Основным компонентом автономной системы газоснабжения является пропан-бутановая смесь. При этом многие не понимают, зачем смешивают пропан и бутан , ведь каждый газ может использоваться как самостоятельное топливо. Тем не менее, в некоторых регионах России данные углеводороды нельзя применять в чистом виде для газификации объектов, что связано с их физико-химическими свойствами и климатическим фактором.

Свойства СУГ

Чтобы понять, зачем смешивают пропан с бутаном, необходимо знать особенности каждого компонента, в том числе их взаимодействие с внешней средой. С точки зрения молекулярного строения они относятся к углеводородным соединениям, которые можно хранить в жидком состоянии, что значительно упрощает транспортировку и эксплуатацию.

Одним из условий образования жидкого газа является высокое давление, поэтому его хранят в специальных резервуарах под давлением 16 бар. Второе условие для перехода углеводородных газов из одного состояния в другое – внешняя температура воздуха. Пропан закипает при -43°С, тогда как преобразование из жидкого в газообразное состояние у бутана происходит при -0,5°С, что является основным отличием данных углеводородов.

Таблица с некоторыми другими свойствами данных газов

Дополнительную информацию о свойствах сжиженного углеводородного газа можно прочитать в статье: пропан-бутан для газгольдера – свойства и особенности применения .

Зачем смешивают пропан и бутан в автономной системе газоснабжения

Учитывая физико-химические характеристики насыщенных углеводородов, их применение во многом зависит от климатических условий. Сжиженный бутан в чистом виде не будет работать при отрицательных температурах. Тогда как применение чистого пропана противопоказано в условиях жаркого климата, поскольку высокая температура вызывает чрезмерное повышение давления в газовом резервуаре.

Так как для каждого региона нецелесообразно производить отдельную марку газа, с целью унификации ГОСТом предусмотрена смесь с определенным содержанием двух компонентов в рамках установленных норм. Согласно ГОСТ 20448-90 максимальное содержание бутана в данной смеси не должно превышать 60%, при этом для северных регионов и в зимнее время года доля пропана должно быть не меньше 75%.

Процентное соотношение газов в разное время года

Кстати, больше статей нашего блога о газификации — в этом разделе.

Технологический фактор

Помимо климатического фактора, существует технологическое обоснование того, зачем смешивают пропан и бутан. На нефтеперерабатывающих предприятиях в процессе переработки попутных газов пропан и бутан производятся в разных количествах. Поэтому для оптимизации сырьевой политики данные углеводороды смешивают между собой в определенной пропорции. При этом, независимо от технологии изготовления сжиженного углеводородного газа, процентное содержание двух составляющих должно находиться в рамках, установленных ГОСТом.

Ценовая политика при заправке СУГ

Стоимость пропана-бутана зависит от содержания в нем первого (более дорогого) компонента. Поэтому неудивительно, что «зимняя» смесь для заправки автономной системы газоснабжения будет дороже «летней». Однако, если какая-либо компания предлагает заправку по цене, значительно уступающей среднерыночной, тогда ее представителю необходимо задать следующие вопросы:

  • Почему стоимость СУГ такая низкая?
  • Какое соотношение пропана-бутана?
  • Как этот состав будет работать зимой?
  • Есть ли в наличии соответствующая техническая документация?
  • Можно ли обратиться в компанию при возникновении проблем?

Будьте осторожны! Дешевая смесь может затем обойтись гораздо дороже.

Некоторые компании хитрят, предоставляя «зимнюю» смесь, которая не соответствует ГОСТу. Поэтому невысокая стоимость СУГ должна, как минимум, насторожить покупателя.

Чтобы избежать проблем с газификацией своего дома, обращайтесь в компанию «Промтехгаз», которая уже доказала свой профессионализм и надежность. О чем свидетельствуют хорошие позиции на рынке, и отсутствие отрицательных отзывов от клиентов.

Сжиженные углеводородные газы (СУГ) получают из попутного нефтяного газа. Это чистые газы или специальные смеси, которые могут быть использованы для отопления домов, в качестве автомобильного топлива, а также производства нефтехимической продукции.

