По другой версии, название пошло от Титании, королевы фей.
2. Титан был открыт в конце XVIII века немецким и английским химиком.
3. Титан долго не использовали в промышленности из-за его природной хрупкости.
4. В начале 1925 года, после серии опытов, химики получили титан в чистом виде.
5. Стружка от титана легко воспламеняется.
6. Это один из самых легких металлов.
7. Титан может расплавиться только при температуре выше 3200 градусов.
8. Закипает при температуре 3300 градусов.
9. Титан имеет серебряный цвет.

История открытия титана

Металл, который впоследствии назвали титан, открыли двое ученых – англичанин Уильям Грегор и немец Мартин Грегор Клапрот. Ученые работали параллельно, и между собой не пересекались. Разница между открытиями составляет 6 лет.

Уильям Грегор дал своему открытию название — менакин.

Более чем через 30 лет был получен первый сплав титана, который оказался чрезвычайно хрупким, и не мог нигде использоваться. Считается, что лишь в 1925 году был выделен титан в чистом виде, который стал одним из самых востребованных в промышленности металлов.

Доказано, что российский ученый Кириллов в 1875 году сумел добыть чистый титан. Он опубликовал брошюру, в которой подробно описал свою работу. Однако исследования малоизвестного россиянина остались незамеченными.


Общая информация о титане

Титановые сплавы – спасение для механиков и инженеров. Например, корпус самолета изготовлен из титана. Во время полета он достигает скорости в несколько раз больше, чем скорость звука. Титановый корпус нагревается до температуры выше 300 градусов, и не плавится.

Металл замыкает десятку лидеров «Самых распространенных металлов в природе». Большие залежи обнаружены в ЮАР, Китае и , немало титана в Японии, Индии, на Украине.

Общее количество мирового запаса титанов насчитывает более 700 миллионов тонн. Если темпы добычи останутся прежними, титана хватит еще на 150-160 лет.

Крупнейший производитель самого твердого металла в мире – российское предприятие «ВСМПО-Ависма», которое удовлетворяет треть мировых потребностей.


Свойства титана

1. Коррозийная стойкость.
2. Высокая механическая прочность.
3. Небольшая плотность.

Атомный вес титана составляет 47, 88 а.е.м, порядковый номер в химической таблице Менделеева – 22. Внешне он очень похож на сталь.

Механическая плотность металла в 6 раз больше, чем у алюминия, в 2 раза выше, чем у железа. Он может соединиться с кислородом, водородом, азотом. В паре с углеродом металл образует невероятно твердые карбиды.

Теплопроводность титана в 4 раза меньше, чем у железа, и в 13 раз – чем у алюминия.



Процесс добычи титана

В земле титана большое количество, однако, извлечь его из недр стоит немалых денег. Для выработки используют иодидный метод, автором которого считается Ван Аркель де Бур.

В основе метода – способность металла сочетаться с иодом, после разложения этого соединения можно получить чистый, свободный от посторонних примесей титан.

Самые интересные вещи из титана:

  • протезы в медицине;
  • платы мобильных устройств;
  • ракетные комплексы для освоения Космоса;
  • трубопроводы, насосы;
  • навесы, карнизы, наружная обшивка зданий;
  • большинство деталей (шасси, обшивка).

Сферы применения титана

Титан активно используют в военной сфере, медицине, ювелирном деле. Ему дали неофициальное название «металл будущего». Многие говорят, что он помогает превратить мечту в реальность.

Самый твердый металл в мире изначально стали применять в военной и оборонной сфере. Сегодня основным потребителем титановых изделий является авиастроение.

Титан – универсальный конструкционный материал. Долгие годы он применялся для создания турбин самолетов. В авиационных двигателях из титана делают элементы вентилятора, компрессоры, диски.

Конструкция современного летательного аппарата может содержать до 20 тонн титанового сплава.

Основные сферы применения титана в авиастроении:

  • продукция пространственной формы (окантовка дверей, люков, обшивка, настил пола);
  • агрегаты и узлы, которые подвержены сильным нагрузкам (кронштейны крыльев, стойки шасси, гидроцилиндры);
  • части двигателя (корпус, лопатки для компрессоров).

