Аварии на трубопроводе происходят не только по техническим причинам: существует и ряд других, основным из которых является так называемый человеческий фактор. Огромное число катастроф происходит в результате халатности, как работников, так и начальства. Именно это и подчёркивается в ряде дальнейших примеров.

5 июня в Витебской области завершен ремонт более чем 40-километрового участка российского магистрального нефтепродуктопровода "Унеча -- Вентспилс". Одновременно был официально объявлен виновник крупнейшей аварии на этой транспортной линии.

Как сообщили БелаПАН в дирекции российского унитарного предприятия "Запад-Транснефтепродукт" (Мозырь), нефтепродукты по трубопроводу "Унеча -- Вентспилс" перекачиваются уже сорок лет. При проведении в 2005 году диагностики трубопровода специалисты обнаружили множество дефектов. Их виновником собственник нефтепровода считает предприятие-изготовителя -- Челябинский металлургический завод (Россия), на базе которого сейчас действуют четыре предприятия. После двух аварий на нефтепроводе в Бешенковичском районе Витебской области (в марте и мае 2007 года) специалисты "Запад-Транснефтепродукта" провели повторное исследование магистрали и собственными силами приступили к замене потенциально опасных участков. Транспортировка дизельного топлива из России в Латвию через Беларусь была приостановлена на 60 часов. За это время пять белорусских ремонтных бригад "Запад-Транснефтепродукта" из Мозыря и Речицы (Гомельская область), Сенно и Дисны (Витебская область), Кричева (Могилевская область) заменили 14 фрагментов нефтепровода.

Виновником его порывов на территории Бешенковичского района прокуратура определила Челябинский металлургический завод, который изготовил дефектные трубы в 1963 году.

Напомним, 23 марта 2007 года в Бешенковичском районе Витебской области произошел порыв нефтепродуктопровода "Унеча -- Вентспилс". В результате аварии дизельное топливо по мелиоративному каналу и реке Улла попало в Западную Двину и добралось до Латвии. "Запад-Транснефтепродукт" компенсировал Министерству по чрезвычайным ситуациям Беларуси убытки по устранению последствий аварии 23 марта. Министерство природных ресурсов и охраны окружающей среды Беларуси подсчитало ущерб, нанесенный экологии от первого разрыва нефтепровода. Предполагается, что до 15 июня сумма ущерба будет согласована с владельцем трубопровода и представлена общественности.

Второй прорыв трубы на нефтепродуктопроводе Унеча-Вентспилс произошел 5 мая. "Прорыв является локальным. Из нефтепровода вытекло небольшое количество нефтепродуктов", -- сказал тогда БелаПАН министр по чрезвычайным ситуациям Беларуси Энвер Бариев.

Он заверил, что авария не принесет тяжелых последствий для окружающей среды. "В реки нефтепродукты не попадут", -- сказал министр.

Симптоматично, что второй прорыв произошел возле деревни Бабоедово Бешенковичского района, вблизи того места, где в марте произошел первый крупный прорыв трубы.

Как говорится, где тонко, там и рвется.

27 февраля 2007 г. в Оренбургской области, в 22 км от г. Бугуруслан из внутрипромыслового трубопровода НГДУ "Бугурусланнефть" (подразделение входящего в "ТНК-ВР" ОАО "Оренбургнефть") произошла утечка нефти.

К счастью, или к несчастью, но разлив, объем которого по предварительным оценкам МЧС составил около 5 т, попал на лед реки Большая Кинель. К несчастью - труба прохудилась как раз в районе реки. К счастью - вроде бы нефть вылилась не прямо в воду, а на лед толщиной 40 см.

В Махачкале из-за порыва на нефтепроводе произошла утечка нефти. Утечка произошла в Ленинском районе города на участке нефтепровода диаметром 120 миллиметров.

В результате порыва нефтепровода вылилось около 250-300 литров нефти, пятно составляет около десяти квадратных метров. Для ликвидации аварии перекрыли поступление нефти на данном участке.

"Пятно обваловано (загрязнение локализовано)", - сообщили в МЧС. По его словам информации о пострадавших не поступала.

На месте работала оперативная группа МЧС Республики Дагестан. На данный момент ликвидацией аварии занимаются специалисты ОАО Дагнефтегаз.

Нефтепровод Омск - Ангарск - наиболее крупный (2 нитки диаметром 700 и 1000 мм) тянется от западной границы области и практически до восточной. Перекачивается сырая нефть. Нефтепровод принадлежит ОАО “Транссибнефть” АК “Транснефть” Министерства топлива и энергетики РФ. По Иркутской области нефтепровод эксплуатирует Иркутское районное нефтепроводное управление (ИРНПУ). В 2001 г. ИРНПУ разработан “План по предупреждению и ликвидации аварийных разливов нефти Иркутского районного нефтепроводного управления ОАО “Транссибнефть” - находится на согласовании. Количество аварий на нефтепроводе за период с 1993 г по 2001 г.:

