Общие сведения и методы получения

Ниобий (Nb) - металл серо-стального цвета.

Открыт в 1801 г английским химиком Хатчетом в минерале, най­денном в Колумбии, и получил вследствие этого название «Колумбии».

В 1844 г. немецкий химик Розе «открыл» этот элемент вторичной, полагая, что он еще неизвестен, назвал «ниобием» в честь Ниобеи (до­чери Тантала)-мифологической богини слез. Позднее было установ­лено, что ниобий н Колумбии - один и тот же элемент.

Считают, что металлический ииобнй впервые был получен в 1866 г. шведским ученым Бломстрадом путем восстановления хлорида ниобия водородом. Компактный пластичный ниобий получил (1907 г.) немец­кий химик Болтон. В промышленных масштабах ниобий начали вы­пускать в конце тридцатых годов XX в.

Он входит в состав около 100 минералов, большей частью представляющих собой сложные комплексные соли ииобиевой и танталовой кислот. В минера­лах в различных количествах содержатся железо, марганец, щелочные и щелочноземельные металлы, а также редкоземельные элементы, ти­тан, цирконий, торий, уран, олово, сурьма, висмут, вольфрам и др.

Наиболее важные минералы ниобия подразделяются на две группы:

1. Танталониобаты - соли ниобиевой и танталовой кислот. Основ­ными минералами в этой группе являются танталит и колумбит; в тан­талите преобладает тантал, в колумбите - ниобий. Общее содержание ниобия и тантала в этих минералах, выраженное в виде суммы двух оксидов (Nb 2 0 5 + Ta 2 0 5), составляет 82-86 %.

2. Титано (тантало) ниобаты - сложные соли титановой, ниобиевой (танталовой) кислот. Почти все минералы этой группы содержат ред­коземельные элементы. Соотношение между ниобием и танталом изме­няется в широких пределах, но большей частью преобладает ниобий. Наиболее важные минералы этой группы - пирохлор, лопарит, коппит, бетафит.

Наиболее важные промышленные источники ниобия - колумбит (50-76 % Nb 2 0 5) и пирохлор (40-70 % Nb 2 0 5). Меньшее значение имеют фаргусонит (38-58 % Nb^Os), эвксенит (21-34% Nb 2 0 5) и ло­парит (7-20 % Nb 2 0 5).

Основным способом обогащения руд, содержащих колумбит и тан­талит, является гравитационное обогащение. В результате получают коллективный концентрат, содержащий, помимо колумбита и танталита, также касситерит, вольфрамит и некоторые другие минералы. Дальней­шее обогащение ведут, применил флотацию и электромагнитные методы.

Пирохлоровые и лопаритовые руды обогащают в основном также гравитацией с последующим доведением до требуемых кондиций фло­тацией, электромагнитным и электростатическим методами.

Согласно техническим условиям, принятым в нашей стране, колум-битовые концентраты I сорта должны содержать не менее 60 % Nb 2 Os, II сорта - не менее 50 % Nb 2 0 5 .

В пирохлоровых концентратах, предназначенных главным образом для выплавки феррониобия, должно содержаться не менее 37 % (Nb, Та) 2 0 5 , а в лопаритовом концентрате - не менее 8% (Nb, Та)Об.

Кроме рудных концентратов, существенным источником ниобия яв­ляются шлаки оловянных заводов, в которых при выплавке олова Из касситерита концентрируются оксиды ниобия. Шлаки содержат от 3 до 15 % (Nb, Та) 2 0 5 .

Металлический ниобий получают из рудных концентратов в три ста­дии: 1) вскрытие концентрата; 2) разделение ниобия и тантала и полу­чение их чистых химических соединений; 3) восстановление и рафини­рование металлического ниобия.

Для вскрытия концентратов танталита - колумбита применяют сплав­ление с щелочами (NaOH, КОН) или разложение плавиковой кислотой. Для вскрытия лопаритовых концентратов используют способ хлориро­вания и сернокислый способ.

Разделение тантала и ниобия и очистку их соединений от примесей осуществляют дробной кристаллизацией комплексных фтористых солей, экстракцией органическими растворителями, разделением с помощью ионообменных смол, ректификацией хлоридов, избирательным восста­новлением пятихлористого ниобия.

Основные промышленные методы получения металлического нио­бия- алюминотермический, натриетермический, карботермический.

При использовании всех методов, кроме алюминотермического, нио­бий получают в виде порошка; при алюмотермическом методе получа­ют сплав ниобия с алюминием, который удаляют при вакуумной перс-плавке.

Компактный металл производят либо методами порошковой метал­лургии, спекая спрессованные из порошков ниобия штабики в вакууме при 2573 К, либо электронно-лучевой и вакуумно-дуговой плавками. Вакуумным спеканием получают ниобий чистотой более 99,6 % Nb, дуговой плавкой - чистотой 99,7-99,8 % Nb, электронно-лучевой плав­кой-чистотой 99,88-99,9 % Nb.

Монокристаллы ниобия высокой чистоты получают бестигельной электронно-лучевой зонной плавкой.

Физические свойства

Атомные характеристики. Атомный номер 41, атомная масса 92,906 а. е м, атомный объем 10,83*10 -6 м 3 /моль, атомный радиус 0,147 нм, ионный раднус Nb 5 + 0,069 нм, Nb 4+ 0,077 нм. Конфигурация внешних электронных оболочек 4d 4 5s".

Химические свойства

Нормальный электродный потенциал реакции Nb - 3e =i =*Nb 3+ <р 0 = -1,1 В. В соединениях проявляет степень окисления +1, +2, +3, +4, +5. Элек­трохимический эквивалент 0,19256 мг/Кл.

При нормальной температуре компактный ниобий на воздухе устой­чив. Окисление компактного металла начинается при 200-300 0 О, по­рошкообразного при 150 °С; выше 500 °С происходит быстрое окисление с образованием оксида Nb 2 6 6 .

Ниобий устойчив против действия соляной, серной, азотной, фосфор­ной и органических кислот любой концентрации на холоду и при 100- 150 °С. По стойкости в горячих соляной и серной кислотах он уступает танталу. Ниобий растворяется в плавиковой кислоте и особенно интен­сивно в смеси плавиковой н азотной кислот. Менее устойчив ниобий в щелочах. Горячие растворы едких щелочей заметно разъедают металл; в расплавленных щелочах и соде ниобий быстро окисляется с образо­ванием натриевой соли ниобиевой кислоты.

Характерным свойством ниобия является способность поглощать га­зы: водород, азот, кислород. Небольшие примеси этих элементов ока­зывают существенное влияние на механические и электрические свойства ниобия.

Кислород образует с ниобием твердый раствор внедрения и ряд ок­сидов: NbO, Nb0 2 , Nb 2 0 5 . Оксиды NbO н Nb0 2 образуются при темпе­ратуре ниже 400"С, a Nb 2 0 5 - при 400°С и выше. Оксид ниобия (И) NbO имеет г. ц. к. решетку с периодом а=0,4203 нм, плотность 7,260 Мг/м 3 , температура плавления 1935 "С. Оксид ниобия (IV) NbOj - полупроводник, структура тетрагональная (а = 0,482 нм, с=0,299 нм), температура плавления 2080 °С. Оксид ниобия (V) Nb 2 O s существует в трех модификациях: L - ниже 900 "С, М - в интервале 900-1100 °С и Я -выше 1100 °С. Низкотемпературная модификация имеет ортором-бическую структуру, плотность 4,950 Мг/м 3 , температура плавления 1510 "С.

Водород - наиболее вредная примесь в ниобии, сильно снижающая его пластичность. Компактный ниобий начинает взаимодействовать с водородом при 250 °С и очень быстро при 360 °С, образуя вначале твер­дый раствор, а затем гидрид (NbH), имеющий две модификации. По­глощение водорода носит обратимый характер: при нагревании в ва-

кууме выше 600 °С газ удаляется и механические свойства металла вос­станавливаются.

Ниобий поглощает азот уже при 600 °С, образуя раствор внедрения, при более высокой температуре образуется нитрид (NbN), температу­ра плавления которого 2300 °С. Азот может быть удален из твердого раствора в ниобии нагреванием выше 1900 °С в вакууме или вакуумной плавкой.

Углерод и углеродсодержащие газы (СО, СН 4) взаимодействуют с ниобием при 1200-1400°С с образованием твердого раствора и туго* плавких карбидов.

Ниобий с бором и кремнием образует тугоплавкие и твердые бориды (NbB, Nb 2 B, NbB, Nb 3 B 4 , NbB 2) и силициды (NbSi 4 , Nb 5 Si 3 , NbSi 2).

Известны два фосфида (NbP и NbP 2) и два сульфида (NbS, NbS 2) ниобия с узкими областями гомогенности.

С галогенами ниобий образует ряд галогенидов, оксигалогенидов и комплексных солей. Фтор действует на ниобий при комнатной темпера­туре, хлор - при температуре выше 200 °С, бром - выше 250 °С. Вые-шие хлориды и фториды ниобия (NbF 5 и NbCI 5) - легкоплавкие, лег­колетучие соединения, весьма гигроскопичны, в воде гидролизуются с образованием оксигалогенидов и гидратированных оксидов.

Ниобий взаимодействует с подавляющей частью элементов Перио­дической системы. По характеру этого взаимодействия все элементы классифицируются на четыре основные группы.

Первую группу составляют элементы, образующие с ниобием не­прерывные твердые растворы: Ti, Zr, Hf, V, Та, Мо и W.

Во вторую группу входят элементы, образующие с ниобием огра-ничейные твердые растворы: Си, Аи, Zn, Cd, Be, Ga, In, TI, B, Se, Y, La, Ac и лантаноиды: N, P, As, Sb, Bi, Cr, Mn, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir и Pt.

Третью группу составляют элементы VI и VII групп подгруппы Б, образующие с ниобием соединения с ионным или ковалентным типом связи: S, Se, Те, Ро, F, С1, В, А1.

Четвертую группу составляют элементы, ие взаимодействующие е ниобием: Li, Na, К, Pb, Cs, Fr, Са, Sr, и инертные газы: Не, Ne, Аг, Кг, Хс.

Ниобий обладает высокой химической стойкостью в различных аг­рессивных средах и, кроме того, отличается высокой стойкостью против воздействия расплавленных металлов, применяемых в качестве тепло­носителей в реакторах.