ШФЛУ на ГФУ

Сжиженные углеводородные газы получают из широкой фракции легких углеводородов (ШФЛУ), которую, в свою очередь, выделяют из попутного нефтяного газа (ПНГ).

Разделение ШФЛУ на составляющие ее компоненты - индивидуальные углеводороды - происходит на газофракционирующих установках (ГФУ). Процесс разделения похож на разделение ПНГ. Однако в данном случае разделение должно быть более тщательным. Из ШФЛУ в процессе газофракционирования могут получаться различные продукты. Это может быть пропан или бутан, а также смесь пропан-бутана (ее называют СПБТ, или смесь пропана-бутана технических). СПБТ - наиболее распространенный вид сжиженных газов - именно в этом виде этот продукт поставляется населению, промышленным предприятиям и отправляется на экспорт. Так, из 2,034 млн тонн СУГ, реализованных «Газпром газэнергосеть» в 2012 году, на смесь пропан-бутана пришлось 41%, на бутан - треть поставок, на пропан - около 15%.

Также путем разделения ШФЛУ получают технический бутан и технический пропан, пропан автомобильный (ПА) или смесь ПБА (пропан-бутан автомобильный).

Существуют и другие компоненты, которые выделяют путем переработки ШФЛУ. Это изобутан и изобутилен, пентан, изопентан.

Как применяют сжиженные углеводородные газы

Сжиженные углеводородные газы могут использоваться по-разному. Наверное, каждому знакомы еще с советских времен ярко-красные баллоны с надписью пропан. Их используют для приготовления пищи на бытовых плитах или для отопления в загородных домах.


Также сжиженный газ может использоваться в зажигалках - туда обычно закачивают либо пропан, либо бутан.

Сжиженные углеводородные газы используются и для отопления промышленных предприятий и жилых домов в тех регионах, куда еще не дошел природный газ по трубопроводам. СУГ в этих случаях хранится в газгольдерах - специальных емкостях, которые могут быть как наземными, так и подземными.

По показателю эффективности пропан-бутан занимает второе место после магистрального природного газа. При этом использование СУГ более экологично по сравнению, например, с дизельным топливом или мазутом.

Газ в моторы и пакеты

Пропан, бутан и их смеси, наряду с природным газом (метаном), используются в качестве альтернативного топлива для заправки автомобилей.
Использование газомоторного топлива в настоящее время очень актуально, ведь ежегодно отечественным автопарком, состоящим из более 34 млн единиц транспортных средств, вместе с отработавшими газами выбрасывается 14 млн тонн вредных веществ. А это составляет 40% от общих промышленных выбросов в атмосферу. Отработавшие газы двигателей, работающих на газе, в несколько раз менее вредны.

В выхлопах газовых моторов содержится в 2–3 раза меньше оксида углерода (CO) и в 1,2 раза меньше окиси азота. При этом по сравнению с бензином стоимость СУГ ниже примерно на 30–50%.

Рынок газомоторного топлива активно развивается. В настоящее время в нашей стране насчитывается более 3000 газовых заправок и более 1 млн газобаллонных автомобилей.

Наконец, сжиженные углеводородные газы являются сырьем для нефтехимической промышленности. Для производства продукции СУГ подвергаются сложному процессу, протекающему при очень высоких температурах - пиролизу. В результате получаются олефины - этилен и пропилен, которые затем, в результате процесса полимеризации, превращаются в полимеры или пластики - полиэтилен, полипропилен и прочие виды продукции. То есть используемые нами в ежедневной жизни полиэтиленовые пакеты, одноразовая посуда, тара и упаковка многих продуктов производятся из сжиженных газов.

Ученый-химик, исследовав существовавший в то время бензин, обнаружил, что в его составе много легкоиспаряющихся фракций пропана, бутана и других ароматических углеводородов. Через некоторое время была создана установка, отделяющая из бензина летучие углеводороды, которые сами по себе оказались прекрасным топливом. Первый двигатель внутреннего сгорания на сжиженном газе был создан в 1913 году.