  • 1. Март 1993 г. На 840 км магистрального нефтепровода Красноярск - Иркутск (поврежден трубопровод бульдозером) вылилось на рельеф 8 тыс. тонн нефти. Своевременно принятые меры по локализации места пролива позволили свести к минимуму последствия этой аварии. Пролитая нефть в основном была откачена в хранилища. Загрязненный грунт был собран и вывезен на утилизацию.
  • 2. Март 1993 г. На 643 км магистрального нефтепровода Красноярск - Иркутск (разрыв нефтепровода из-за дефекта сварного шва, момент аварии не был своевременно зафиксирован) на поверхность излилось более 32,4 тыс. тонн нефти. Принятые срочные меры по ликвидации последствий этой аварии позволили быстро нейтрализовать негативные явления. Однако около 1 тыс. тонн нефти проникло в недра и локализовалось в 150-300 м от действующего Тыретского хозяйственного водозабора подземных вод. Около 40% 2-го и 3-го поясов зоны санитарной охраны водозабора оказались загрязненными нефтью. Еще около 1 тыс. тонн нефти проникло в грунты на участке заболоченной поймы р. Унги и постепенно мигрировала ниже по течению в хозяйственно-ценный водоносный горизонт. Для сохранения Тыретского хозяйственного водозабора подземных вод от загрязнения нефтью был сооружен и задействован специальный защитный водозабор, который уже в течение 9 лет “отсекает” загрязненную нефтью воду от хозяйственного водозабора. Эколого-гидрогеологическая ситуация остается сложной в части загрязнения нефтью извлекаемой воды хозяйственным водозабором. На протяжении всех лет, после аварии осуществлялся государственный природоохранный контроль за ведением эколого-гидрогеологических работ в районе аварии. Каждый год проводятся совместные совещания лиц и служб, заинтересованных в очищении от загрязненных нефтью земель и подземных горизонтов (землепользователей, природоохранных органов, санэпиднадзора, гидрометеослужбы, гидрогеологов, нефтепроводного управления) - подводятся итоги мониторинга за прошедший год и определяется дальнейшая программа работ. Обслуживание систем мониторинга и контроля геологической среды в районе Тыретского водозабора до 1999 г. проводило по договору ГФГУП “Иркутскгеология”. С 1999 г - ИРНПУ
  • 3. Март 1995 г. На 464 км магистрального нефтепровода Красноярск - Иркутск (трещина серповидная на трубопроводе Ду 1000 мм, длина 0,565 м, ширина 0,006 м) на поверхность излилось 1683 м3 нефти. Нефть по руслу ручья (300 м) достигла реки Курзанки и растеклась по льду реки на расстояние 1150 м. При ликвидационных работах 1424 м3 нефти было собрано и откачено в резервный трубопровод Ду 700 мм. Река Курзанка до наступления весеннего паводка была полностью очищена от загрязнения. Безвозвратные потери нефти составили 259 м3, из которых 218.3 м3 было сожжено. Загрязненный нефтью грунт из русла ручья был снят и заскладирован в карьере, где организована его обработка биоприном.
  • 4. Январь 1998 г. На 373 км магистрального нефтепровода Красноярск - Иркутск (трещина длиною 380 мм на трубопроводе Ду 1000 мм) выход нефти на поверхность около 25 м3, собрано около 20 м3. Вывоз загрязненного снега произведен в нефтеловушки Нижнеудинской НПС.
  • 5. Ноябрь 1999 г. На 565 км магистрального нефтепровода Красноярск - Иркутск (разгерметизация трубопровода Ду 700, в результате повреждения задвижки во время ремонтных работ, с последующим возгоранием разлившейся нефти). Площадь загрязнения 120 м2, сгорело 48 тонн нефти.
  • 6. Декабрь 2001 г. на 393,4 км магистрального нефтепровода Красноярск - Иркутск (при опорожнении резервной нитки Ду 700мм, с перекачкой нефти ПНУ в трубопровод Ду 1000 мм), произошла разгерметизация всасывающей нитки насоса. На поверхность вылилось около 134 м3 нефти. Нефть локализовалась в пониженной части рельефа - естественный овраг, расположенный от места аварии на расстоянии 80 м. После устранения повреждения нефть из оврага - 115 м3 - откачана в действующий нефтепровод. Остатки нефти собраны спецмашиной. Объем безвозвратных потерь нефти составил 4 м3. Поверхность земли, загрязненная нефтью, обработана сорбентом “Эконафт” с последующей вывозкой загрязненного грунта на Нижнеудинскую НПС. По Предписанию КПР по Иркутской области организован мониторинг земель и поверхностных вод р. Уды

Федеральное агентство по образованию

Саратовский государственный

социально-экономический университет

кафедра безопасности жизнедеятельности

Реферат

«Аварии на трубопроводах».

Студентки первого курса УЭФ

Григорьевой Тамары Павловны

Руководитель: доцент кафедры

Баязитов Вадим Губайдуллович

Саратов,2007.


Введение.

1. Общие сведения о состоянии системы трубопроводов в РФ на 2008 год;

2.Аварии на нефтепроводах;

3.Аварии на газопроводе;

4.Аварии на водопроводе;

5.Последствия аварий на трубопроводах;

6.Самоспасение и спасение пострадавших при пожарах и взрывах на трубопроводах;

Заключение.

Список используемой литературы.

Введение:

По протяженности подземных трубопроводов для транспортировки нефти, газа, воды и сточных вод Россия занимает второе место в мире после США. Однако нет другой страны, где эти трубопроводные магистрали были бы так изношены. По оценкам специалистов МЧС России, аварийность на трубопроводах с каждым годом возрастает и в ХХI век эти системы жизнеобеспечения вошли изношенными на 50-70%. Утечки из трубопроводов приносят стране огромный экономический и экологический ущерб. Особенно большое количество аварий происходит в городах в результате утечек воды из изношенных коммуникаций – канализационных, тепловых и водопроводных сетей. Из разрушенных трубопроводов вода просачивается в грунт, повышается уровень грунтовых вод, возникают провалы и просадки грунта, что ведет к затоплению фундаментов, и в конечном счете грозит обрушением зданий. Зарубежный опыт показывает, что эту проблему можно решить, если вместо стальных трубопроводов применять трубы из пластмассы, а прокладку новых и ремонт изношенных осуществлять не открытым, а бестраншейным способом. Преимущества ремонта трубопроводов бестраншейным методом очевидны: затраты на ремонт снижаются в 6-8 раз, а производительность работ возрастает в десятки раз.