Технологические свойства

Чистый ниобий легко поддается обработке давлением (ковке, прокатке, волочению) и хорошо деформируется в холодном состоянии, сравни­тельно медленно при этом нагартовываясь. Учитывая, что при нагреве ниобий поглощает водород, азот, кислород, которые оказывают отри­цательное влияние на его пластичность, горячая деформация возможна только при применении специальной защиты (например, деформация в среде инертного газа). После обжатия с высокой степенью (70-95 %) листы (нли другие изделия) перед дальнейшей холодной деформацией подвергают отжигу при 1100-1300 °С в среде инертного газа или в ва­кууме. Отжиг готовых изделий производят в основном для снятия на­пряжений, вызванных обработкой давлением (или резанием), при 900- 1000 °С, в течение 1-5 ч, также в среде инертного газа или в вакууме.

Температура рекристаллизации ниобия повышается с увеличением содержания кислорода и других газов. Температура начала рекристал­лизации чистого ниобия 930-940 °С, полная рекристаллизация проис­ходит при 1200 °С.

Легирование ниобия вольфрамом, танталом, цирконием, молибде­ном повышает температуру рекристаллизации на 220-250 °С.

Ниобий хорошо сваривается с титаном, медью, цирконием и други» ми металлами. Сварку ведут в вакууме или нейтральной среде, приме» няя различные виды дуговой и электронно-лучевой сварки. При пайка на ниобий предварительно наносят электролитическим путем слой меди или никеля.

Обработку ниобия резанием можно производить обычными режущи­ми инструментами, но в связи со склонностью к налипанию требуется применять специальные смазочно-охлаждающие жидкости.

Области применения

Наиболее важные области применения чистого ниобия - производство жаропрочных и других сплавов, атомная энергетика и химическое ап-паратостроение. Металл используется для легирования медных, никеле­вых и других цветных сплавов с целью повышения их прочности и жа­ропрочности. В виде ферросплавов ниобий добавляют в различные стали для придания им необходимых физико-механических свойств. Ма­лые добавки ниобия модифицируют структуру и способствуют повы­шению коррозионной стойкости алюминиевых сплавов. Будучи введен в титановые сплавы, ниобий повышает их прочность и коррозионную стойкость. Небольшие присадки ниобия применяются для создания сплавов с особыми физико-химическими свойствами (с повышенной элек­трической проводимостью и теплопроводностью, коррозионной стойко­стью и др.).

Некоторые соединения ниобия (карбиды, бориды) используются при производстве сверхтвердых металлокерамических сплавов для повыше­ния их стойкости против износа и выкрашивания при механической об­работке сталей.

Благодаря отсутствию значительного взаимодействия с ураном, плу« тонием и жидкометаллическими теплоносителями, а также высокой устойчивости при облучении и сравнительно небольшому захвату теп­ловых нейтронов, ниобий и его сплавы представляют собой ценные кон­струкционные материалы для атомной энергетики и ракетостроения.

В последние годы большое значение в атомной технике приобрели сверхпроводящие ниобиевые сплавы; их используют при создании сверх» мощных магнитов для новых атомных ускорителей, для отражателей горячей плазмы в термоядерных установках, а также при создании кван­товых генераторов.

Ниобиевые жаропрочные сплавы используют в авиационных реак­тивных двигателях для изготовления турбинных дисков н неохлаждае-» мых турбинных лопаток взамен охлаждаемых. Кроме того, ниобий применяют для обшивки кромок крыльев и стабилизаторов в сверхзву­ковых самолетах, а также для изготовления различных деталей и узлов, работающих при высоких температурах.

Ниобий - один из важных конструкционных материалов, применяе­мых в радиотехнической и электротехнической промышленности (элек­тронные лампы радарных установок, катоды косвенного нагрева мощ­ных генераторных ламп и др.).

Антикоррозионные свойства ниобия позволяют применять его в ка­честве химически стойкого материала в теплообменниках и конденса­торах, для облицовки цистерн, для изготовления фильтров, мешалок, трубопроводов и других деталей аппаратов химической промышленно­сти. Соединения ниобия (в частности, Nb 2 0 5) применяют в качестве ка­тализаторов в химической промышленности, в производстве специаль­ных стекол и т. д.

Применение ниобия и его сплавов в аппаратуре химического маши­ностроения позволяет резко увеличить срок его службы и в ряде слу­чаев способствует интенсификации процессов химического производ­ства.

Физические свойства ниобия

Ниобий -- блестящий серебристо-серый металл.

Элементарный ниобий - чрезвычайно тугоплавкий (2468°C) и высококипящий (4927°C) металл, очень стойкий во многих агрессивных средах. Все кислоты, за исключением плавиковой, не действуют на него. Кислоты-окислители «пассивируют» ниобий, покрывая его защитной окисной пленкой (№205). Но при высоких температурах химическая активность ниобия повышается. Если при 150...200°C окисляется лишь небольшой поверхностный слой металла, то при 900...1200°C толщина окисной пленки значительно увеличивается.

Кристаллическая решетка Ниобия объемно центрированная кубическая с параметром а = 3,294A.

Чистый металл пластичен и может быть прокатан в тонкий лист (до толщины 0, 01 мм.) в холодном состоянии без промежуточного отжига.

Можно отметить такие свойства ниобия как высокая температура плавления и кипения, более низкая работа выхода электронов по сравнению с другими тугоплавкими металлами -- вольфрамом и молибденом. Последнее свойство характеризует способность к электронной эмиссии (испусканию электронов), что используется для применения ниобия в электровакуумной технике. Ниобий также имеет высокую температуру перехода в состояние сверхпроводимости.

Плотность 8,57 г/см3 (20 °С); tпл 2500 °С; tкип 4927 °С; давление пара (в мм рт. ст.; 1 мм рт. ст.= 133,3 н/м2) 1·10-5 (2194 °С), 1·10-4 (2355 °С), 6·10-4 (при tпл), 1·10-3 (2539 °С).

При обычной температуре ниобий устойчив на воздухе. Начало окисления (плёнки побежалости) наблюдается при нагревании металла до 200 -- 300°С. Выше 500° происходит быстрое окисление с образованием окисла Nb2O5.

Теплопроводность в вт/(м·К) при 0°С и 600 °С соответственно 51,4 и 56,2, то же в кал/(см·сек·°С) 0,125 и 0,156. Удельное объемное электрическое сопротивление при 0°С 15,22·10-8 ом·м (15,22·10-6 ом·см). Температура перехода в сверхпроводящее состояние 9,25 К. Ниобий парамагнитен. Работа выхода электронов 4,01 эв.

Чистый Ниобий легко обрабатывается давлением на холоду и сохраняет удовлетворительные механические свойства при высоких температурах. Его предел прочности при 20 и 800 °С соответственно равен 342 и 312 Мн/м2, то же в кгс/мм234,2 и 31,2; относительное удлинение при 20 и 800 °С соответственно 19,2 и 20,7%. Твердость чистого Ниобиы по Бринеллю 450, технического 750-1800 Mн/м2. Примеси некоторых элементов, особенно водорода, азота, углерода и кислорода, сильно ухудшают пластичность и повышают твердость Ниобия.

Химические свойства ниобия

Ниобий особенно ценится за его устойчивость к действию неорганических и органических веществ.

Есть разница в химическом поведении порошкообразного и кускового металла. Последний более устойчив. Металлы на него не действуют, даже если нагреть их до высоких температур. Жидкие щелочные металлы и их сплавы, висмут, свинец, ртуть, олово могут находиться в контакте с ниобием долго, не меняя его свойств. С ним ничего не могут поделать даже такие сильные окислители, как хлорная кислота, «царская водка», не говоря уж об азотной, серной, соляной и всех прочих. Растворы щелочей на ниобий тоже не действуют.

Существует, однако, три реагента, которые могут переводить металлический ниобий в химические соединения. Одним из них является расплав гидроксида какого-либо щелочного металла:

4Nb+4NaOH+5О2 = 4NaNbO3+2H2О

Двумя другими являются плавиковая кислота (HF) или ее смесь с азотной (HF+HNO). При этом образуются фторидные комплексы, состав которых в значительной степени зависит от условий проведения реакции. Элемент в любом случае входит в состав аниона типа 2- или 2-.

Если же взять порошкообразный ниобий, то он несколько более активен. Например, в расплавленном нитрате натрия он даже воспламеняется, превращаясь в оксид. Компактный ниобий начинает окисляться при нагревании выше 200°С, а порошок покрывается окисной пленкой уже при 150°С. При этом проявляется одно из чудесных свойств этого металла -- он сохраняет пластичность.

В виде опилок при нагревании выше 900°С он полностью сгорает до Nb2O5. Энергично сгорает в токе хлора:

2Nb + 5Cl2 = 2NbCl5

При нагревании реагирует с серой. С большинством металлов он сплавляется с трудом. Исключение, пожалуй, составляют лишь два: железо, с которым образуются твердые растворы разного отношения, да алюминий, имеющий с ниобием соединение Al2Nb.

Какие же качества ниобия помогают ему сопротивляться действию сильнейших кислот--окислителей? Оказывается, это относится не к свойствам металла, а к особенностям его оксидов. При соприкосновении с окислителями на поверхности металла возникает тончайший (поэтому он и незаметен), но очень плотный слой оксидов. Этот слой встает неодолимой преградой на пути окислителя к чистой металлической поверхности. Проникнуть сквозь него могут только некоторые химические реагенты, в частности анион фтора. Следовательно, по существу металл окисляется, но практически результатов окисления незаметно из-за присутствия тонкой защитной пленки. Пассивность по отношению к разбавленной серной кислоте используют для создания выпрямителя переменного тока. Устроен он просто: платиновая и ниобиевая пластинки погружены в 0,05 м. раствор серной кислоты. Ниобий в пассивированном состоянии может проводить ток, если является отрицательным электродом -- катодом, т. е. электроны могут проходить сквозь слой оксидов только со стороны металла. Из раствора путь электронам закрыт. Поэтому, когда через такой прибор пропускают переменный ток, то проходит только одна фаза, для которой платина -- анод, а ниобий -- катод.

ниобий металл галоген

Химический элемент, названный в честь античной Ниобы - женщины, осмелившейся смеяться над богами и поплатившейся за это смертью своих детей. Ниобий олицетворяет переход человечества от промышленного производства к цифровому; от паровых локомотивов к ракетным носителям; от угольных теплостанций к ядерной энергетике. В мире цена ниобия за грамм достаточно высока, также как и спрос на него. Большинство последних достижений науки тесно связаны с использованием этого металла.