Благодаря титану человек смог пройти сквозь звуковой барьер, и ворваться в Космос. Его использовали для создания пилотируемых ракетных комплексов. Титан может выдержать космическую радиацию, перепады температур, скорость движения.

Этот металл имеет небольшую плотность, что важно в судостроительной сфере. Изделия из титана легкие, а значит, снижается вес , увеличивается его маневренность, скорость, дальность хода. Если корпус корабля обшить титаном, его не нужно будет красить много лет – титан не ржавеет в морской воде (коррозийная стойкость).

Чаще всего этот металл в судостроении используют для изготовления турбинных двигателей, паровых котлов, конденсаторных труб.


Нефтедобывающая отрасль и титан

Перспективной сферой использования сплавов из титана считается сверхглубокое бурение. Для изучения и добычи подземных богатств есть необходимость проникнуть глубоко под землю – свыше 15 тысяч метров. Буровые трубы из алюминия, например, разорвутся из-за собственной тяжести, и только сплавы из титана могут достигнуть действительно большой глубины.

Не так давно титан стал активно использоваться для создания скважин на морских шельфах. Специалисты применяют титановые сплавы в качестве оборудования:

  • нефтедобывающие установки;
  • сосуды высокого давления;
  • глубоководные насосы, трубопроводы.

Титан в спорте, медицине

Титан крайне популярен в спортивной сфере из-за своей прочности и легкости. Несколько десятилетий назад из титановых сплавов сделали велосипед, первый спортивный инвентарь из самого твердого материала в мире. Современный велосипед состоит из титанового корпуса, такого же тормоза и пружин сидений.

В Японии создали титановые клюшки для игры в гольф. Эти приспособления легкие и долговечные, но крайне дорогие по цене.

Из титана делают большинство предметов, которые лежат в рюкзаке альпинистов и путешественников – столовая посуда, наборы для приготовления еды, стойки для укрепления палаток. Титановые ледорубы – очень востребованный спортивный инвентарь.

Этот металл очень востребован в медицинской отрасли. Из титана делают большинство хирургических инструментов – легких и удобных.

Еще одна сфера применения металла будущего – создание протезов. Титан превосходно «сочетается» с организмом человека. Медики назвали этот процесс «настоящее родство». Конструкции из титана безопасны для мышц и костей, редко вызывают аллергическую реакцию, не разрушаются под воздействием жидкости в организме. Протезы из титана стойкие, выдерживают огромные физические нагрузки.

Титан – удивительный металл. Он помогает человеку достичь невиданных высот в различных сферах жизни. Его любят и почитают за прочность, легкость и долгие годы службы.



Одним из самых твердых металлов является и хром

Интересные факты о хроме

1. Название металла происходит от греческого слова «chroma», что в переводе означает краска.
2. В естественной среде хром в чистом виде не встречается, а только в виде хромистого железняка, двойного оксида.
3. Самые большие месторождения металла расположены в ЮАР, России, Казахстане и Зимбабве.
4. Плотность металла – 7200кг/м3.
5. Хром плавится при температуре 1907 градусов.
6. Закипает при температуре 2671 градусов.
7. Совершенно чистый без примесей хром характеризуется тягучестью и вязкостью. В сочетании с кислородом, азотом или водородом металл становится ломким и очень твердым.
8. Этот металл серебристо-белого цвета открыл француз Луи Никола Воклен в конце XVIII века.


Свойства металла хрома

У хрома очень высокая твердость, им можно разрезать стекло. Он не окисляется воздухом, влагой. Если металл нагреть, окисление произойдет только на поверхности.

В год потребляют более 15 000 тон чистого хрома. Лидером по производству чистейшего хрома считается английская компания «Bell Metals».

Больше всего хрома потребляют в США, западных странах Европы и Японии. Рынок хрома нестабилен, и цены охватывают широкий диапазон.


Сферы использования хрома

Чаще всего применяется для создания сплавов и гальванических покрытий (хромирование на транспорт).

Хром добавляют в сталь, что улучшает физические свойства металла. Эти сплавы – наиболее востребованы в черной металлургии.

Сталь самой популярной марки состоит из хрома (18%) и никеля (8%). Такие сплавы отлично противостоят окислению, коррозии, прочны даже при высоких температурах.

Из стали, которая содержит треть хрома, изготавливают нагревательные печи.