Экономичность двигателей при использовании СУГ

Одним из важнейших показателей использования коммерческого транспорта является его экономичность. Для двигателя внутреннего сгорания показателем экономичности является отношение полученной единицы кинетической энергии к стоимости израсходованного топлива. В свою очередь расход топлива зависит от его октанового числа и предела воспламенения при сжатии. Это основные показатели сортности топлива.

Для сжиженного газа на пропан-бутановой основе октановое число составляет 100-110 ед. При этом, стоимость одного килограмма СУГ значительно ниже, чем стоимость высокооктанового бензина. В результате исследований, проведенных ВНИИГАЗ, были получены данные, что для автомобиля с двигателем внутреннего сгорания на газе, движущегося со скоростью 50 км/час расход топлива на 30-40% ниже, чем при использовании бензина. Учитывая более низкую стоимость СУГ экономический эффект от перевода автопарка на газ увеличивается в разы.

Кроме того, двигатели, работающие на СУГ отличаются гораздо более высоким моторесурсом. Износ снижается за счет того, что в камере сгорания гораздо меньше откладываются сернистые соединения (нагар), характерные для бензина, лучше условия смазки поршневой группы. В целом, при переводе автомобиля на газ можно добиться 40% экономии эксплуатации, а окупаемость такого перевода составляет 0,5 – 1 год.

Экологические показатели СУГ

Пропан-бутановая смесь, из которой в основном состоит СУГ, является, пожалуй, самым экологически чистым видом топлива. В продуктах горения такой смеси практически отсутствуют тяжелые зольные соединения, копоть, минимально количество угарного (СО) газа.

В отличие от твердых и жидких углеводородов газ при горении не выделяет диоксида серы, бензопиреновых соединений, сероводорода, сажи. По сравнению с бензином, выхлопы от которого содержат большое количество свинца, сжиженный газ абсолютно безопасен. При сжигании СУГ получается большое количество безопасного водяного пара, что не коей мере не может ухудшить экологию.

Комплект газобаллонного оборудования

Транспортные средства, переоборудуемые для работы на сжиженном газе, оснащаются комплектом газобаллонного оборудования. На сегодняшний день на рынке газового оборудования имеется комплекты четвертого и пятого поколения. Они отличаются лучшими эксплуатационными характеристиками, высокой надежностью и безопасностью.

В автомобильных газобаллонных комплектах пятого поколения изменена подача газа в двигатель. Теперь во впускной коллектор топливо подается в жидкой фазе, что позволяет улучшить условия его работы. Для этого в системе установлен дополнительный газовый насос.

Краткий обзор рынка сжиженного газа

Сжиженный газ получают из попутного нефтяного газа и в результате переработки сжиженного газа, а также как побочный продукт на некоторых химических производствах. Его выработка постоянно увеличивается. Около 2/3 произведенного СУГ поступает на внутренний рынок. Остальное идет на экспорт, в основном в Европу. Крупнейшими покупателями российского сжиженного газа является Польша, Финляндия, Турция. Структура потребления сжиженного газа в РФ значительно отличается от европейской.

У нас большая доля СУГ используется в качестве моторного топлива и в качестве сырья химической промышленности. В Европе сжиженный газ по большей части расходуется в жилищно-коммунальном хозяйстве. По прогнозам специалистов в ближайшее время будет наблюдаться рост потребления СУГ в промышленности и на автотранспорте. При этом потребление СУГ в коммунальной сфере останется на том же уровне, даже не смотря на развитие централизованной газораспределительной сети.

Пропан технический (ПТ)

Горючий углеводородный газ. При нормальном давлении находится в газообразном состоянии. Химическая формула С2Н8; молекулярная масса 44; при температуре 15оС имеет плотность в жидкой фазе 510 кг/м3; теплотворная способность при сгорании 85МДж/м3; октанове число 110; температура кипения при нормальном давлении -43оС.

Сжиженные углеводородные газы применяются в качестве автомобильного топлива.

За сравнительно короткий промежуток времени пройден достаточно трудный путь по организации учета сжиженных газов, ясного понимания процессов, происходящих при перекачке, измерении, хранении, транспортировке.