Цена на ниобий за грамм

Так как основные способы использования ниобия связаны с ядерной и космической программами, его относят к группе стратегических материалов. Переработка намного выгоднее в финансовом плане, чем освоение и добыча новых руд, что делает ниобий востребованным на рынке вторичного металла.

Значение цены на него определяется несколькими факторами:

  • Чистота металла. Чем больше посторонних примесей, тем ниже цена.
  • Форма поставки.
  • Объем поставки. Прямо пропорционален ценам на металл.
  • Местонахождение пункта приема лома. Каждый регион имеет различную потребность в ниобии и, соответственно, цена на него.
  • Наличие в составе редких металлов. Сплавы, содержащие такие элементы как тантал, вольфрам, молибден, выше в цене.
  • Значение котировок на мировых биржах. Именно эти значения являются базовыми при установке цены.

Ориентировочный обзор по ценам в Москве:

  • Ниобий НБ-2. Цена варьируется в пределах 420-450 руб. за кг.
  • Ниобиевая стружка. 500-510 руб. за кг.
  • Штабик ниобия НБШ00. Отличается повышенными ценами по причине ничтожного содержания примесей. 490-500 руб. за кг.
  • Ниобиевый штабик НБШ-0. 450-460 руб. за кг.
  • Ниобий НБ-1 в виде прутка. Цена составляет 450-480 руб. за кг.

Несмотря на высокую стоимость спрос на ниобий в мире продолжает расти. Происходит это из-за огромных возможностей его в применении и дефицита металла. На 10 тонн земли приходится всего 18 граммов ниобия.

Научное сообщество продолжает работу по поиску и разработке заменителя столь дорогого материала. Но до сих пор конкретного результата в этом не получила. А это значит, что ближайшее время падение ниобия в цене не предвидится.

Для регулирования цены и увеличения скорости товарооборота предусмотрены следующие категории на изделия из ниобия:

  • Ниобиевые слитки. Их размер и вес нормируется ГОСТом 16099-70. В зависимости от чистоты металла подразделяются на 3 марки: ниобий НБ-1, ниобий НБ-2 и, соответственно, ниобий НБ-3.
  • Ниобиевый штабик. Отличается более высоким процентом содержания посторонних примесей.
  • Ниобиевая фольга. Изготавливается толщиной до 0,01 мм.
  • Ниобиевый пруток. Согласно ТУ 48-4-241-73 поставляется марками НбП1 и НбП2.

Физические свойства ниобия

Металл серого цвета с белым оттенком. Относится к группе тугоплавких сплавов. Температура плавления составляет 2500 ºС. Точка кипения 4927 ºС. Отличается повышенным значением жаростойкости. Не теряет своих свойств при температурах работы свыше 900 ºС.

Механические характеристики также находятся на высоком уровне. Плотность составляет 8570 кг/м3 при аналогичном показателе стали 7850 кг/м3. Устойчив к работе как при динамических нагрузках, так и циклических. Предел прочности на разрыв - 34,2 кг/мм2. Обладает высокой пластичностью. Коэффициент относительного удлинения варьируется пределах 19-21%, что позволяет получать из него листовой прокат ниобия толщиной до 0,1 мм.

Твердость связана с чистотой металла от вредных примесей и повышается с увеличением их в составе. Чистый ниобий имеет 450 единиц шкалы твердости по Бринеллю.

Ниобий хорошо поддается обработке давлением при температурах ниже -30 ºС и плохо резанием.

Теплопроводность существенно не изменяется при больших колебаниях температуры. Например, при 20 ºС она составляет 51,4 вт/ (м К), а при 620 С повышается всего на 4 единицы. Ниобий конкурирует в электропроводности с такими элементами как медь и алюминий. Электросопротивление - 153,2 нОм м. Относится к категории сверхпроводящих материалов. Температура, при которой сплав переходит в режим сверхпроводника, составляет 9,171 К.

Крайне устойчив к воздействию кислой среды. Такие распространённые кислоты как серная, соляная, ортофосфорная, азотная никак не влияют на его химическую структуру.

При температурах свыше 250 ºС ниобий начинает активно окисляться кислородом, а также вступать в химические реакции с молекулами водорода и азота. Данные процессы увеличивают хрупкость металла, тем самым снижая его прочность.

  • Не относится к аллергенным материалам. Внедренный в тело человека, он не вызывает реакции отторжения организмом.
  • Является металлом первой группы свариваемости. Сварные швы получаются плотными и не требуют подготовительных операций. Устойчивые к образованию трещин.

Разновидности сплавов

По значению механических свойств в условиях повышенных температур ниобиевые сплавы подразделяются:

  1. Низкопрочные. Работают в пределах 1100-1150 ºС. Обладают простым набором легирующих элементов. В основном сюда относится цирконий , титан, тантал, ванадий , гафний . Прочность составляет 18-24 кг/мм2. После перехода критического температурного порога она резко падает и становится аналогичной чистому ниобию. Основное преимущество - высокие пластичные свойства при температурах до 30 ºС и хорошая обрабатываемость давлением.
  2. Среднепрочные. Их рабочая температура находится в пределах 1200-1250 ºС. Помимо вышеперечисленных легирующих элементов содержат примеси вольфрама, молибдена, тантала. Основное назначение данных добавок - сохранение механических свойств при увеличении температуры. Обладают умеренной пластичностью и хорошо обрабатываются давлением. Ярким примером сплава служит ниобий 5ВМЦ.
  3. Сплавы высокой прочности. Используются при температурах до 1300 ºС. При кратковременном воздействии до 1500 ºС. Отличаются химическим составом более высокой сложности. На 25% состоят из добавок, основная доля которых приходится на вольфрам и молибден. Некоторые виды данных сплавов отличаются повышенным содержанием углерода, что положительно влияет на значение их жаропрочности. Главным недостатком высокопрочного ниобия является низкая пластичность, которая затрудняет проведения технологической обработки. И, соответственно, получению производственных полуфабрикатов.

Следует учесть, что перечисленные выше категории имеют условный характер и дают лишь общее представление о способе применения того или иного сплава.

Также следует упомянуть о таких соединениях как феррониобий и оксид ниобия.

Феррониобий представляет собой соединение ниобия с железом, где содержание последнего находится на уровне 50%. Помимо основных элементов он включает в себя сотые доли титана, серы, фосфора, кремния, углерода. Точное процентное соотношение элементов нормируется ГОСТом 16773-2003.

Пентаксид ниобия - кристаллический порошок белого цвета. Не подвержен растворению в кислоте и воде. Производится методом сжигания ниобия в среде кислорода. Полностью аморфен. Температура плавления 1500 ºС.

Применение ниобия

Все вышеперечисленные свойства делают металл крайне востребованным в разного рода отраслей производства. Среди множества способов его применения выделяют следующие позиции:

  • Использование в металлурги в виде легирующего элемента. Причем ниобием легируют как черные, так и цветные сплавы. Например, добавление всего 0,02% его в состав нержавеющей стали 12Х18Н10Т увеличивает ее износостойкость на 50%. Улучшенный ниобием (0,04%) алюминий становится полностью невосприимчив к щелочи. На медь ниобий действует как закалка на сталь, увеличивая ее механические свойства на порядок. Отметим, что ниобием легируют даже уран.
  • Пентооксид ниобия является основным компонентом при изготовлении особо огнеупорной керамики. Также ему нашли применение в оборонной промышленности: бронированные стекла военной техники, оптика с большим углом преломления и прочее.
  • Феррониобий используется для легирования сталей. Основная его задача - это увеличение коррозионостойкости.
  • В электротехнике применяют для изготовления конденсаторов и токовыпрямителей. Такие конденсаторы отличаются повышенной емкостью и сопротивлением изоляции, малыми размерами.
  • Широким применением пользуются соединения кремния и германия с ниобием в области электроники. Из них изготавливают сверхпроводимые соленоиды и элементы генераторов тока.
  • На самом деле ниобий, как и все остальные металлы, серый. Однако, используя пассивирующий слой оксида , мы делаем так, что наш металл светится красивейшими цветами . Но ниобий - это не просто металл, приятный глазу. Как и тантал, он устойчив во многих химических веществах и легко поддается формовке даже при низкой температуре.

    Ниобий отличается тем, что высокий уровень коррозионной стойкости сочетается в нем с малым весом . Мы используем этот материал для производства вставок в монеты любых цветов, коррозионностойких выпарительных чаш для использования в технике для нанесения покрытий и формоустойчивых тиглей для выращивания алмазов. Благодаря высокому уровню биологической совместимости ниобий также используется в качестве материала для имплантатов. Высокая температура перехода также делает ниобий идеальным материалов для сверхпроводящих кабелей и магнитов.

    Гарантированная чистота.

    Вы можете быть уверенными в качестве нашей продукции. В качестве исходного материала мы используем только чистейший ниобий. Так мы гарантируем вам чрезвычайно высокую чистоту материала .

    Монеты и алмазы. Сферы применения ниобия.

    Сферы применения нашего ниобия столь же разнообразны, как и свойства самого материала. Ниже мы кратко представим вам две из них:

    Ценная и цветная.

    В самом выгодном свете наш ниобий предстает при производстве монет. В результате анодирования на поверхности ниобия образуется тонкий слой оксида. Из-за преломления света этот слой светится различными цветами. Мы можем влиять на эти цвета, изменяя толщину слоя. От красного до синего: возможны любые цвета.

    Превосходная формуемость и стойкость.

    Высокая коррозионная стойкость и превосходная формуемость делают ниобий идеальным материалом для тиглей, используемых для производства искусственных поликристаллических алмазов (PCD). Наши ниобиевые тигли используются для высокотемпературного синтеза при высоком давлении.

    Чистый ниобий, полученный плавкой.

    Мы поставляем наш ниобий, полученный плавкой, в виде листов, лент или прутков. Мы также можем изготавливать из него продукты сложной геометрии. Наш чистый ниобий обладает следующими свойствами:

    • высокая температура плавления, составляющая 2 468 °C
    • высокая пластичность при комнатной температуре
    • рекристаллизация при температуре от 850 °C до 1 300 °C (в зависимости от степени деформации и чистоты)
    • высокая стойкость в водных растворах и расплавах металлов
    • высокая способность к растворению углерода, кислорода, азота и водорода (риск повышения хрупкости)
    • сверхпроводимость
    • высокий уровень биологической совместимости

    Хорош во всех отношениях: характеристики ниобия.