Наблюдается процесс постепенного перехода от традиционных строительных материалов к новым. В частности, при прокладке и реконструкции трубопроводов все чаще применяются полимерные трубы. По сравнению со стальными или чугунными они имеют ряд неоспоримых преимуществ: легкость транспортировки и монтажа, высокая коррозионная стойкость, большой срок эксплуатации, невысокая стоимость, гладкость внутренней поверхности. В таких трубах не ухудшается качество перекачиваемой воды, так как за счет гидрофобности поверхности в них не образуется различные отложения, как это происходит в стальных и чугунных трубопроводах. Пластмассовые трубы не требуют никакой гидроизоляции, в том числе и катодной защиты, они обеспечивают постоянную транспортировку воды, нефти и газа без больших затрат на техническое их обслуживание.

Опыт реконструкции и строительства подземных коммуникаций в Челябинске свидетельствует о том, что применение передовых бестраншейных технологий позволяет значительно удешевить и упростить такие работы. Особенно это актуально для центральных районов города, где работы по перекладке трубопроводов традиционным траншейным способом связаны со значительными трудностями: для проведения этих работ часто необходимо закрытие проездов, изменение маршрутов движения городского транспорта. Требуются многочисленные согласования с различными организациями. С внедрением новейших технологий появилась возможность осуществлять прокладку трубопроводов и инженерных коммуникаций без вскрытия поверхности и участия большого количества людей и тяжелой строительной техники. Таким образом, не нарушается движение городского транспорта, исключаются работы по устройству обходов, переходных мостиков, что особенно важно для города с плотной застройкой и высоким уровнем движения транспорта. Благодаря отсутствию неудобств и нецелесообразных затрат (по сравнению со строительством в траншеях трудозатраты снижаются примерно в 4 раза), применение данных технологий весьма эффективно. Во многих случаях применение современных технологий позволяет отказаться от строительства новых коммуникаций и путем реконструкции полностью восстановить и улучшить их технические характеристики.

Применение новейших технологий в подземном строительстве призвано решить главную задачу – повысить качество сооружаемых подземных объектов и обеспечить безопасность их эксплуатации. Правительство города уделяет самое пристальное внимание этому вопросу. К работам допускаются только специализированные организации, имеющие соответствующую лицензию. На всех стадиях строительства осуществляется многосторонний мониторинг, что обеспечивает получение данных о ходе выполнения проекта и изменениях в окружающей среде, производится постоянный контроль за изменением уровня грунтовых вод, осадками фундаментов близлежащих зданий, деформацией грунтового массива.


1. Общие сведения о состоянии системы трубопроводов в РФ на 2008

В предаварийном состоянии находятся промысловые трубопроводные системы большинства нефтедобывающих предприятий России. Всего на территории Российской Федерации находится в эксплуатации 350 тыс. км внутрипромысловых трубопроводов, на которых ежегодно отмечается свыше 50 тыс. инцидентов, приводящих к опасным последствиям. Основными причинами высокой аварийности при эксплуатации трубопроводов является сокращение ремонтных мощностей, низкие темпы работ по замене отработавших срок трубопроводов на трубопроводы с антикоррозионными покрытиями, а также прогрессирующее старение действующих сетей. Только на месторождениях Западной Сибири эксплуатируется свыше 100 тыс. км промысловых трубопроводов, из которых 30% имеют 30-летний срок службы, однако в год заменяется не более 2% трубопроводов. В результате ежегодно происходит до 35–40 тыс. инцидентов, сопровождающихся выбросами нефти, в том числе в водоемы, причем их число ежегодно увеличивается, а значительная часть инцидентов преднамеренно скрывается от учета и расследования.

Аварийность на объектах магистрального трубопроводного транспорта уменьшилась на 9%. Действующая на территории Российской Федерации система магистральных нефтепроводов, газопроводов, нефтепродуктопроводов и конденсатопроводов не отвечает современным требованиям безопасности.

В процессе реформирования экономики и в результате изменений на рынках нефти происходит постоянное снижение объемов финансирования нового строительства, капитального ремонта, реконструкции, модернизации, технического обслуживания и текущего ремонта физически изношенных и морально устаревших объектов магистральных трубопроводов. Крайне недостаточно финансируются разработки нового оборудования, приборов и технологий дефектоскопии трубопроводов и оборудования, а также разработка новых нормативных документов и пересмотр устаревших.

Отсутствует законодательная база государственного регулирования безопасности функционирования магистральных трубопроводов, в связи с чем назрела необходимость принятия федерального закона о магистральных трубопроводах. Разработка этого закона, начавшаяся в 1997 г., до сих пор не завершена.

В Российской Федерации общая протяженность подземных нефте-, водо- и газопроводов составляет около 17 миллионов километров, при этом из-за постоянных интенсивных волновых (колебаний давления, гидроударов) и вибрационных процессов, участки этих коммуникаций приходится постоянно ремонтировать и полностью заменять. Весьма актуальны вопросы защиты от коррозии для нефтяной, нефтегазодобывающей, перерабатывающей и транспортирующей отраслей, вследствие металлоемкости резервуаров хранения нефтепродуктов и прочих сооружений, наличие здесь агрессивных сред и жестких условий эксплуатации металлоконструкций. Убытки, вызываемые гидроударами и коррозией, составляли для Минтопэнерго бывшего СССР несколько сотен миллиардов долларов и около 50 тыс. т. черных металлов в год. При общей динамики аварийности, по оценкам экспертов, причинами разрыва трубопроводов являются:

60% случаев – гидроудары, перепады давления и вибрации

25% - коррозионные процессы

15% - природные явления и форс-мажорные обстоятельства.