Что еще делают из хрома?

1. Стволы огнестрельного оружия.
2. Корпус подводных лодок.
3. Кирпичи, которые используют в металлургии.


Еще одним чрезвычайно твердым металлом является вольфрам

Интересные факты о вольфраме

1. Название металла в переводе с немецкого («Wolf Rahm») означает «пена волка».
2. Это наиболее тугоплавкий металл в мире.
3. Вольфрам имеет светло-серый оттенок.
4. Металл был открыт в конце XVIII века (1781г) шведом Карлом Шееле.
5. Вольфрам плавится при температуре 3422 градусов, кипит – при 5900.
6. Металл имеет плотность 19.3 г/см³.
7. Атомная масса – 183.85, элемент VI группы в периодической системе Менделеева (порядковый номер – 74).


Процесс добычи вольфрама

Вольфрам относится к большой группе редких металлов. В нее входит также рубидий, молибден. Для этой группы характерна небольшая распространенность металлов в природе и малые масштабы потребления.

Получение вольфрама состоит из 3 этапов:

  • отделение металла от руды, скапливание его в растворе;
  • выделение соединения, его очистка;
  • выделение чистого металла из готового химического соединения.
  • Исходный материал для получения вольфрама – шеелит и вольфрамит.


Сферы применения вольфрама

Вольфрам является основой большинства прочных сплавов. Из него делают авиационные двигатели, детали электровакуумных приборов, нити накаливания.
Высокая плотность металла позволяет использовать вольфрам для создания баллистических ракет, пуль, противовесы, артиллерийские снаряды.

Соединения на основе вольфрама применяют для обработки других металлов, в горнодобывающей промышленности (бурение скважин), лакокрасочной, текстильной сфере (как катализатор органического синтеза).

Из сложных вольфрамовых соединений делают:

  • проволоки – используются в нагревательных печах;
  • ленты, фольгу, пластины, листы – для прокатки и плоской ковки.


Титан, хром и вольфрам возглавляют список «Самые твердые металлы в мире». Их используют во многих сферах деятельности человека – авиа и ракетостроении, военной области, строительстве, и при этом, это далеко не полный спектр применения металлов.

ОПРЕДЕЛЕНИЕ

Титан - двадцать второй элемент Периодической таблицы. Обозначение - Ti от латинского «titanium». Расположен в четвертом периоде, IVB группе. Относится к металлам. Заряд ядра равен 22.

Титан очень распространен в природе; содержание титана в земной коре составляет 0,6% (масс.), т.е. выше, чем содержание таких широко используемых в технике металлов, как медь, свинец и цинк.

В виде простого вещества титан представляет собой серебристо-белый металл (рис. 1). Относится к легким металлам. Тугоплавок. Плотность - 4,50 г/см 3 . Температуры плавления и кипения равны 1668 o С и 3330 o С, соответственно. Коррозионно-устойчив при на воздухе при обычной температуре, что объясняется наличием на его поверхности защитной пленки состава TiO 2 .

Рис. 1. Титан. Внешний вид.

Атомная и молекулярная масса титана

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии титан существует в виде одноатомных молекул Ti, значения его атомной и молекулярной масс совпадают. Они равны 47,867.

Изотопы титана

Известно, что в природе титан может находиться в виде пяти стабильных изотопов 46 Ti, 47 Ti, 48 Ti, 49 Ti и 50 Ti. Их массовые числа равны 46, 47, 48, 49 и 50 соответственно. Ядро атома изотопа титана 46 Ti содержит двадцать два протона и двадцать четыре нейтрона, а остальные изотопы отличаются от него только числом нейтронов.

Существуют искусственные изотопы титана с массовыми числами от 38-ми до 64-х, среди которых наиболее стабильным является 44 Ti с периодом полураспада равным 60 лет, а также два ядерных изотопа.

Ионы титана

На внешнем энергетическом уровне атома титана имеется четыре электрона, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 2 4s 2 .

В результате химического взаимодействия титан отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Ti 0 -2e → Ti 2+ ;

Ti 0 -3e → Ti 3+ ;

Ti 0 -4e → Ti 4+ .