    Ниобий относится к группе тугоплавких металлов. Тугоплавкие металлы - это металлы, температура плавления которых превышает температуру плавления платины (1 772 °C). В тугоплавких металлах энергия, связывающая отдельные атомы, чрезвычайно высока. Тугоплавкие металлы отличаются высокой температурой плавления в сочетании с низким давлением пара , высоким модулем упругости и высокой термической стабильностью . Тугоплавкие металлы также имеют низкий коэффициент теплового расширения . По сравнению с другими тугоплавкими металлами ниобий имеет относительно низкую плотность, которая составляет всего 8.6 г/см3

    В периодической системе химических элементов ниобий находится в том же периоде, что и молибден. В связи с этим его плотность и температура плавления сравнимы с плотностью и температурой плавления молибдена. Как и тантал, ниобий подвержен водородной хрупкости. По этой причине термическая обработка ниобия выполняется в высоком вакууме, а не в водородной среде. И ниобий, и тантал также обладают высокой коррозионной стойкостью во всех кислотах и хорошей формуемостью.

    Ниобий имеет самую высокую температуру перехода среди всех элементов, и она составляет -263,95 °C . При температуре ниже указанной ниобий является сверхпроводящим. Более того, ниобий обладает рядом крайне специфических свойств:

    Свойства
    Атомное число 41
    Атомная масса 92.91
    Температура плавления 2 468 °C / 2 741 K
    Температура кипения 4 900 °C / 5 173 K
    Атомный объем 1.80 ·  10-29 [м3]
    Давление пара при 1 800 °C
    при 2 200 °C
    5 · 10-6 [Пa] 4 · 10-3 [Пa]
    Плотность при 20 °C (293 K) 8.55 [г/см3]
    Кристаллическая структура объемноцентрированная кубическая
    Постоянная кристаллической решетки 3,294 · 10 –10 [м]
    Твердость при 20 °C (293 K) деформированный рекристаллизованный 110–180
    60–110
    Модуль упругости при 20 °C (293 K) 104 [ГПa]
    Коэффициент Пуассона 0.35
    Коэффициент линейного теплового расширения при 20 °C (293 K) 7,1 · 10 –6 [м/(м·K)]
    Теплопроводность при 20 °C (293 K) 52 [Вт/(м K)]
    Удельная теплоемкость при 20 °C (293 K) 0,27 [Дж/(г K)]
    Электропроводность при 20 °C (293 K) 7 · 10-6
    Удельное электрическое сопротивление при 20 °C (293 K) 0.14 [(Ом·мм2)/м]
    Скорость звука при 20 °C (293 K) Продольная волна
    Поперечная волна
    4 920 [м/с] 2 100 [м/с]
    Работа выхода электрона 4.3 [эВ]
    Сечение захвата тепловых нейтронов 1.15 · 10-28 [м2]
    Температура рекристаллизации (продолжительность отжига: 1 час) 850 - 1 300 [ °C]
    Сверхпроводимость (температура перехода) < -263.95 °C / < 9.2 K

    Теплофизические свойства.

    Как и все тугоплавкие металлы, ниобий имеет высокую температуру плавления и относительно высокую плотность. Теплопроводность ниобия сравнима с теплопроводностью тантала, но ниже, чем у вольфрама. Коэффициент теплового расширения ниобия выше, чем у вольфрама, но все же значительно ниже, чем у железа или алюминия.

    Теплофизические свойства ниобия изменяются при изменении температуры:

    Коэффициент линейного теплового расширения ниобия и тантала

    Удельная теплоемкость ниобия и тантала

    Теплопроводность ниобия и тантала

    Механические свойства.

    Механические свойства ниобия зависят, прежде всего, от его чистоты и, в частности, содержания кислорода, азота, водорода и углерода. Даже малые концентрации этих элементов могут оказывать значительное влияние. К другим факторам, оказывающим воздействие на свойства ниобия, относится технология производства , степень деформации и термическая обработка .

    Как и практически все тугоплавкие металлы, ниобий имеет объемноцентрированную кубическую кристаллическую решетку . Температура хрупко-вязкого перехода ниобия ниже комнатной. По этой причине ниобий крайне легко поддается формовке .

    При комнатной температуре удлинение при разрыве составляет более 20%. При увеличении степени холодной обработки металла повышается его прочность и твердость, но одновременно снижается удлинение при разрыве. Хотя материал теряет пластичность, он не становится хрупким.

    При комнатной температуре модуль упругости ниобия составляет 104 ГПа, что меньше, чем у вольфрама, молибдена или тантала. Модуль упругости снижается при повышении температуры. При температуре 1 800 °C он составляет 50 ГПа.

    Модуль упругости ниобия в сравнении с вольфрамом, молибденом и танталом

    Благодаря высокой пластичности ниобий оптимально подходит для формовочных процессов , таких как гибка, штамповка, прессование или глубокая вытяжка. Для предотвращения холодной сварки рекомендуется использовать инструменты из стали или твердого металла. Ниобий с трудом поддается резке . Стружка плохо отделяется. В связи с этим мы рекомендуем использовать инструменты со стружкоотводными ступеньками. Ниобий отличается превосходной свариваемостью в сравнении с вольфрамом и молибденом.

    У вас есть вопросы о механической обработке тугоплавких металлов? Мы будем рады помочь вам, используя наш многолетний опыт.

    Химические свойства.

    Ниобий от природы покрыт плотным слоем оксида. Слой оксида защищает материал и обеспечивает высокую коррозионную стойкость. При комнатной температуре ниобий не является устойчивым лишь в нескольких неорганических веществах: это концентрированная серная кислота, фтор, фтороводород, фтористоводородная кислота и щавелевая кислота. Ниобий устойчив в водных растворах аммиака.

    Щелочные растворы, жидкий гидроксид натрия и гидроксид калия также оказывают химическое воздействие на ниобий. Элементы, образующие твердые растворы внедрения, в частности водород, также могут сделать ниобий хрупким. Коррозионная стойкость ниобия падает при повышении температуры и при контакте с растворами, состоящими из нескольких химических веществ. При комнатной температуре ниобий полностью устойчив в среде любых неметаллических веществ, за исключением фтора. Однако при температуре выше примерно 150 °C ниобий вступает в реакцию с хлором, бромом, йодом, серой и фосфором.

    Коррозионная стойкость в воде, водных растворах и в среде неметаллов
    Вода Горячая вода < 150 °C стойкий
    Неорганические кислоты Соляная кислота < 30 % до 110 °C Серная кислота < 98 % до 100 °C Азотная кислота < 65 % до 190 °C Фтористо-водородная кислота < 60 % Фосфорная кислота < 85 % до 90 °C стойкий
    стойкий
    стойкий
    нестойкий
    стойкий
    Органические кислоты Уксусная кислота < 100 % до 100 °C Щавелевая кислота < 10 % Молочная кислота < 85 % до 150 °C Винная кислота < 20 % до 150 °C стойкий
    нестойкий
    стойкий
    стойкий
    Щелочные растворы Гидроксид натрия < 5 % Гидроксид калия < 5 % Аммиачные растворы < 17 % до 20 °C Карбонат натрия < 20 % до 20 °C нестойкий
    нестойкий
    стойкий
    стойкий
    Соляные растворы Хлорид аммония < 150 °C
    Хлорид кальция < 150 °C
    Хлорид железа < 150 °C
    Хлорат калия < 150 °C
    Биологические жидкости < 150 °C
    Сульфат магния < 150 °C
    Нитрат натрия < 150 °C
    Хлорид олова < 150 °C
    стойкий
    стойкий
    стойкий
    стойкий
    стойкий
    стойкий
    стойкий
    стойкий
    Неметаллы Фтор Хлор < 100 °C
    Бром < 100 °C
    Йод < 100 °C
    Сера < 100 °C
    Фосфор < 100 °C
    Бор < 800 °C
    нестойкийстойкий
    стойкий
    стойкий
    стойкий
    стойкий
    стойкий

    Ниобий устойчив в некоторых расплавах металлов, таких как Ag, Bi, Cd, Cs, Cu, Ga, Hg, K, Li, Mg, Na и Pb, при условии что эти расплавы содержат малое количество кислорода. Al, Fe, Be, Ni, Co, а также Zn и Sn все оказывают химическое воздействие на ниобий..

    Коррозионная стойкость в расплавах металлов
    Алюминий нестойкий Литий стойкий при температуре < 1 000 °C
    Бериллий нестойкий Магний стойкий при температуре < 950 °C
    Свинец стойкий при температуре < 850 °C Натрий стойкий при температуре < 1 000 °C
    Кадмий стойкий при температуре < 400 °C Никель нестойкий
    Цезий стойкий при температуре < 670 °C Ртуть стойкий при температуре < 600 °C
    Железо нестойкий Серебро стойкий при температуре < 1 100 °C
    Галлий стойкий при температуре < 400 °C Висмут стойкий при температуре < 550°C
    Калий стойкий при температуре < 1 000 °C Цинк нестойкий
    медь стойкий при температуре < 1200 °C Олово нестойкий
    Кобальт нестойкий

    Ниобий не вступает в реакцию с инертными газами. По этой причине чистые инертные газы могут использоваться в качестве защитных газов. Однако при повышении температуры ниобий активно вступает в реакцию с содержащимися в воздухе кислородом, азотом и водородом. Кислород и азот можно устранить путем отжига материала в высоком вакууме при температуре выше 1 700 °C. Водород устраняется уже при 800 °C. Такой процесс приводит к потере материала из-за образования летучих оксидов и рекристаллизации структуры.

    Вы хотите использовать ниобий в своей промышленной печи? Обратите внимание на то, что ниобий может вступать в реакцию с деталями конструкции, изготовленными из тугоплавких оксидов или графита. Даже очень устойчивые оксиды, такие как оксид алюминия, магния или циркония, могут подвергаться восстановлению при высокой температуре, если они вступают в контакт с ниобием. При контакте с графитом могут образовываться карбиды, которые приводят к повышению хрупкости ниобия. Хотя обычно ниобий можно легко комбинировать с молибденом или вольфрамом, он может вступать в реакцию с гексагональным нитридом бора и нитридом кремния. Указанные в таблице предельные температуры действительны для вакуума. При использовании защитного газа эти температуры примерно на 100 °C-200 °C ниже.