В течение всего срока эксплуатации трубопроводы испытывают динамические нагрузки (пульсации давления и связанные с ними вибрации, гидроудары и т.д.). Они возникают при работе нагнетательных установок, срабатывании запорной трубопроводной арматуры, случайно возникают при ошибочных действиях обслуживающего персонала, аварийных отключениях электропитания, ложных срабатываниях технологических защит и т.п.

Техническое же состояние эксплуатируемых по 20-30 лет трубопроводных систем оставляет желать лучшего. Замена изношенного оборудования и трубопроводой арматуры в последние 10 лет ведется крайне низкими темпами. Именно поэтому наблюдается устойчивая тенденция увеличения аварийности на трубопроводном транспорте на 7-9% в год, о чем свидетельствуют ежегодные Государственные доклады «О состоянии окружающей природной среды и промышленной опасности Российской Федерации».

Участились аварии на трубопроводах, сопровождающиеся большими потерями природных ресурсов и широкомасштабным загрязнением окружающей среды. По официальным данным только потери нефти из-за аварий на магистральных нефтепроводах превышают 1 млн тонн в год и это без учета потерь при прорывах внутрипромысловых трубопроводов.

Вот лишь несколько примеров аварий на нефтепроводах за 2006г.:

В результате крупной аварии на магистральном нефтепроводе "Дружба" на территории Суражского района Брянской области на границе с Белоруссией нефтью загрязнены рельеф местности, водные объекты и земли государственного лесного фонда. Заместитель главы Росприроднадзора отметил, что на участке нефтепровода "Дружба", где произошла авария, с весны 2006 года было обнаружено 487 опасных дефектов. Причиной аварии на нефтепроводе послужила коррозия труб.

– это опасное происшествие на трубопроводе, связанное с выбросом и (или) выливом под давлением опасных химических пожаровзрывоопасных или нейтральных веществ (жидких, газообразных или многофазных), приводящее к возникновению техногенной чрезвычайной ситуации и наносящее ущерб человеку, объектам техносферы и окружающей среде. Аварийное предельное состояние трубопроводов соответствует полному отказу трубопровода из-за чрезмерных нагрузок и (или) локального повреждения с обязательной потерей целостности трубопровода (течь/разрыв).

Развитие энергетики, в т.ч. атомной, ракетно-космической и авиационной техники, химической промышленности, связано с широким использованием трубопроводов высокого (до 10 Мпа) и сверхвысокого (до 500 Мпа) давления. Непрерывный рост масштабов производства и переработки углеводородного сырья обусловливает увеличение единичных мощностей и концентрации технологических и магистральных трубопроводов общей протяженностью до 400 тыс. км и давлением до 25 Мпа на производственных площадях и магистралях горючих и взрывоопасных продуктов и прежде всего сжиженных углеводородных газов, нефти, широких фракций углеводородов. Это, в свою очередь, ведет к увеличению масштабов, числа и тяжести пожаров, мощности аварийных взрывов и осложнению оперативной обстановки при аварии.

Причинами А. на т. могут быть: механические повреждения из-за усталости, химическая и электрохимическая коррозия, технологические дефекты, внешние электромагнитные воздействия, ошибочные действия операторов и персонала, террористические акты. Крупные аварии и взрывы на трубопроводах, как правило, сопровождаются утечкой радиоактивных теплоносителей, легковоспламеняющихся и химически опасных жидкостей и газов, сжиженных углеводородных газов. Особую опасность представляют большие залповые выбросы этих веществ, при которых создаются значительные трудности локализации аварий и защиты людей.

В последние годы значительно возросло производство, транспортирование и потребление жидкого аммиака на производящих (до 70 тыс. т), перерабатывающих предприятиях, транспортирующих базах (на припортовых базах – до 130 тыс. т). На химических предприятиях в больших объемах производят, хранят и транспортируют жидкий хлор. Быстрый рост его производства обусловливает увеличение объемов складов, а следовательно, и увеличение потенциальной опасности А. на т.

На стартовых ракетных комплексах, использующих жидко-реактивные двигатели, широко применяются специальные трубопроводные системы (с давлением до 60 Мпа и температурами до 1200 °С) для жидких топлив и окислителей, создающих опасность пожаров, взрывов и заражений. В объектах ядерной энергетики по трубопроводам прокачиваются со скоростями до 50 м/с водяной и паровой теплоносители, жидкие металлы (натрий, свинец, висмут) с давлениями до 20 Мпа и температурами до 650 °С. При авариях на таких трубопроводах возникают: опасные струйные течи, разрушающие инженерные сооружения, мощные реактивные силы, перемещающие трубопроводы на десятки и сотни метров; большие осколочные эффекты.

Особо опасны аварии на главных циркуляционных трубопроводах и трубных пучках парогенераторов ядерных энергетических установок с потерей радиоактивного теплоносителя.

Аварии с образованием течи или полным разрушением на технологических и магистральных трубопроводах создают опасность пожаров и загрязнений почв и акваторий. Трубопроводы, транспортирующие широкие фракции углеводородов, при образовании течей создают исключительно высокую опасность взрывов и пожаров вследствие скопления больших масс этих веществ в низинах в связи с большей плотностью, чем плотность воздуха.