Общеизвестно, что добыча и использование нефти и газа в России имеет многовековую историю. Однако технический уровень промыслового газового хозяйства до XX века был исключительно примитивным. Не находя экономически обоснованных областей применения, нефтепромышленники не только не заботились о сохранении газа или легких фракций углеводородов, но и старались от них избавиться. Негативное отношение наблюдалось и к бензиновым фракциям нефти, поскольку они вызывали повышение температуры вспышки и опасность загорания и взрывов. Выделение газовой промышленности в 1946 г. в самостоятельную отрасль позволило революционно изменить ситуацию и резко увеличить как объём добычи газа в абсолютном значении, так и его удельный вес в топливном балансе страны. Быстрые темпы роста добычи газа стали возможны благодаря коренному усилению работ по строительству магистральных газопроводов, соединивших основные газодобывающие районы с потребителями газа крупными промышленными центрами и химическими заводами.

Тем не менее, основательный подход к точному измерению и учету сжиженных газов в нашей стране стал появляться не более 10 - 15 лет назад. Для сравнения, сжиженный газ в Англии производится с начала 30-х годов XX века, с учетом того, что это страна с развитой рыночной экономикой, технология измерения и учета сжиженных газов, а также производство специального оборудования для этих целей стали развиваться практически с началом производства.

Итак, коротко рассмотрим, что представляют собой сжиженные углеводородные газы и как они производятся. Сжиженные газы делятся на две группы:

Сжиженные углеводородные газы (СУГ) - представляют собой смесь химических соединений, состоящую в основном из водорода и углерода с различной структурой молекул, т.е. смесь углеводородов различной молекулярной массы и различного строения. Основными компонентами СУГ являются пропан и бутан, в виде примесей в них содержатся более легкие углеводороды (метан и этан) и более тяжелые (пентан). Все перечисленные компоненты являются предельными углеводородами. В состав СУГ могут входить также непредельные углеводороды: этилен, пропилен, бутилен. Бутан-бутилены могут присутствовать в виде изомерных соединений (изобутана и изобутилена).

ШФЛУ - широкая фракция легких углеводородов, включает в основном смесь легких углеводородов этановой (С2) и гексановой (С6) фракций.

В целом типичный состав ШФЛУ выглядит следующим образом: этан от 2 до 5%; сжиженный газ фракций С4-С5 40-85%; гексановая фракция С6 от 15 до 30%, на пентановую фракцию приходится остаток.

Учитывая широкое применение в газовом хозяйстве именно СУГ, следует более подробно остановиться на свойствах пропана и бутана.

Пропан — это органическое вещество класса алканов. Содержится в природном газе, образуется при крекинге нефтепродуктов. Химическая формула C 3 H 8 (рис. 1). Бесцветный газ без запаха, очень малорастворим в воде. Точка кипения -42,1С. Образует с воздухом взрывоопасные смеси при концентрации паров от 2,1 до 9,5%. Температура самовоспламенения пропана в воздухе при давлении 0,1 МПа (760 мм рт. ст.) составляет 466 °С.

Пропан используется в качестве топлива, основной компонент так называемых сжиженных углеводородных газов, в производстве мономеров для синтеза полипропилена. Является исходным сырьём для производства растворителей. В пищевой промышленности пропан зарегистрирован в качестве пищевой добавки E944, как пропеллент.

Бутан (C 4 H 10) — органическое соединение класса алканов. В химии название используется в основном для обозначения н-бутана. Химическая формула C 4 H 10 . Такое же название имеет смесь н-бутана и его изомера изобутана СН(СНз)з. Бесцветный горючий газ, без запаха, легко сжижаемый (ниже 0 °С и нормальном давлении или при повышенном давлении и обычной температуре — легколетучая жидкость). Содержится в газовом конденсате и нефтяном газе (до 12 %). Является продуктом каталитического и гидрокаталитического крекинга нефтяных фракций.

Производство, как сжиженного газа, так и ШФЛУ осуществляется за счет следующих трех основных источников:

  • предприятия нефтедобычи - получение СУГ и ШФЛУ происходит во время добычи сырой нефти при переработке попутного (связанного) газа и стабилизации сырой нефти;
  • предприятия газодобычи - получение СУГ и ШФЛУ происходит при первичной переработке скважинного газа или несвязанного газа и стабилизации конденсата;
  • нефтеперегонные установки - получение сжиженного газа и аналогичных ШФЛУ происходит при переработке сырой нефти на НПЗ. В данной категории ШФЛУ состоит из смеси бутан-гексановых фракций (С4-С6) с небольшим количеством этана и пропана.