    Ниобий, ставший хрупким при контакте с водородом, можно регенерировать посредством отжига в высоком вакууме при температуре 800 °C.

    Распространенность в природе и подготовка.

    В 1801 году английский химик Чарльз Хэтчетт исследовал тяжелый черный камень, привезенный из Америки. Он обнаружил, что камень содержит неизвестный на тот момент элемент, который он назвал колумбием по его стране происхождения. Название, под которым он известен сейчас, - "ниобий" - было дано ему в 1844 году его вторым открывателем Генрихом Розе. Генрих Розе стал первым человеком, которому удалось отделить ниобий от тантала. До этого отличить эти два материала было невозможно. Розе дал металлу название "ниобий " по имени дочери царя Тантала Ниобии. Тем самым он хотел подчеркнуть тесное родство двух металлов. Металлический ниобий был впервые получен путем восстановления в 1864 году К.В. Бломстрандом. Официальное название ниобий получил только спустя примерно 100 лет после долгих споров. Международное объединение теоретической и прикладной химии признало "ниобий" официальным названием металла.

    Ниобий чаще всего встречается в природе в виде колумбита, также известного как ниобит, химическая формула которого (Fe,Mn) [(Nb,Ta)O3]2. Другим важным источником ниобия является пирохлор, ниобат кальция сложной структуры. Месторождения этой руды находятся в Австралии, Бразилии и некоторых африканских странах.

    Добытая руда обогащается различными методами, и в результате получается концентрат с содержанием (Ta,Nb)2O5 до 70%. Затем концентрат растворяется во фтористоводородной и серной кислоте. После этого путем экстракции извлекаются фтористые соединения тантала и ниобия. Фторид ниобия окисляется кислородом, в результате чего образуется пентоксид ниобия, а затем восстанавливается углеродом при температуре 2 000 °C, в результате чего образуется металлический ниобий. Посредством дополнительной электронно-лучевой плавки получается ниобий высокой чистоты.

    Ниобий (латинское Niobium, обозначается символом Nb) - элемент с атомным номером 41 и атомной массой 92,9064. Ниобий является элементом побочной подгруппы пятой группы, пятого периода периодической системы химических элементов Дмитрия Ивановича Менделеева. Вместе с танталом ниобий входит в подгруппу ванадия. Имея в наружном электронном слое атома два или один электрон, эти элементы отличаются от элементов главной подгруппы преобладанием металлических свойств и отсутствием водородных соединений. В свободном состоянии ванадий, ниобий и тантал весьма стойки к химическим воздействиям и обладают высокими температурами плавления. Эти металлы совместно с хромом, молибденом, вольфрамом, рением, а также рутением, родием, осмием и иридием относятся к тугоплавким металлам. Сорок первый элемент в свободном состоянии - металл серо-стального цвета, твердый (однако не хрупкий), тугоплавкий (температура плавления 2500° C) и высококипящий (4927° C), хорошо поддающийся механической обработке и весьма стойкий во многих агрессивных средах. Плотность ниобия 8,57 г/см3. Природный ниобий состоит всего из одного стабильного изотопа 93Nb.

    История открытия сорок первого элемента очень тесно связана с историей другого родственного металла, входящего в ту же подгруппу, что и ниобий - тантала. Еще в середине семнадцатого века в Южной Америке (в бассейне реки Колумбии) был обнаружен тяжелый черный минерал с золотистыми прожилками слюды. Его доставили в Англию, где он более века провел в одной из витрин Британского музея под именем «железной руды» и лишь в 1801 году английский химик Чарльз Хатчет заинтересовался необычным минералом. Он выделил окисел неизвестного прежде элемента, который назвал «колумбием», а минерал «колумбитом». Год спустя шведский химик Экеберг выделил из того же минерала окисел еще одного нового элемента, названного танталом. По этой причине долгие годы считалось, что колумбий и тантал - идентичные металлы, ведь находятся они в одном минерале. Лишь в 1844 году немецкий химик Генрих Розе, исследуя колумбит, обнаружил в нем окислы двух металлов, сходных по свойствам, однако являющихся самостоятельными элементами. Один из них был известный уже тантал, а другой Розе назвал ниобием (по имени Ниобы, дочери мифологического мученика Тантала).

    Ниобий - один из основных компонентов многих жаропрочных и коррозионностойких сплавов. Особенно большое значение имеют жаропрочные сплавы ниобия, которые применяют в производстве газовых турбин, реактивных двигателей, ракет. Сорок первый элемент вводят также в некоторые марки нержавеющих сталей - он резко улучшает их механические свойства и сопротивляемость коррозии. Так стали, содержащие от одного до четырех процентов ниобия, отличаются высокой жаропрочностью и используются в качестве материала для производства котлов высокого давления. Кроме того, сталь с добавкой ниобия - превосходный материал для электросварки стальных конструкций: ее применение обеспечивает необычайную прочность сварных швов. Карбиды ниобия отличаются исключительной твердостью и чаще всего применяются в металлообрабатывающей промышленности для изготовления режущего инструмента.

    Ниобий - микроэлемент, содержащийся в человеческом организме (у взрослых в миллиграммовых дозах). Основные депо концентрации данного металла - кости, печень, мышцы, кровь. Его биологическая роль до конца не изучена, однако, благодаря тому, что ниобий гипоаллергенен (не вызывает биологического отторжения) его широко использует медицина. В то же время металлическая пыль ниобия вызывает раздражение глаз и кожи, а некоторые соединения этого металла довольно токсичны.

    Биологические свойства

    Ниобий является неотъемлемым микроэлементом человеческого организма. Сорок первый элемент обнаружен в крови, костях, мышцах и печени человека. Подсчитано, что в среднем в организме взрослого человека весом 70 килограмм содержится до 1,5 мг ниобия.

    К сожалению, биологическая роль данного элемента изучена весьма слабо. Однако, известно, что ниобий гипоаллергенен, то есть его можно безопасно использовать для введения в тело, так как он не будет вызывать биологического отторжения организмом. Это ценное свойство использует медицина - ниобиевые нити не вызывают раздражения живой ткани и хорошо сращиваются с ней. Восстановительная хирургия успешно использует такие нити для сшивания порванных сухожилий, кровеносных сосудов и даже нервов. В отличие от прочих медицинских легированных сталей и имплантационных сплавов ниобий представляет собою чистый химический элемент, который нельзя разделить на отдельные компоненты. То есть при контакте с тканями он не способен выделять отдельные компоненты и поэтому не является аллергеном.

    Не только медицина использует данное качество ниобия - в последнее время на ниобий большой спрос как на материал для подкожного бодипирсинга. К тому же ниобий является реактивным металлом и его можно в ходе химического электролиза анодировать. При этом на поверхности металла появляется тонкий оксидный слой, который вызывает появление интерференционных цветов и за счет особенностей попадания света возникает при отражении и преломлении впечатление переливания изменяющихся цветов окраски (подобный эффект можно наблюдать на пленке нефтяного или бензинового пятна на сыром асфальте). У поклонников пирсинга подобная цветовая игра пользуется популярностью, к тому же анодированный слой полностью совместим с тканями организма, поскольку он представляет собой оксид ниобия. Естественно, что всё выше сказанное относится только к чистому ниобию - украшения для пирсинга из сплавов ниобия (или металла с примесями) могут нанести вред организму человека.

    Несмотря на все положительные аспекты биологического влияния сорок первого элемента на организм, некоторые соединения ниобия ядовиты. Профессиональных отравлений ниобием не зафиксировано. Однако относительно высокая заболеваемость верхних дыхательных путей у рабочих, использующих комплексные соединения ниобия, вероятнее всего связана с воздействием выделяющегося HF и фторониобатов. Основные эксперименты по установлению степени токсичности соединений сорок первого элемента, проводимые на животных показали, что К2NbF7 и NbCl5 резко раздражают кожные покровы и слизистые глаз кролика. Введенный в желудок ниобаткалия KNbO3 вызывает острое отравление с летальным исходом у белых мышей при дозировке в 725-1140 мг/кг; пентафторооксониобата калия K2NbOF5 - при дозе 130 мг/кг; хлорида ниобия (V) NbCl5 - 829,6 мг/кг. Для лабораторных крыс эти дозы несколько выше. Введенные соединения привели к зернистой и вакуольной дистрофии в канальцах почек, некрозу печени и эпителия пищевода, дистрофическим изменениям в слизистой желудка. Хронические отравления были вызваны введением в желудок подопытных животных в течение четырех месяцев NbCl5 в дозе 100 мг/кг, что привело к изменению состава крови и сбою функций печени, незначительным изменениям по ходу ЖКТ. Введение пыли Nb2O5 в дозе 50 мг в течение 6-9 месяцев вызвало у лабораторных крыс уплотнение межальвеолярной перегородки и эмфизему легких. У тех же лабораторных животных ежедневные затравки пылью нитрида ниобия NbN по 40 мг/м3 в течение трех месяцев привели к развитию пневмосклероза и вторичной эмфиземы. К такому же результату привело введение в трахею крыс 50 мг NbN.

    ПДК ниобия в воде 0,01 мг/л, для нитрида ниобия в воздухе рабочей зоны 10 мг/м3. Для фторониобатов рекомендуется ПДК как для солей HF.

    Называя новый элемент ниобием, Генрих Розе руководствовался его сходством с танталом. Ведь мифический царь Тантал, наказанный олимпийскими богами за дерзость, был отцом Ниобы, в честь которой и был назван сорок первый элемент. Однако Розе наверняка не мог предполагать то, что названный им элемент будет схож с мифологическим персонажем не только родством с танталом. Прежде, чем объяснить, что еще общего имеют реальный металл ниобий и мифологическая принцесса Ниоба, вкратце расскажем ее историю.

    Ниоба (Ниобея) - героиня древнегреческих мифов, дочь фригийского царя Тантала, жена фиванского царя Амфиона. Имея большое потомство (семь сыновей и семь дочерей), Ниоба возгордилась и своим хвастовством оскорбила Лето (Латону) - мать бога Аполлона и богини Артемиды. За такую дерзость Аполлон и Артемида стрелами из своих луков умертвили всех детей Ниобы. Сама Ниоба, окаменевшая от горя, была перенесена на вершину горы Сипил, где она в вечном одиночестве в образе камня проливает слезы по убитым детям.