Для предотвращения А. на т. используются современные методы расчетов и испытаний на прочность и ресурс, методы штатной и оперативной диагностики (в т.ч. внутритрубной), методы обнаружения и локации течей, специальные системы крепления трубопроводов, их прокладки в каналах и туннелях. Высокую эффективность показывают плакирование трубопроводов и системы коррозионной защиты, системы гашения пульсаций давления и вибраций. Новые технологии ремонтно-восстановительных работ на аварийных трубопроводах (с применением композиционных материалов и материалов с памятью формы) позволяют не останавливать их эксплуатацию. При обнаружении опасных утечек из аварийных трубопроводов используются системы оповещения персонала и населения и достаточно сложные технологии ликвидации последствий аварийных ситуаций.

Доминирующими причинами аварий на магистральных газопроводах являются следующие:

Коррозионное разрушение газопроводов, 48%;

Брак строительно-монтажных работ (СМР), 21%;

Обобщенная группа механических повреждений, 20%;

Заводские повреждения труб 11%.

Где, обобщенная группа механически повреждений следующая:

Случайное повреждение при эксплуатации, 9%;

Террористические акты, 8%;

Природные воздействия, 3%.

Большинство аварий на магистральных трубопроводах ограничивается утечкой газа, равной объему трубы до отключающей арматуры. Или горение факела. Но также возможны большие катастрофы, как например, Железнодорожная катастрофа под Уфой - крупнейшая в истории России и СССР железнодорожная катастрофа, произошедшая 4 июня (3 июня по московскому времени) 1989 года в Иглинском районе Башкирской АССР в 11 км от города Аша (Челябинская область) на перегоне Аша - Улу-Теляк. В момент прохождения двух пассажирских поездов №211 «Новосибирск-Адлер» и №212 «Адлер-Новосибирск» произошёл мощный взрыв облака лёгких углеводородов, образовавшегося в результате аварии на проходящем рядом трубопроводе «Сибирь-Урал-Поволжье». Погибли 575 человек (по другим данным 645), 181 из них - дети, ранены более 600.

На трубе продуктопровода «Западная Сибирь-Урал-Поволжье», по которому транспортировали широкую фракцию лёгких углеводородов (сжиженную газобензиновую смесь), образовалась узкая щель длиной 1,7 м. Из-за протечки трубопровода и особых погодных условий газ скопился в низине, по которой в 900 метрах от трубопровода проходила Транссибирская магистраль, перегон Улу-Теляк - Аша Куйбышевской железной дороги, 1710-й километр магистрали, в 11 километрах от станции Аша, на территории Иглинского района Башкирской АССР.

Примерно за три часа до катастрофы приборы показали падение давления в трубопроводе. Однако вместо того, чтобы искать утечку, дежурный персонал лишь увеличил подачу газа для восстановления давления. В результате этих действий через почти двухметровую трещину в трубе под давлением вытекло значительное количество пропана, бутана и других легковоспламенимых углеводородов, которые скопились в низине в виде «газового озера». Возгорание газовой смеси могло произойти от случайной искры или сигареты, выброшенной из окна проходящего поезда.

Машинисты проходящих поездов предупреждали поездного диспетчера участка, что на перегоне сильная загазованность, но этому не придали значения.

4 июня 1989 года в 01:15 по местному времени (3 июня в 23:15 по московскому времени) в момент встречи двух пассажирских поездов прогремел мощный объёмный взрыв газа и вспыхнул гигантский пожар.

В поездах №211 «Новосибирск-Адлер» (20 вагонов, локомотив ВЛ10-901) и №212 «Адлер-Новосибирск» (18 вагонов, локомотив ЧС2-689) находилось 1284 пассажира (в том числе 383 ребёнка) и 86 членов поездных и локомотивных бригад. Ударной волной с путей было сброшено 11 вагонов, из них 7 полностью сгорели. Оставшиеся 27 вагонов обгорели снаружи и выгорели внутри. По официальным данным 575 человек погибло (по другим данным 645), 623 стали инвалидами, получив тяжёлые ожоги и телесные повреждения. Детей среди погибших - 181.

Официальная версия утверждает, что утечка газа из продуктопровода стала возможной из-за повреждений, нанесённых ему ковшом экскаватора при его строительстве в октябре 1985 года, за четыре года до катастрофы. Утечка началась за 40 минут до взрыва.

По другой версии причиной аварии явилось коррозионное воздействие на внешнюю часть трубы электрических токов утечки, так называемых «блуждающих токов» железной дороги. За 2-3 недели до взрыва образовался микросвищ, затем, в результате охлаждения трубы в месте расширения газа появилась разраставшаяся в длину трещина. Жидкий конденсат пропитывал почву на глубине траншеи, не выходя наружу, и постепенно спускался вниз по откосу к железной дороге.

При встрече двух поездов, вероятно в результате торможения, возникла искра, которая послужила причиной детонации газа. Но скорее всего причиной детонации газа явилась случайная искра из-под пантографа одного из локомотивов.

Рисунок 2.1 - катастрофа под Уфой

Одна из ключевых проблем обеспечения промышленной и пожарной безопасности - установление минимальных безопасных расстояний между источниками аварий и соседними сооружениями и объектами. Требования к обоснованию минимальных безопасных расстояний, в том числе на основе моделирования и расчета последствий аварий, содержатся в ряде нормативных правовых документов.