Молекула и атом титана

В свободном состоянии титан существует в виде одноатомных молекул Ti. Приведем некоторые свойства, характеризующие атом и молекулу титана:

Сплавы титана

Главное свойство титана, способствующее его широкому применению в современной технике - высокая жаростойкость как самого титана, так и его сплавов с алюминием и другими металлами. Кроме того, эти сплавы жаропрочностью - стойкостью сохранять высокие механические свойства при повышенных температурах. Все это делает сплавы титана весьма ценными материалами для самолето- и ракетостроения.

При высоких температурах титан соединяется с галогенами, кислородом, серой, азотом и другими элементами. На этом основано применение сплавов титана с железом (ферротиттана) в качестве добавки к стали.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Вычислите количество теплоты, выделяющейся при восстановлении хлорида титана (IV) массой 47,5 г магнием. Термохимическое уравнение реакции имеет следующий вид:
Решение Запишем еще раз термохимическое уравнение реакции:

TiCl 4 + 2Mg = Ti + 2MgCl 2 =477 кДж.

Согласно уравнению реакции, в неё вступили 1 моль хлорида титана (IV) и 2 моль магния. Рассчитаем массу хлорида титана (IV) по уравнению, т.е. теоретическую массу (молярная масса - 190 г/моль):

m theor (TiCl 4) = n (TiCl 4) × M (TiCl 4);

m theor (TiCl 4) = 1 × 190 = 190 г.

Составим пропорцию:

m prac (TiCl 4)/ m theor (TiCl 4) = Q prac /Q theor .

Тогда, количество теплоты, выделяющейся при восстановлении хлорида титана (IV) магнием равно:

Q prac = Q theor × m prac (TiCl 4)/ m theor ;

Q prac = 477 × 47,5/ 190 = 119,25 кДж.

Ответ Количество теплоты равно 119,25 кДж.

Титан занимает 4-е место по распространению в производстве, но эффективная технология его извлечения была разработана только в 40-х гг прошлого века. Это металл серебристого цвета, характеризующийся небольшой удельной массой и уникальными характеристиками. Для анализа степени распространения в промышленности и других сферах необходимо озвучить свойства титана и области применения его сплавов.

Основные характеристики

Металл обладает малой удельной массой – всего 4.5 г/см³. Антикоррозийные качества обусловлены устойчивой оксидной пленкой, образующейся на поверхности. Благодаря этому качеству титан не изменяет своих свойств при длительном нахождении в воде, соляной кислоте. Не возникают поврежденные участки из-за воздействия напряжения, что является основной проблемой стали.

В чистом виде титан обладает следующими качествами и характеристиками:

  • номинальная температура плавления — 1 660°С;
  • при термическом воздействии +3 227°С закипает;
  • предел прочности при растяжении – до 450 МПа;
  • характеризуется небольшим показателем упругости – до 110,25 ГПа;
  • по шкале НВ твердость составляет 103;
  • предел текучести один из самых оптимальных среди металлов – до 380 Мпа;
  • теплопроводность чистого титана без добавок – 16,791 Вт/м*С;
  • минимальный коэффициент термического расширения;
  • этот элемент является парамагнитом.

Для сравнения, прочность этого материала в 2 раза больше, чем у чистого железа и в 4 раза такого же показателя алюминия. Также титан имеет две полиморфные фазы – низкотемпературную и высокотемпературную.

Для производственных нужд чистый титан не применяется из-за его дороговизны и требуемых эксплуатационных качеств. Для повышения жесткости в состав добавляют оксиды, гибриды и нитриды. Реже изменяют характеристики материала для улучшения стойкости к коррозии. Основные виды добавок для получения сплавов: сталь, никель, алюминий. В некоторых случаях он выполняет функции дополнительного компонента.

Области применения

Благодаря небольшой удельной массе и прочностным параметрам титан широко используется в авиационной и космической промышленности. Его применяют в качестве основного конструкционного материала в чистом виде. В особых случаях за счет уменьшения жаропрочности делают более дешевые сплавы. При этом его сопротивление коррозии и механическая прочность остаются неизменными.

Кроме этого, материал с добавками титана нашел применение в следующих областях:

В большинстве случаев материал обрабатывается в заводских условиях. Но есть ряд исключений – зная свойства этого материала, часть работ по изменению внешнего вида изделия и его характеристик можно выполнять в домашней мастерской.