    Причем же здесь ниобий? Дело в том, что у этого металла всего лишь один природный изотоп - 93Nb. Получается, что металл также одинок, как и фиванская царица Ниоба.

    Известно, что ниобий обладает высокой коррозионной стойкостью, что обуславливает его применение в химическом машиностроении. Интересным фактом является то, что при изготовлении запорной аппаратуры и трубопроводов солянокислотного производства, ниобий не только служит конструкционным материалом, но и играет при этом роль катализатора, давая возможность получить более концентрированную кислоту.

    До 1866 года не было известно ни одного пригодного для производственных условий способа разделения тантала и ниобия!

    В связи с острой нехваткой серебра американские финансисты предлагают для изготовления металлических денег использовать вместо него ниобий, поскольку стоимость ниобия примерно соответствует стоимости серебра. С 2003 года ниобий официально используется при чеканке коллекционных монет. Первопроходцем в использовании этого металла был Австрийский монетный двор Münze Österreich. Одной из особенностей ниобия является то, что при определённой обработке металла можно получить разную окраску поверхности. В результате, Австрия выпускает биметаллические монеты с разной окраской, уже отчеканено семь тысяч подобных монет. Пример Австрии оказался заразителен - в 2005 году в Сьерра-Леоне выпустили биметаллическую монету, с использованием золота и фиолетового ниобия. Выпуск посвящен Папе Римскому Иоанну Павлу II. Кроме этих стран биметаллические монеты с использованием ниобия выпустили: Монголия - 500 тугриков, серебряный овал и вставка из серого ниобия (2003 год), Латвия - 1 лат, серебро, вставка из зеленого ниобия (2010 год) и ряд других стан.

    Бразильская компания CBMM - крупнейший производитель ниобия в мире, в настоящее время она обеспечивает 80 % всего мирового спроса на ниобий. Именно от действий компании в значительной мере зависит, будет ли мировой рынок испытывать дефицит ниобия.

    В последнее время (в странах Запада) ниобий стал применяться в ювелирном деле как материал для изготовления ювелирных украшений, это связано с тем, что ниобий не является аллергеном.

    Известно, что до 1950 года в некоторых странах (США и Великобритании) долго сохранялось первоначальное название сорок первого элемента - Колумбий, пока Международным союзом чистой и прикладной химии (ЮПАК) не было принято решение именовать во всем мире этот элемент ниобием. Поначалу американские и английские химики требовали отмены этого решения, которое казалось им несправедливым, но «приговор» ЮПАК был окончательным и обжалованию не подлежал. Пришлось «колумбистам» примириться с этим фактом, а в химической литературе США и Англии появился новый символ «Nb».

    Искусственная (наведенная) радиоактивность ниобия невелика, поэтому из ниобия можно делать контейнеры для хранения радиоактивных отходов или установки по их использованию.

    На знаменитом Большом адронном коллайдере под Женевой витки сверхпроводящих магнитов изготовлены из соединения ниобия и титана.

    История

    Не всякий химический элемент может похвастать своим повторным открытием, а на долю сорок первого элемента периодической системы это «счастье» перепало.

    С завоеванием Америки в Европу стали попадать доселе невиданные богатства, экзотические диковинки, вещи, требующие тщательного изучения и разъяснения. Так как покорителей нового континента интересовали лишь грабеж и нажива, то многое новое игнорировалось, считалось ненужным, если не могло найти своего применения. Так, платину называли «плохим серебром», считая металлом фальшивомонетчиков, и сотнями тонн топили в реках и морях. А образцы необычного минерала черного цвета с золотистыми вкраплениями были увезены в качестве сувениров, осев в частных коллекциях и музеях под всевозможными названиями. Один из таких образцов провалялся на пыльной витрине Британского музея в Лондоне полтора века под табличкой, которая гласила, что перед вами образец «железной руды».

    Удивительно, но нашелся человек, который заинтересовался пыльным экспонатом и решил узнать истинную сущность камня. Это был английский химик Чарльз Хатчет, который в 1801 году исследовал образец необычного минерала, выделил из него окисел неизвестного прежде элемента и дал ему название - «колумбий», тем самым, подчеркнув заокеанское происхождение нового элемента (в честь Христофора Колумба и старинного названия Америки). Сам же необычный тяжелый черный минерал химик назвал «колумбитом». Именно таким образом впервые был открыт сорок первый элемент периодической таблицы, получив своё первое имя. И если по началу Хатчет сомневался в том, что перед ним нечто ранее не изученное и отождествлял колумбит с сибирской хромовой рудой, то затем ученый обнаружил, что кислота (окисел), образующаяся из щелочного сплава минерала, обладает совершенно иными свойствами, чем хромовая кислота. Однако получить из окисла металл Хатчету не удалось.

    Годом позже шведский химик Андерс Густав Экеберг, исследуя колумбитовую руду, обнаруженную на одном из финских рудников, открывает новый металл, названный им танталом (Tantalum). Окисел этого металла оказался чрезвычайно устойчивым и не разрушался даже в избытке кислоты (он как бы не мог насытиться кислотой, подобно тому, как мифический Тантал, наказанный Зевсом, стоя по горло в воде и терзаясь жаждой, не мог удовлетворить ее). Минерал, в котором был обнаружен новый металл, назвали танталитом. С этого момента и началась путаница и неразбериха - сходство соединений колумбия и тантала было так велико, что в течение сорока лет большинство химиков считало: тантал и колумбий - один и тот же элемент. «Масла в огонь» подлил авторитетный английский ученый Уильям Хайд Волластон, который первым получил платину в чистом виде и открыл палладий. В 1809 году он доказал, что колумбий Хатчета и тантал Экеберга представляют собой один и тот же металл, так как их окислы очень близки по удельному весу.

    Точку в этой запутанной истории поставил немецкий химик Генрих Розе в 1844 году. В его распоряжении были образцы колумбитов и танталитов, найденные в Баварии. После тщательного изучения образцов, ученый установил, что в ряде образцов присутствуют окислы двух металлов. Оставив танталу прежнее название, он дал второму элементу, сходному с танталом, новое имя - ниобий (Niobium) в честь мифической Ниобы, дочери Тантала. Нетронутым осталось и название минерала, которое дал Хатчет, ведь колумбит, который он исследовал, был смесью тантала и ниобия. Впрочем, Розе, как и Хатчет, не сумел получить ниобий в свободном состоянии. Это произошло лишь в 1866 году, когда шведский ученый Кристиан Вильгельм Бломстранд при восстановлении хлорида ниобия водородом получил металлический ниобий. В дальнейшем ученые разработали еще два способа получения металла в чистом виде: сначала Муассан получил его в электропечи, восстанавливая окись ниобия углеродом, а затем Гольдшмидт сумел восстановить тот же элемент алюминием.

    В России заинтересованность ниобием была скромна: колумбием Хатчета заинтересовался лишь химик-аналитик Т. Е. Ловиа, который начал исследование нового металла, но не успел его закончить, опубликовав о нем лишь заметку (1806). Что касается названия, то в русской литературе начала XIX века колумбий Хатчета назывался колумб (Шерер, 1808), колумбий (Ловиц), тантал и ниобий (Гесс). В Англии и США металл по-прежнему продолжали называть колумбием, в остальных странах придерживались новой версии и называли сорок первый элемент ниобием. Окончательное решение в этом вопросе было принято Международным союзом чистой и прикладной химии (ИЮПАК) лишь в 1950 году! На заседнии союза было решено повсеместно узаконить название элемента «ниобий», а за основным минералом ниобия закрепилось первоначальное наименование «колумбит».

    Нахождение в природе

    Ниобий считается редким элементом (содержание в земной коре 2,4 10-3 % по массе), он встречается действительно нечасто в небольших количествах и всегда в виде минералов (в самородном состоянии ниобий не существует). Любопытно, что в разной справочной литературе кларк (содержание в земной коре) ниобия разный. Это связано с тем, что всё чаще в Африке обнаруживаются новые богатые месторождения руд, содержащих ниобий. Поэтому, вероятнее всего, данные будут продолжать изменяться. Так или иначе, но приблизительно подсчитано, что из минералов уже известных месторождений можно выплавить примерно 18 миллионов тонн металлического ниобия.

    Ниобий - литофильный элемент, связан с гранитными, нифелинсиенитовыми, ультраосновными щелочными породами и карбонатитами. Только в щелочных изверженных породах - нифелиновых сиенитах и прочих, содержание сорок первого элемента повышено до 10-2-10-1 %. В этих породах и связанных с ними пегматитах, карбонатитах, а также в гранитных пегматитах обнаружено 23 минерала ниобия и около 130 других минералов, содержащих повышенные количества этого элемента. По большей части это сложные и простые окислы. В минералах сорок первый элемент связан с редкоземельными элементами и с танталом, титаном, кальцием, натрием, торием, железом, барием (тантало-ниобаты, титанаты и других). Дело в том, что породообразующим аналогом ниобия (а также тантала) является титан. При высокой концентрации Ti4+ происходит рассеяние Nb5+ по титановым минералам.

    В биосфере геохимия ниобия изучена слабо. Достоверно установлено, что в районах щелочных пород, обогащенных ниобием, он мигрирует в виде соединений с органическими и другими комплексами. Существуют минералы сорок первого элемента, образующиеся при выветривании щелочных пород (мурманит, герасимовскит). Содержание ниобия в морской воде около 1 10-9 % по массе.