Особенно актуальна задача определения минимальных безопасных расстояний в связи с развитием системы магистральных трубопроводов (МТ). Анализ аварийности показывает, что аварии с гибелью людей на российских МТ достаточно редки, однако в условиях их прокладки вблизи населенных пунктов, объектов производственной и транспортной инфраструктуры не исключена возможность поражения людей при аварии. Особый резонанс вызывают крупные промышленные аварии с групповой гибелью людей. Ниже представлены масштабы и особенности некоторых крупных аварий на МТ:

Под минимальным безопасным расстоянием понимается минимальное допустимое расстояние от оси линейной части магистрального трубопровода до соседних зданий, строений, сооружений, населенных пунктов, транспортных путей, устанавливаемое в целях обеспечения безопасности людей.

  • 1 июля 1959 г. Мексика, штат Веракрус, Коацакоалькос. Взрыв и пожар на нефтепроводе. Погибли 12 человек, более 100 ранены.
  • 19 июля 1960 г. США, штат Висконсин, Меррил. При проведении земляных работ произошла разгерметизация газопровода. Утечка газа с последующим взрывом стали причиной гибли 10 человек.
  • 4 марта 1965 г. США, штат Луизиана, Натчиточес. Взрыв на 32-дюймовом газопроводе компании «Теннесси». Погибли 17 человек, 9 получили ранения. Причина - разгерметизация газопровода из-за коррозионного растрескивания под напряжением.
  • 29 мая 1968 г. США, штат Джорджия, Хэпвиль. Бульдозер задел дюймовый газопровод у детского сада, в результате произошли взрыв и пожар. Семь детей и двое взрослых погибли, трое детей получили серьезные ранения.
  • 4 июня 1989 г. СССР, Уфа. Авария на магистральном продуктопроводе (ВЫ 700, Рра6 = 3,5 -г 3,8 МПа) под Уфой на перегоне между станциями Казаяк и Улу-Теляк на 1710-м км Куйбышевской железной дороги с выбросом и воспламенением паров широкой фракции легких углеводородов (ШФЛУ). Расстояние дрейфа облака 900-1350 м. В зоне взрыва оказались два пассажирских поезда. Погибли 573 человека, более 600 получили травмы различной степени тяжести. В районе взрыва образовалась зона сплошного завала леса площадью 2,5 км2. В радиусе до 15 км от места взрыва в домах населенных пунктов выбиты стекла, частично разрушены рамы и шиферные фронтоны.
  • 17 октября 1998 г. Нигерия, штат Дельта, Джесси. Произошел взрыв на трубопроводе Нигерийской национальной нефтяной корпорации, перекачивающем бензин. Причина аварии - умышленное повреждение трубопровода. Жители ближайших деревень пришли к разрушенному трубопроводу для сбора разлившегося топлива. Произошли взрыв и пожар, в результате которых погибли около 1200 человек. Пожар удалось потушить только 23 октября.
  • 10 июля 2000 г. Нигерия, штат Дельта, Джесси. Разгерметизация трубопровода с последующим взрывом. Погибли около 250 человек.
  • 16 июля 2000 г. Нигерия, штат Дельта, Варри. При разрушении трубопровода и последующем взрыве погибли 100 жителей деревни.
  • 19 августа 2000 г. США, штат Нью-Мексико, Карлсбад. Воспламенение газа при разрыве 30-дюймового газопровода привело к гибели 12 человек, находившихся в кемпинге в 180 м от места аварии. На месте разрыва газопровода образовался котлован 16 м в ширину и 24 м в длину. 15-метровый участок трубы был вырван и выброшен из котлована в виде трех осколков (наибольший - на расстояние 87м). Причина аварии - внутренняя коррозия.
  • 30 ноября 2000 г. Нигерия, штат Лагос. Утечка нефтепродукта из трубопровода с последующим воспламенением. Погибли около 60 жителей рыбацкой деревни.
  • 19 июня 2003 г. Нигерия, штат Абия. При попытке хищения нефтепродукта из трубопровода произошел взрыв. Погибли 125 жителей близлежащей деревни.
  • 30 июля 2004 г. Бельгия, Брюссель. Утечка и взрыв газа на магистральном газопроводе (МГ) (ОЫ 900) газоперерабатывающего завода Ви1а§аг в 40 км от Брюсселя. Цепь взрывов уничтожила две фабрики, оставив между заводами большой кратер. Тела погибших и обломки оборудования были разбросаны в радиусе 500 м от места катастрофы. На расстоянии до 150 м выгорели все припаркованные автомобили, растительность выгорела на расстоянии до 250 м. Действие взрывной волны ощущалось на расстоянии до 10 км от места аварии. Погибли 24 человека (на расстоянии до 200 м), более 120 получили серьезные ожоги и ранения. Большинство погибших - полицейские и пожарные, прибывшие на место утечки по тревоге.
  • 17 сентября 2004 г. Нигерия, штат Лагос. При попытке хищения нефтепродукта из трубопровода произошел взрыв. Погибли десятки людей.
  • 12 мая 2006 г. Нигерия, штат Лагос. Произошел взрыв на нефтепроводе при попытке хищения нефти. Погибли около 150 человек.
  • 26 декабря 2006 г. Нигерия, штат" Лагос. Вандальные действия привели к взрыву нефтепровода. Погибли более 500 человек.
  • 16 мая 2008 г. Нигерия, штат Лагос. Бульдозером поврежден подземный нефтепровод. В результате взрыва и последующего пожара погибли около 100 человек.
  • 19 декабря 2010 г. Мексика, Сан Мартин Тексмелукан де Лабастида. Взрыв на насосной станции Ре1го1еок Мех1сапо8 привел к разгерметизации нефтепровода с последующим истечением горящей нефти. Погибли 27 человек, 52 были
  • ранены. Взрыв вызван неудачной попыткой врезки в нефтепровод в целях хищения нефти.
  • 12 сентября 2011 г. Кения, Найроби. В промышленном районе Лунга Лунга разгерметизировался трубопровод Кенийской трубопроводной компании, перекачивающий бензин, дизельное и реактивное топливо. Часть топлива попала в реку. Люди в соседних густонаселенных трущобах Синая начали собирать вытекающее топливо, оно взорвалось, образовав гигантский огненный шар. Пожар распространился на близлежащие трущобы. Источник воспламенения - искры с горящей свалки. Около 100 человек погибли, 116 были госпитализированы с различной степенью ожогов. Тела погибших и фрагменты построек были найдены в 300 м от места взрыва.