Особенности обработки

Для придания изделию нужной формы необходимо использовать специальное оборудование – токарный и фрезерный станок. Ручное резание или фрезеровка титана невозможна из-за его твердости. Помимо выбора мощности и других характеристик оборудования необходимо правильно подобрать режущие инструменты: фрезы, резцы, развертки, сверла и т.д.

При этом учитываются такие нюансы:

  • Титановая стружка легко воспламеняется. Необходимо принудительное охлаждение поверхности детали и работа на минимальных скоростях.
  • Гибка изделия выполняется только после предварительного разогрева поверхности. В противном случае велика вероятность появления трещин.
  • Сварка. Обязательно соблюдение особых условий.

Титан – уникальный материал с хорошими эксплуатационными и техническими качествами. Но для его обработки следует знать специфику технологии, а главное – технику безопасности.

НАПИШИТЕ НАМ СЕЙЧАС!

ЖМИТЕ НА КНОПКУ В ПРАВОМ НИЖНЕМ УГЛУ ЭКРАНА, ПИШИТЕ И ПОЛУЧИТЕ ЕЩЕ ЛУЧШУЮ ЦЕНУ!

Компания «ПерфектМеталл» закупает, наряду с другими металлами, лом титана. Любые пункты приема металлолома компании примут у вас титан, изделия из сплавов титана, титановую стружку и т.п. Откуда титан попадает в пункты сдачи металлолома? Все очень просто, этот металл нашел очень широкое применение как в промышленных целях, так и в быту человека. Сегодня этот металл используется при строительстве космических и военных ракет, много его используется и в самолетостроении. Из титана строят прочные и легкие морские суда. Химическая промышленность, ювелирное дело, не говоря уже об очень широком применении титана в медицинской промышленности. И все это из за того, что титан и его сплавы обладают рядом уникальных свойств.

Титан – описание и свойства

Земная кора, как известно, насыщенна многочисленным рядом химических элементов. Среди часто встречающихся среди них — титан. Можно сказать, что он находится на 10-м месте ТОПа самых распространенных хим элементов Земли. Титан - металл серебристо-белого цвета, стоек ко многим агрессивным средам, не подвержен окислению в ряде мощнейших кислот, исключениями являются лишь плавиковая, ортофосфорная серная кислота в высокой концентрации. Титан в чистом виде относительно молод, его получили лишь в 1925 году.

Пленка оксида, которая покрывает титан в чистом виде, служит весьма надежной защитой этого металла от коррозии. Ценится титан и за его низкую теплопроводность, для сравнения — титан в 13 раз хуже проводит тепло чем алюминий, а вот с проводимостью электричества обратная картина — титан обладает гораздо большим сопротивлением. Все же самой главная отличительная черта титана — его колоссальная прочность. Опять же если сравнить ее теперь с чистым железом, то титан в два раза превышает его прочность!

Сплавы титана

Сплавы из титана обладают так же выдающимися свойствами, среди которых на первом месте, как вы уже могли догадаться — прочность. Как конструкционный материал, титан уступает в прочности лишь бериллиевым сплавам. Однако неоспоримым преимуществом сплавов титана является их высокая стойкость к истиранию, износу и в то же время достаточная пластичность.

Титановые сплавы устойчивы к воздействию целого ряда активных кислот, солей, гидроксидов. Эти сплавы не боятся и высокотемпературных воздействий, именно поэтому из титана и его сплавов изготавливают турбины реактивных двигателей, да и вообще широко используются в ракетостроении и авиационной промышленности.

Где используется титан

Титан используется там, где необходим очень прочный материал, обладающий максимальной стойкостью к различным видам негативного воздействия. Например, в химической промышленности титановые сплавы применяются для производства насосов, емкостей и трубопроводов для транспортировки агрессивных жидкостей. В медицине титан служит для протезирования и обладает отличной биологической совместимостью с организмом человека. Кроме того, сплав титана и никеля – нитинол – обладает “памятью”, что позволяет использовать его в ортопедической хирургии. В металлургии титан служит легирующим элементом, который вводят в состав некоторых видов стали.