    Форма нахождения ниобия в природе может быть разной: рассеянной (в породообразующих и акцессорных минералах магматических пород) и минеральной. В общей сложности известно более ста минералов, содержащих ниобий. Из них промышленное значение имеют лишь некоторые: колумбит-танталит (Fe, Mn)(Nb, Ta)2O6, содержащий 50-76 % Nb2O5; пирохлор (Na, Ca)2(Nb, Ta, Ti)2O6(OH, F), в котором количество Nb2O5 варьируется от 40 до 70 % не более. Что интересно в колумбите из Гренландии не обнаружено тантала, этот минерал - смесь соли закиси железа (FeO = 17,33 %) и ниобиевой кислоты (Nb2O5 = 77,97 %), также содержащая закись марганца (MnО = 3,28 %) и еще MgO, PbO, ZrO2, SnO2 и WO3. Меньшее промышленное значение имеет лопарит (Na, Ca, Ce)(Ti, Nb, Ta)O3 (содержание комплекса (Nb, Ta)2O5 составляет 8 - 10 %), иногда используются эвксенит Y(Nb, Ta, Ti)2O6 (21-34 % Nb2O5), торолит, ильменорутил, а также минералы, содержащие ниобий в виде примесей (ильменит, касситерит, вольфрамит). Минералы ниобия слабо парамагнитны и радиоактивны из-за примесей U и Th. Минимальные содержания, при которых рентабельно разрабатывать коренные ниобиевые руды, порядка 0,15-0,2 % Nb2O5. Среднее содержание Nb2O5 в большинстве месторождений ниобиевых руд мира 0,2-0,6 %; богатые месторождения содержат 1 % и более (до 4 %) Nb2O5. Минимальные содержания, при которых разрабатываются россыпи колумбита и месторождения кор выветривания, равны 0,1-0,15 кг/м3.

    Значительные месторождения выше перечисленных минералов есть в разных странах: Малайзии, Мозамбике, Заире, Бразилии, США, Канаде (щелочные породы), Норвегии, Финляндии. Однако крупнейшим поставщиком концентратов ниобия на мировой рынок стало африканское государство Нигерия (богатые россыпные месторождения). В России есть большие запасы лопарита, они найдены на Кольском полуострове.

    Применение

    Благодаря сочетанию таких ценных качеств - как тугоплавкость, малое сечение захвата тепловых нейтронов, способность образовывать жаропрочные, сверхпроводящие и другие сплавы, коррозионная стойкость, геттерные свойства, низкая работа выхода электронов, хорошая обрабатываемость давлением на холоде и свариваемость - производство и применение ниобия постоянно возрастают. Примерно 50 % производимого ниобия используется для микролегирования сталей (концентрация ниобия 0,05-0,10 % по массе). Из них 20-30 % идут на получение нержавеющих и жаростойких сталей (содержание ниобия 0,2-1,2 %), 20-25 % используются при получении жаропрочных сплавов на основе никеля или железа (1-5 % ниобия), 1-3 % расходуется в виде металла и сплавов на основе ниобия.

    Легированная ниобием сталь приобретает высокие антикоррозионные свойства и не теряет своей пластичности. Так, например, в хромоникелевой стали всегда присутствует углерод, который соединяется с хромом, образуя карбид, который делает сталь более хрупкой. Добавка ниобия, имеющего большее сродство с углеродом, чем хром, связывает углерод в безопасный карбид ниобия. Положительный эффект достигается при введении в тонну стали всего двухсот грамм сорок первого элемента. Добавка ниобия в хромомарганцевую сталь придает ей высокую износоустойчивость.

    Сорок первым элементом легируют и многие цветные металлы. Так, алюминий, легко растворяющийся в щелочах, не реагирует с ними, если в него добавлено всего 0,05 % ниобия. А медь, известную своей мягкостью, и многие ее сплавы ниобий словно закаляет. Он увеличивает прочность таких металлов, как титан, молибден, цирконий, и одновременно повышает их жаростойкость и жаропрочность. Ниобием легируют даже уран. Стали, легированные ниобием, широко использует ракетостроение, авиационная и космическая техника (детали летательных аппаратов), радиотехника, электроника, химическое аппаратостроение (контейнеры и трубы для жидких металлов), атомная энергетика. Еще одно уникальное свойство ниобия, используемое в атомной энергетике - отсутствие заметного взаимодействия с ураном при температуре до 1 100 °C.

    Кроме того, хорошая теплопроводность, небольшое эффективное сечение поглощения тепловых нейтронов сделали ниобий серьезным конкурентом признанных в атомной промышленности металлов - алюминия, бериллия и циркония. К тому же искусственная (наведенная) радиоактивность ниобия невелика. По этой причине из ниобия можно изготовлять контейнеры для хранения радиоактивных отходов или установки по их использованию. Малый процент потребления ниобия химической промышленностью объясняется лишь дефицитом данного элемента.

    Из сплавов, содержащих сорок первый элемент, реже из листового ниобия делают аппаратуру для производства высокочистых кислот. Способность ниобия (катализатор) влиять на скорость некоторых химических реакций используется, например, при синтезе спирта из бутадиена. Сплавы ниобия используются при производстве деталей ракет и бортовой аппаратуры искусственных спутников Земли. Ниобий используется в деталях электрических конденсаторов, из него изготовляют «горячую» арматуру электронных (для радарных установок) и мощных генераторных ламп (аноды, катоды, сетки и другие). Ниобий применяют в криотронах - сверхпроводящих элементах вычислительных машин, а станнид Nb3Sn и сплавы ниобия с титаном и цирконием - для изготовления сверхпроводящих соленоидов.

    Нитрид ниобия NbN применяют для изготовления сверхпроводящих болометров, мишеней передающих телевизионных трубок. Карбид ниобия NbC - пластичное вещество с характерным розоватым блеском, сочетающее хорошую ковкость и высокую термостойкость с приятными «внешними данными» сделало NbC ценным материалом для изготовления покрытий. Слой этого вещества толщиной всего 0,5 мм надежно защищает от коррозии при высоких температурах многие материалы, в частности графит, который другими покрытиями не защищается.

    Карбид ниобия используется и как конструкционный материал в ракетостроении и производстве турбин. Карбонитрид NbC0,25N0,75 используют при изготовлении сверхпроводящих квантовых интерференционных устройств, высокочастотных резонаторов с высокими значениями добротности; NbC0,25N0,75 перспективен для использования в магнитных системах реакторов термоядерного синтеза.

    Металлиды Nb3Sn и Nb3Ge применяют при изготовлении соленоидов сверхпроводящих устройств; Nb3Ge перспективен для использования в магнитах МГД-генераторов и других электротехнических устройств. Феррониобий вводят в нержавеющие хромоникелевые стали для предотвращения их межкристаллитной коррозии и разрушения и в стали других типов для улучшения их свойств.

    Оксиды ниобия - компоненты огнеупорных материалов, керметов, стекол с высокими коэффициентами преломления. Ниобий вводят в нержавеющие стали для улучшения свойств сварочного шва.

    Производство

    Ниобиевые руды, как правило, комплексные и бедны металлом, хотя следует учесть, что их запасы превосходят запасы танталовых руд. Так, например, колумбит-танталитовые концентраты содержат всего 8 % Та2О5, и более 60 % Nb2O5. Большую часть (примерно 95 %) ниобия получают из пирохлоровых, колумбит-танталитовых и лопаритовых руд. Основные методы обогащения рудного сырья - гравитационный метод и флотация либо электромагнитная или радиометрическая сепарация. Получившиеся после обогащения рудные концентраты содержат пятиокись ниобия в количестве: колумбитовые - 30-60 %, пирохлоровые - не менее 37 %, лопаритовые - 7 % и более. Далее большую часть концентратов перерабатывают алюмино- или силикотермическим восстановлением на феррониобий (сплав железа с ниобием, с содержанием Nb 40-60 %) и ферротанталониобий, технически чистого Nb2O5, реже до галогенидов сорок первого элемента - NbCl5 и K2NbF7.

    По сути феррониобий и ферротанталониобий - конечные продукты при обработке концентратов, ведь они являются легирующими элементами, которые вводят в различные сорта сталей для улучшения их свойств. При производстве феррониобия смесь пирохлоровых концентратов с гематитом Fe2O3, порошкообразным алюминием и добавками флюса загружают в вертикальные охлаждаемые водой стальные или медные реакторы и с помощью специального запала инициируют экзотермические реакции. После чего сливают шлак, охлаждают и измельчают полученный сплав. Выход ниобия в слиток при массе загрузки концентрата до 18 тонн достигает 98 %!

    Технический Nb2O5, являющийся катализатором в химической промышленности, получают выщелачиванием ниобия и танатала из концентратов и шлаков оловянной плавки действием фтористоводородной кислоты с последующей очисткой и разделением ниобия и тантала. Разделение осуществляется экстракцией 100 %-ным трибутилфосфатом, метилизобутилкетоном, циклогексаноном (иногда другими соединениями), реэкстракцией ниобия действием водного раствора NH4F, осаждением из реэкстракта гидроксида ниобия, его сушкой и прокаливанием.

    По сульфатному способу концентраты обрабатывают серной кислотой H2SO4 или ее смесью с (NH4)2SO4 при 150-300 °С, выщелачивают растворимые сульфаты водой, отделяют ниобий и тантал от титана, разделяют и очищают ниобий и тантал экстракцией из фторидных или оксофторидных комплексов, выделяя затем Nb2O5.

    Хлоридный способ предусматривает смешение концентрата с коксом, брикетирование и хлорирование брикетов в шахтной печи при 700-800° С или хлорирование непосредственно порошкообразного концентрата и кокса в солевом хлоридном расплаве на основе NaCl и КСl. Затем производят отделение летучих хлоридов ниобия и тантала, их разделение и очистку ректификацией и раздельный гидролиз водой с прокаливанием осадка гидроксида ниобия. Иногда хлорируют феррониобий или отходы металла.

    Описаны способы переработки концентратов ниобия с использованием жидких и газообразных фторирующих реагентов.

    Металлический ниобий получают из рудных концентратов по сложной технологии в несколько стадий: вскрытие концентрата, разделение ниобия и тантала и получение их чистых химических соединений, восстановление и рафинирование металлического ниобия и его сплавов. Процессы обогащения и вскрытия концентратов, также как и пути разделения ниобия с танталом, описаны выше. Поэтому рассмотрим лишь методы получения ниобия восстановлением его соединений, например хлорида ниобия NbCl5 или фтор-ниобата калия K2NbF7, при высокой температуре:

    K2NbF7 + 5Na → Nb + 2KF + 5NaF

    Применяют также электролитическое восстановление Nb2O5 или K2NbF7 в расплаве K2NbF7 и хлоридов щелочных металлов. Особо чистый металл или покрытия из ниобия на различных металлических поверхностях получают восстановлением NbCl5 водородом при температурах выше 1 000 °С.