Среди перечисленных аварий обращают на себя внимание многочисленные случаи взрывов при аварийной разгерметизации на магистральных нефте-и продуктопроводах (МН) в Мексике, Нигерии и Кении, что, очевидно, связано с теплым климатом, способствующим при утечках образованию топлив-но-воздушных смесей (ТВС) из-за повышенной температуры окружающей среды. Большое количество пострадавших обусловлено напряженными социальными условиями близпроживающего населения.

Методические подходы к установлению минимальных безопасных расстояний условно можно разделить на три направления, основанные на использовании: фактических данных о зафиксированных при авариях зонах поражения («апостериорный» подход); расчетов максимальных размеров зон поражения; количественной оценки риска (КОР) аварий.

Достоверность данных в первом случае базируется на представительности статистических данных об известных крупных авариях на МТ, во втором - на расчете и моделировании последствий аварий с наиболее протяженными зонами поражения, в третьем - на учете вероятности возникновения аварии с определенными последствиями и использовании критериев приемлемого (допустимого) риска. В любом из этих подходов могут использоваться «коэффициенты запаса», компенсирующие неполноту существующих знаний и представлений.

Рассмотрим для каких видов МТ (газо-, нефтепроводы, трубопроводы СУГ) и в каких случаях преимущественно используются обозначенные выше подходы к установлению минимальных безопасных расстояний.

Наиболее распространенным и устоявшимся способом является определение безопасных расстояний исходя из опыта происшедших аварий на аналогичных объектах. Этот подход частично (совместно с моделированием последствий) реализован в пп. 3.16, 12.3 СНиП 2.05.06-85* «Магистральные трубопроводы». Анализ происшедших достаточно многочисленных аварий на МГ показывает, что размеры зон поражения людей (разлет осколков, тепловое излучение от горения струй) лежат в диапазоне от 100 до 350 м от оси трубы и определяются в первом приближении диаметром и давлением в трубопроводе. В данном случае достаточно представительная статистика аварий не требует, как правило, применения дополнительных «коэффициентов запаса» по безопасности, и минимальные безопасные расстояния принимаются эквивалентными максимальным наблюдавшимся зонам поражения

Опыт аварии под Уфой в 1989 г. обозначил повышенную опасность выбросов сжиженных углеводородных газов (СУГ), связанную с мгновенным вскипанием перегретых жидкостей и образованием протяженных облаков тяжелых газов, способных распространяться у поверхности земли с сохранением способности к воспламенению на расстоянии в несколько километров. Следствие этой катастрофы - десятикратное увеличение нормативных значений безопасных расстояний1 от МТ СУГ до объектов с присутствием людей.

Второй способ установления минимальных безопасных расстояний для МТ - расчет зон поражения при максимальной гипотетической аварии (МГА) с рассмотрением конкретного участка трубопровода (профиль трассы, задвижки и т.д.), свойств транспортируемых углеводородов, технологических параметров перекачки, условий окружающей среды и действий по локализации и ликвидации аварии. «Коэффициент запаса» по безопасности в этом случае неявно заложен в допущениях и предположениях о возникновении и развитии аварии и определяется степенью пессимистичности при выборе рассчитываемого сценария МГА.

Данный детерминистский подход основан на расчете сценария с полным разрушением МТ и максимальной дальностью распространения поражающих факторов при аварийных выбросах опасных веществ. В табл. 1 приведены примеры рассчитанных по программному комплексу ТОКСИ+ зон смертельного поражения человека при авариях на отдельных участках МТ по данным деклараций промышленной безопасности и отчетам по КОР.

Среди основных поражающих факторов, характерных для аварий на МГ, наиболее значимым по размерам зон поражения является термическая радиация от горящих струй газа (см. табл. 1).

При расчете максимальной зоны поражения на МН и МТ СУГ принимается максимальный размер утечки для рассматриваемого участка трассы, консервативно оценивается площадь разлива нефти (нефтепродукта) и рассчитывается расстояние, на которое может дрейфовать облако их паров, сохраняя способность к воспламенению.

Таблица 1

Последствия аварии

Поражающий фактор

Зона действия поражающего фактора, м

МГОЫ600, Р=5,7МПа

Расширение газа

Барическое (Воздействие^

Механическое воздействие

Горение струи

Термическое воздействие

Пожар в котловане

МНОЫ1000, Р=6,ЗМПа

Пожар пролива

Термическое воздействие

Воспламенение облака ТВС

МТ ШФЛУ ОМ 700, Р = 5,5 МПа

Пожар пролива

Термическое воздействие

Воспламенение облака ТВС

Горение струи

Рассе­яние опасных веществ в атмосфере рассчитывается по Методическим указаниям по оценке последст­вий аварийных выбросов опасных веществ (РД-03-26-2007) при наихудших условиях рассеяния в при­земном слое атмосферы. В качестве консервативной оценки минимального безопасного расстояния при расчете дрейфа пожаровзрывоопасного облака принимается расстояние, на котором облако рас­сеивается до концентрации, равной половине ни­жнего концентрационного предела воспламенения (НКПВ), что учитывает неоднородность распреде­ления концентрации в облаке. При необходимости рассматриваются и возможность сгорания (взрыва) дрейфующего облака, и соответствующие данному процессу зоны поражения с учетом допущений.