Благодаря сохранению пластичности и прочности под воздействием низких температур, металл используют в криогенной технике. В авиа- и ракетостроении титан ценится за свою жаропрочность, а наиболее широкое распространение здесь получил его сплав с алюминием и ванадием: именно из него изготавливают детали для корпусов летательных аппаратов и реактивных двигателей.

В свою очередь, в судостроении титановые сплавы применяют для изготовления металлических изделий с повышенной коррозийной устойчивостью. Но, помимо промышленного использования, титан служит сырьем для создания украшений и аксессуаров, так как он хорошо поддается таким методам обработки, как полировка или анодирование. В частности, из него отливают корпуса наручных часов и ювелирные украшения.

Титан получил широкое применение в составе различных соединений. Например, диоксид титана входит в состав красок, используется в процессе производства бумаги и пластика, а нитрид титана выступает в роли защитного покрытия инструментов. Несмотря на то, что титан называют металлом будущего, на данном этапе сфера его применения серьезно ограничена высокой стоимостью получения.

Таблица 1

Химический состав промышленных титановых сплавов.
Тип сплава Марка сплава Химический состав, % (остальное Ti)
Аl V Mo Mn Cr Si Другие элементы
a ВТ5
ВТ5-1
4,3-6,2
4,5-6,0






2-3Sn
Псевдо-a ОТ4-0
ОТ4-1
ОТ4
ВТ20
ВТ18
0,2-1,4
1,0-2,5
3,5-5,0
6,0-7,5
7,2-8,2



0,8-1,8



0,5-2,0
0,2-1,0
0,2-1,3
0,7-2,0
0,8-2,0









0,18-0,5



1,5-2,5Zr
0,5-1,5Nb
10-12Zr
a + b ВТ6С
ВТ6
ВТ8
ВТ9
ВТ3-1
ВТ14
ВТ16
ВТ22
5,0-6,5
5,5-7,0
6,0-7,3
5,8-7,0
5,5-7,0
4,5-6,3
1,6-3,0
4,0-5,7
3,5-4,5
4,2-6,0



0,9-1,9
4,0-5,0
4,0-5,5


2,8-3,8
2,8-3,8
2,0-3,0
2,5-3,8
4,5-5,5
4,5-5,0











1,0-2,5


0,5-2,0


0,20-0,40
0,20-0,36
0,15-0,40





0,8-2,5Zr
0,2-0,7Fe


0,5-1,5Fe
b ВТ15 2,3-3,6 6,8-8,0 9,5-11,0 1,0Zr

Титан


Большой интерес, проявляемый к титану и титановым сплавам, основан на его ценных свойствах - малом удельном весе, высокой удельной прочности и хорошей сопротивляемости коррозии.
В последние годы в связи с разработкой более совершенных методов получения ковкого и деформируемого титана применение его в различных отраслях промышленности расширилось.
Титан существует в двух полиморфных модификациях; α-Ti, имеющий гексагональную плотноупакованную решетку и существующую при температурах ниже 885°, и β-Ti с кубической объемноцентрированной решеткой - при более высоких температурах. При α→β-превращении изменения объема составляют 5,5%.
Титан слабо реагирует с азотной и разбавленной соляной кислотой. но растворяется в концентрированных соляной и серной кислотах и в аарской водке. В щелочах, во многих солях даже при кипячении и в органических кислотах титан весьма устойчив. Энергично реагирует титан с кислородом, азотом, водородом, углеродом и со многими окислами металлов, что чрезвычайно затрудняет получение чистого титана и вызывает большие трудности при производстве из него полуфабрикатов.
Кислород в большинстве случаев отрицательно влияет на физико-химические и технологические свойства титана. Растворимость кислорода в титане составляет около 30% (атомн.), что отвечает составу ТiO0,42. При нагреве до 600° кислород практически еще не взаимодействует с титаном. При температурах выше 650° кислород воздуха начинает энергично диффундировать в титан, в результате чего образуется весьма твердый поверхностный слой. Скорость окисления титана при температурах от 650 до 800° показана на рис. 7.


Диаграмма состояния системы титан - кислород при содержании кислорода до 30% приведена на рис. 8. По характеру эта диаграмма перитектической системы. В твердом состоянии кислород образует ограниченные области растворов α и β.
В приведенном участке системы имеются две перитектики.
Максимальная растворимость кислорода в β-титане равна 1,8% при 1740°, в α-титане - 14,5% в интервале температур 800-1700°.