    Из пятиокиси ниобия, получение которой различными методами мы рассмотрели ранее, металл получают алюмино- или карбо-термическим восстановлением либо нагреванием смеси Nb2O5 и NbC при 1 800-1 900 °С в вакууме. Продуктом таких реакций является металлический порошок ниобия, который необходимо затем превратить в монолит, сделать пластичным, компактным, пригодным для обработки. Как и другие тугоплавкие металлы, ниобий-монолит получают методами порошковой металлургии: порошок брикетируют, под большим давлением (1 т/см2) прессуют в штабики прямоугольного или квадратного сечения их спекают в вакууме (при 2 300 °С), затем соединяют в пруты, которые плавят в вакуумных дуговых печах, причем пруты в этих печах выполняют роль электрода. Такой процесс называется плавкой с расходуемым электродом. Монокристаллы ниобия особой чистоты получают методом бестигельной электронно-лучевой зонной плавки. Суть его в том, что на порошкообразный ниобий (операции прессования и спекания исключены) направляют мощный пучок электронов, который плавит порошок. Капли металла стекают на ниобиевый слиток, который постепенно растет и выводится из рабочей камеры.

    Физические свойства

    Металлический ниобий впервые получили лишь во второй половине XIX века, поэтому человечество знакомо со свойствами этого блестящего металла серо-стального цвета не так давно. Каковы же физические характеристики данного элемента? У сорок первого элемента периодической системы объемно-центрированная кубическая кристаллическая решетка с параметром а = 3,294Å. Определенно он легче своего спутника тантала (плотность 16,6 г/см3), однако ниобий всё равно остается тяжелым металлом, ведь его плотность при комнатной температуре (20 °C) составляет 8,57 г/см3. Да это меньше чем у свинца (11,34 г/см3) или ртути (13,5457 г/см3) при той же температуре, однако это значение выше, чем у железа (7,87 г/см3) или хрома (7,19 г/см3), например.

    Ниобий - высокопрочный и твердый металл, его предел прочности при 20 и 800 °С соответственно равен 342 и 312 Мн/м2, то же в кгс/мм2 34,2 и 31,2; относительное удлинение при 20 и 800 °С соответственно 19,2 и 20,7 %. Твердость чистого ниобия по Бринеллю 450, технического 750-1800 Mн/м2. К тому же, сорок первый элемент сочетает в себе и отличные пластические характеристики: очищенный ниобий хорошо поддается механической обработке - легко обрабатывается давлением на холоду и сохраняет удовлетворительные механические свойства при высоких температурах. Чистый металл настолько пластичен, что может быть прокатан в тонкий лист (до толщины 0,01 мм) в холодном состоянии без промежуточного отжига. Правда всё это относится к очищенному металлу, ниобий, содержащий примеси некоторых элементов (особенно опасны водород, азот, углерод и кислород) сильно ухудшает свою пластичность. Однако наличие примесей повышает твердость ниобия и его хрупкость. В хрупкое состояние ниобий переходит при температурах от -100 до -200 °С.

    Ниобий один из ряда тугоплавких металлов, его температура плавления (tпл) 2 500 °С, а температура кипения (tкип) 4927 °С. Более высокие точки плавления у молибдена (2 620 °C), тантала (3 000 °C), рения (около 3 190 °C) и вольфрама (около 3 400 °C). Однако у ниобия более низкая работа выхода электронов (4,01 эв) по сравнению с другими тугоплавкими металлами - вольфрамом и молибденом. Данная особенность характеризует способность к электронной эмиссии (испусканию электронов), что используется для применения ниобия в электровакуумной технике. Ниобий также имеет высокую температуру перехода в состояние сверхпроводимости. Это удивительное явление, когда при понижении температуры проводника в нем происходит скачкообразное исчезновение электрического сопротивления, впервые наблюдал голландский физик Г. Камерлинг-Оннес в 1911 г. Опытным образцом, который и стал первым сверхпроводником, была ртуть. Однако не ей, а ниобию и некоторым его интерметаллическим соединениям суждено было стать первыми технически важными сверхпроводящими материалами. Температура перехода ниобия в сверхпроводящее состояние 9,17 °K, в то время как большинство известных сверхпроводников становятся сверхпроводниками лишь при температуре жидкого гелия. Интерметаллическое соединение ниобия и германия состава Nb3Ge имеет критическую температуру 23,2 °К - это выше температуры кипения водорода! Способность переходить в состояние сверхпроводимости свойственна также стапниду ниобия Nb3Sn, сплавам ниобия с алюминием и германием или с титаном и цирконием.

    Теплопроводность сорок первого элемента в вт/(м К) при 0 °С и 600 °С соответственно 51,4 и 56,2, то же в кал/(см сек °С) 0,125 и 0,156. Удельное объемное электрическое сопротивление ниобия при 0° С 15,22 10-8 ом м (15,22 10-6 ом см). Ниобий парамагнитен, его удельная магнитная восприимчивость + 2,28∙10-6 (при 18° С). Теплоёмкость (при 25 °C) 24,6 Дж/(моль∙К); теплопроводность (при 0 °C) 51,4 Вт/(м∙К).

    Химические свойства

    Химически ниобий довольно инертен. Хотя и не настолько, как тантал, но на холоде и при небольшом нагреве сорок первый элемент чрезвычайно устойчив к действию многих агрессивных сред, однако при высоких температурах химическая активность ниобия повышается. Компактный ниобий заметно окисляется на воздухе только при температуре выше 200 °С (если при 150...200 °C окисляется лишь небольшой поверхностный слой металла, то при 900...1 200 °C толщина окисной пленки значительно увеличивается), образуя Nb2О5 (окисел белого цвета, имеет кислотный характер и tпл = 1512 °С), причем для этого оксида описано около десяти кристаллических модификаций. При обычном давлении стабильна β-форма Nb2О5. Кроме того, сорок первый элемент образует NbO2 (полупроводник с tпл 2 080 °С, черного цвета), NbO, ряд нестехиометрических оксидов, промежуточных между NbO2,42 и NbO2,50 и близких по структуре к β-форме Nb2О5.

    Что интересно, окись ниобия NbO, сплавленная в слиток, обладает металлическим блеском и электропроводностью металлического типа, заметно испаряется при 1700° С, интенсивно - при 2 300-2 350 °С, что используют для вакуумной очистки ниобия от кислорода. При сплавлении пятиокиси ниобия с различными оксидами получают ниобаты: Ti2Nb10О29, FeNb49О124 - которые можно рассматривать, как соли гипотетических ниобиевых кислот (ниобиевые кислоты не выделены в виде определенных химические соединений). Ниобаты делятся на метаниобаты MNbO3, ортониобаты M3NbO4, пирониобаты M4Nb2O7 или полиниобаты M2O nNb2O5 (где M - однозарядный катион, а n = 2-12). Известны ниобаты двух- и трехзарядных катионов. Еще ниобаты получают в результате обменных реакций после сплавления пятиокиси ниобия с содой:

    Nb2O5 + 3Na2CO4 → 2Na3NbО4 + 3CO2

    Хорошо изучены соли нескольких ниобиевых кислот, в первую очередь метаниобиевой HNbO3, а также диниобаты и пентаниобаты (K4Nb2O7, К7Nb5О16 ∙ mH2O). Ниобаты реагируют с HF, расплавами гидрофторидов щелочных металлов (KHF2) и аммония. Некоторые ниобаты с высоким отношением M2O/Nb2O5 гидролизуются:

    6Na3NbO4 + 5H2O → Na8Nb6O19 + 10NaOH

    Для сорок первого элемента характерно свойство поглощения газов - водорода, азота и кислорода. Причем даже небольшие примеси данных элементов отрицательно влияют на механические и электрические свойства металла. При низкой температуре водород поглощается медленно, но уже при температуре примерно 360 °С водород поглощается с максимальной скоростью, причём происходит не только адсорбция, но и образуется гидрид переменного состава от NbH0,7 до NbH. Поглощённый водород придаёт металлу хрупкость, однако этот процесс обратим - при нагревании в вакууме выше 600 °С почти весь водород выделяется и прежние механические свойства восстанавливаются. Азот ниобий начинает поглощать при уже при 600 °С, при более высокой температуре образуется высший нитрид NbN светло-серого цвета с желтоватым оттенком, который плавится при 2 300 °С. В системе Nb - N существуют несколько фаз переменного состава и нитриды Nb2N и NbN.

    Углерод и углеродсодержащие газы (СН4, СО) при высокой температуре (1 200-1 400 °С) взаимодействуют с ниобием с образованием твёрдого и тугоплавкого карбида NbC (плавится при 3 500 °С). При температурах 1 800-2 000 °С ниобий образует с углеродом три фазы: α-фаза - твердый раствор внедрения углерода в ниобий, β-фаза - Nb2C, δ-фаза - NbC.

    Ниобий невосприимчив к действию большинства кислот и растворов солей. С ним не взаимодействуют царская водка, соляная и серная кислоты при 20 °С, азотная, фосфорная, хлорная кислоты, водные растворы аммиака и органические кислоты любой концентрации на холоду и при 100-150 °С. Металл растворяется в плавиковой кислоте и особенно интенсивно - в смеси плавиковой и азотной кислот. Менее устойчив сорок первый элемент в щелочах. Горячие растворы едких щелочей заметно разъедают металл, в расплавленных щелочах и соде он быстро окисляется с образованием натриевой соли ниобиевой кислоты.

    С галогенами ниобий образует пентагалогениды NbHal5, тетрагалогениды NbHal4 и фазы NbHal2,67 - NbHal3+x, в которых имеются группировки Nb3 или Nb2. Пентагалогениды ниобия легко гидролизуются водой. Из них наиболее важны пентафторид NbF5, пентахлорид NbCl5, окситрихлорид NbOCl3, фторониобат калия K2NbF7 и оксифторониобат калия K2NbOF7 Н2О.

    С фосфором ниобий образует фосфиды NbP и NbP2, с мышьяком - арсениды NbAs и NbAs2, с сурьмой - антимониды Nb3Sb, Nb5Sb4, NbSb2, с серой - сульфиды NbS3, NbS2 и NbS. Станнид Nb3Sn (tпл ~ 2130° С) и германид Nb3Ge (tпл ~ 1 970 °С) - сверхпроводники с температурами перехода в сверхпроводящее состояние соответственно 18,05 °К и 23,2 °К; получают их из простых веществ. Практически не действуют на ниобий очищенные от примеси кислорода жидкие Na, К и их сплавы, Li, Bi, Pb, Hg, Sn, применяемые в качестве жидкометаллических теплоносителей в атомных реакторах.