Основанный на анализе последствий аварии подход также применим для определения безопа­сных расстояний для «типового» участка МГ, так как расстояния, установленные по расчетам терми­ческого поражения от горящих струй газа, незна­чительно отличаются от расстояний, зарегистриро­ванных при авариях, а результаты расчета по модели имеют меньший набор исходных данных и при­нятых допущений по сравнению с моделями расчета последствий аварий на МН и МТ СУГ.

Третий способ обоснования минимальных без­опасных расстояний основан на использовании КОР, позволяющей оценить возможность возник­новения аварии, в том числе МГА.

На рассматриваемом участке трассы МТ рассчи­тываются варианты выброса для всего диапазона размеров дефектных отверстий (от свища до гильотинного разрыва трубопровода) и все возможные исходы аварий на основе дерева событий.

При моделировании распределения в пространстве зон действия поражающих факторов учитываются вероятность возникновения аварии и условная вероятность развития аварии по тому или иному сценарию. Критерии поражения человека определяются по пробит-функции.

В качестве безопасного принимается расстояние, на котором рассчитанное значение потенциального риска гибели человека не превышает уровня, заданного в качестве допустимого.

Согласно п. 4.2.6 Методических указаний по проведению анализа риска опасных производственных объектов (РД 03-418-01) критерии приемлемости риска аварии определяются на основе нормативных правовых документов (например, для МТ горючих веществ целесообразно учитывать критерии) или обосновываются в проектной документации, исходя из опыта эксплуатации аналогичных объектов.

Практика использования КОР по модели, основанной на, при декларировании и разработке специальных технических условий показала, что размер зон поражения и тяжесть последствий при авариях на МТ, определяющие минимальные безопасные расстояния, связаны с технологическими параметрами трубопровода (диаметр, давление), характеристиками перекачиваемого продукта, в том числе пожаро-, взрывоопасными или токсическими свойствами, агрегатным состоянием в трубопроводе (газ, жидкость, в том числе сжиженный газ); особенностями окружающей местности (рельеф); метеоусловиями (температура воздуха, скорость и направление ветра, стратификация (устойчивость) атмосферы); уязвимостью объектов воздействия (наличие селитебных зон, производственных объектов, транспортной инфраструктуры); эффективностью системы обнаружения и ликвидации утечки, действий персонала.

Отметим, что значимость указанных факторов зависит от вида МТ (МГ, МН или МТ СУГ).

Например, основными факторами, определяющими сценарии развития аварий на МГ и зоны поражения людей являются: несущая способность грунта, давление в месте разрыва, расположение места разрыва относительно компрессорных станций и линейных запорных кранов, а метеорологические факторы (скорость и направление ветра, класс стабильности атмосферы, влажность воздуха) влияют незначительно.

Напротив, для МТ СУГ, наибольшая аварийная опасность которых определяется возможностью дрейфа и воспламенения облаков ТВ С, размеры зон поражения существенно зависят от метеорологических факторов в момент аварии.

Также отметим слабое влияние расстояний между узлами запорной арматуры на рассчитанные максимальные зоны поражения при авариях

Расчеты минимальных безопасных расстояний с использованием методологии количественного анализа риска аварий показывают, что для современных продуктопроводов СУГ размеры аварийно-опасных зон для пребывания людей не превышают 1,4 км, тогда как детерминистские расчеты дают оценку размеров зон смертельного поражения до 2,4 км. Соотношения размеров зон, рассчитанных по разным подходам, зависят от вероятности возникновения аварии, рассматриваемой в качестве МГА.

Таким образом, из анализа нормативной базы, аварий и результатов расчета последствий аварийных выбросов опасных веществ и оценки риска аварий на МТ можно сделать следующие выводы:

1. Установлено влияние на размеры зон поражения и безопасных расстояний технологических параметров трубопровода, характеристик перекачиваемого продукта, особенностей окружающей местности, метеоусловий и иных факторов. Значимость указанных факторов зависит от вида МТ (МГ, МН или МТ СУГ), поэтому для решения практических задач необходимы анализ опасности конкретных участков МТ и обоснованный выбор критериев безопасности.

2. Применение методологии количественной оценки риска позволяет обосновывать минимальные безопасные расстояния, размер которых может быть существенно меньше нормативных или определенных зон поражения при МГА.

3. Представленные результаты предлагается использовать при разработке нормативных документов по безопасности объектов трубопроводного транспорта, в том числе законопроекта - Технического регламента о безопасности магистральных трубопроводов для транспортировки жидких и газообразных углеводородов и Правил безопасности для магистральных трубопроводов

Таблица 3

Параметры трубопро­вода

Район проклад­ки трубопровода

Расстояние по СНиП 2.05.06-85* (до населенных пунктов), м

Зона действия поражающих факторов при МГА, м

Расстояние, м, на кото­ром достигается потен­циальный риск гибели человека, год- 1

ОМ 250, Р а6 = 1 ,8 МПа

Самарская обл.

ОМ 500, /> ра6 = 3,3 МПа

Ямало-Ненец­кий автономный округ

Не определено (для продуктопроводов ОЫ 400 - 3000-5000 м)

ОМ 700, Р раб = 5,5МПа

Ханты-Мансий­ский автоном­ный округ