Наивысшей температурой плавления 1900° обладает сплав типа твердого раствора а, содержащий 10% кислорода.
Кислород, проникший в кристаллическую решетку титана, сильно искажает ее, поэтому значительно изменяются физические свойства и механическая прочность титана.
Влияние кислорода в пределах 0-1% (атомн.) на предел прочности, удлинение, твердость и удельное электрическое сопротивление йодидного титана приведено на рис. 9.
Титан при содержании 0,25% (атомн.) кислорода может быть прокатан на холоду без появления трещин до 95% обжатия. При большем содержании кислорода трещины появляются уже при 60-70% обжатия.
При ковке и волочении титана необходимо избегать образования трещин, так как они очень трудно затягиваются вследствие быстрого окисления поверхности.

Сплавы, содержащие 0,5-2,0% (атомн.) кислорода, сравнительно легко обрабатываются три сверлении и нарезке, а содержащие 2,5-3,0% (атомн.) кислорода удовлетворительно обрабатываются резанием, но тверды для сверления.
Сплавы с содержанием 3,5-5,0% (атомн.) кислорода чрезвычайно трудно поддаются обработке.
Азот сильно влияет на свойства титана уже при содержании сотых долей процента. Система титан - азот (рис. 10) характеризуется наличием двух перитектических реакций.

Азот значительно увеличивает твердость и прочность титана и резко снижает его пластичность. Сплавы азота с титаном очень трудно обрабатывать в холодном состоянии: при содержании азота свыше 0,5% (вес.) сплав становится хрупким и не поддается обработке.
Уже в небольших количествах азот приводит к образованию игольчатой структуры. Влияние азота на механические свойства и электрическое сопротивление титана приведено на рис. 11.
Изменение физических и прочностных свойств титана от примесей азота связано, по-видимому, с тем, что азот оказывает значительное влияние на параметры кристаллической решетки, главным образом на параметр с, что хорошо видно на рис. 12.
Азот, как и кислород, значительно повышает температуру начала и конца β⇔α-превращепия титана.

Водород в отличие от кислорода, азота и углерода оказывает незначительное влияние на механические свойства титана, но все же является весьма вредной примесью, так как под его влиянием разрушаются изделия из титана и его сплавав при прокатке, ковке или нагреве.
Из диаграммы состояния титан - водород (рис. 13) следует, что по мере увеличения содержания водорода температура фазового превращения снижается, а температурная область существования двухфазной структуры α+β расширяется.
Водород весьма энергично диффундирует в титан и образует растворы внедрения, подобно кислороду, азоту и углероду. При растворении водорода в титане выделяется тепло, при нагреве из сплавов выделяется водород.
При 20° α-титан, содержащий несколько десятитысячных долей процента избыточного водорода, будет иметь в структуре свободные гидриды, которые под микроскопом видны в виде тонких пластинок. Повышение хрупкости сплавов является следствием появления в их структуре увеличивающегося количества гидридов.
Водород в пределах 0,3-0,5% (атомн.), обычно содержащийся в техническом титане, существенно понижает поглощение энергии при ударе без изменения предела прочности на растяжение. На рис. 14 приведены кривые, иллюстрирующие влияние водорода на предел прочности при растяжении, удлинение, твердость и электрическое сопротивление титана.
Углерод сильно влияет на свойства титана. Система титан - углерод (рис. 15) по своему характеру относится к перитектическим системам с химическими соединениями. В этой системе наблюдается перитектический распад β-фазы при ограниченной растворимости углерода в β- и α-титане.

Углерод является α-стабилизатором, он повышает температуру аллотропического превращения титана с 882 до 920°.
При 0,48% углерода и 920° происходит перитектоидное превращение

При высоких температурах углерод энергично соединяется с титаном я образует тугоплавкий карбид титана TiC, который обладает высокой твердостью и высокой температурой плавления (свыше 3000°).
Карбид титана нашел широкое применение для многих целей: для изготовления жаростойких и жаропрочных материалов, как компонент твердых сплавов и как абразивный материал.
Расстворимость углерода в титане значительно уменьшается с понижением температуры. В результате незначительной растворимости углерода в α- и β-титане уже десятые доли процента углерода в сплавах титана с углеродом вызывают хрупкость, так как выделяется карбид титана.
Влияние углерода на механические свойства титана представлено на рис. 16. Как видно, прочность сплавов увеличивается линейно до 0,25% углерода, пластичность сплавов изменяется в обратном направлении.
Основными легирующими добавками в титановых сплавах в настоящее время служат марганец, хром, железо, ванадий, молибден, алюминий, олово. С большинством этих добавок титан образует эвтектоид.
Увеличение прочности титана в зависимости от легирующих добавок характеризуется кривыми, приведенными на рис. 17.

Сплавы титана могут состоять либо из α-фазы, либо из β-фазы или α+β-фазы. Однако широко применяются в промышленности только α+β-сплавы, α-сплавы имеют ограниченное применение, а β-сплавы вовсе не применяются.
Алюминий расширяет область α-фазы и вводится в жаропрочные сплавы. Ванадий не образует эвтектоида с титаном и незначительно повышает прочность сплавов титана. По некоторым данным сплавы титан-ванадий склонны к водородной хрупкости. Марганец сильно замедляет эвтектоидный распад, упрочняет β-фазу и способствует термообработке. Двойные сплавы типа Tl+8% Mn склонны к водородной хрупкости.
Молибден повышает твердость титановых сплавов, а вместе с алюминием придает сплавам жаропрочность. Олово также расширяет область α-фазы и хотя придает титану несколько меньшую жаропрочность, чем алюминий, но в меньшей мере снижает пластичность.
Хром в большинстве случаев вводится в титан в виде феррохрома. Хром замедляет эвтектоидный распад. Детали из сплавов титана с хромом мало пригодны для работы под напряжением и при повышенных температурах. Действие железа подобно хрому. Титан с железом дает сплавы, в которых эвтектоидный распад протекает относительно медленно; железо способствует повышению твердости и снижает прочность при высоких температурах.
Для упрочнения α-титана используются также цирконий и кремний, для упрочнения β-титана - ниобий и вольфрам.
По последним данным, медь, никель и кремний дают с титаном сплавы, в которых эвтектоидный распад протекает очень быстро. Этим сплавам можно придавать желаемые свойства, охлаждая их с различной скоростью.
Одновременная присадка в титан марганца, алюминия или кремния, бериллия и бора, дающих химические соединения, позволяет упрочнять сплавы термической обработкой.
Механические свойства титана в значительной степени зависят от чистоты его и способа получения.
В табл. 21 приведены механические свойства титана, полученного различными методами.

При нагревании прочность титана падает, но даже при 500° предел прочности еще остается около 28 кг/мм2 (рис. 18).
В России, согласно временным техническим условиям, выпускается губчатый титан пяти марок, химический состав и механические свойства которого приведены в табл. 22.

Титановые сплавы


Применяемые в промышленности стандартные титановые сплавы еще недостаточно разработаны, что следует объяснить сравнительной новизной технологии производства самого титана. Однако в настоящее время уже имеется довольно много сплавов на титановой основе с различными физико-механическими свойствами.

В табл. 23 приведены химический состав и механические свойства некоторых титановых сплавов.
Имя:*
E-Mail:
Комментарий:

Добавить

27.03.2019

В-первую очередь надо определиться сколько вы готовы потратить на покупку. Специалисты рекомендуют начинающим инвесторам сумму от 30 тысяч рублей до 100. Стоит...

27.03.2019

Металлопрокат в наше время активно используется в самых разных ситуациях. Действительно, на многих производствах просто не обойтись без него, так как металлопрокат...

27.03.2019

Стальные прокладки овального сечения предназначены для герметизации фланцевых соединений арматуры и трубопроводов, которые транспортируют агрессивные среды....

26.03.2019

Многие из нас слышали о такой должности как системный администратор, но далеко не каждый представляет себе, что конкретно имеется в виду под этой фразой....

26.03.2019

Каждый человек, который делает ремонт в своем помещении, должен задумываться о том, какие конструкции необходимо установить в межкомнатное пространство. На рынке...

26.03.2019

26.03.2019

На сегодняшний день газоанализаторы активно применяют в нефтяной и в газовой отраслях, в коммунальной сфере, в ходе осуществления анализов в лабораторных комплексах, для...