Основное преимущество СУГ - возможность их существования при температуре окружающей среды и умеренных давлениях, как в жидком, так и в газообразном состоянии. В жидком состоянии они легко перерабатываются, хранятся и транспортируются, в газообразном имеют лучшую характеристику сгорания.

Состояние углеводородных систем определяется совокупностью влияний различных факторов, поэтому для полной характеристики необходимо знать все параметры. К основным параметрам, поддающимся непосредственному измерению и влияющим на режимы течения СУГ, относятся давление, температура, плотность, вязкость, концентрация компонентов, соотношение фаз.

Система находится в равновесном состоянии, если все параметры остаются неизменными. При таком состоянии в системе не происходит видимых качественных и количественных изменений. Изменение хотя бы одного параметра нарушает равновесное состояние системы, вызывая тот или иной процесс.

Углеводородные системы могут быть гомогенными и гетерогенными. Если система имеет однородные физические и химические свойства - она гомогенна, если же она неоднородна или состоит из веществ, находящихся в разных агрегатных состояниях - она гетерогенна. Двухфазные системы относятся к гетерогенным.

Под фазой понимается определенная гомогенная часть системы, имеющая четкую границу раздела с другими фазами.

Сжиженные газы при хранении и транспортировании постоянно изменяют свое агрегатное состояние, часть газа испаряется и переходит в газообразное состояние, а часть конденсируется, переходя в жидкое состояние. В тех случаях, когда количество испарившейся жидкости равно количеству сконденсировавшегося пара, система жидкость-газ достигает равновесия и пары на жидкостью становятся насыщенными, а их давление называется давлением насыщения или упругостью паров.

Упругость паров СУГ возрастает с повышением температуры и уменьшается с ее понижением.

Сжиженные углеводородные газы транспортируются в железнодорожных и автомобильных цистернах, хранятся в резервуарах различного объема в состоянии насыщения: в нижней части сосудов размещается кипящая жидкость, а в верхней находятся сухие насыщенные пары. При снижении температуры в резервуарах часть паров сконденсируется, т. е. увеличивается масса жидкости и уменьшается масса пара, наступает новое равновесное состояние. При повышении температуры происходит обратный процесс, пока при новой температуре не наступит равновесие фаз. Таким образом, в резервуарах и трубопроводах происходят процессы испарения и конденсации, которые в двухфазных средах протекают при постоянном давлении и температуре, при этом температуры испарения и конденсации равны.

В реальных условиях в сжиженных газах в том или ином количестве присутствуют водяные пары. Причем их количество в газах может увеличиваться до насыщения, после чего влага из газов выпадает в виде воды и смешивается с жидкими углеводородами до предельной степени растворимости, а затем выделяется свободная вода, которая отстаивается в резервуарах. Количество воды в СУГ зависит от их углеводородного состава, термодинамического состояния и температуры. Доказано, что если температуру СУГ снизить на 15-30 0 С, то растворимость воды снизится в 1,5-2 раза и свободная вода скопится на дне резервуара или выпадет в виде конденсата в трубопроводах. Скопившуюся в резервуарах воду необходимо периодически удалять, иначе она может попасть к потребителю или привести к поломке оборудования.

Согласно методам испытаний СУГ определяют наличие лишь свободной воды, присутствие растворенной допускается.

За рубежом предъявляются более жесткие требования на наличие воды в СУГ и ее количество, посредством фильтрации доводится до 0,001% по массе. Это оправдано, так как растворенная вода в сжиженных газах является загрязнителем, ибо даже при положительных температурах она образует твердые соединения в виде гидратов.

Гидраты можно отнести к химическим соединениям, так как они имеют строго определенный состав, но это соединения молекулярного типа, однако химическая связь на базе электронов у гидратов отсутствует. В зависимости от молекулярной характеристики и структурной формы внутренних ячеек, различные газы внешне представляют собой четко выраженные прозрачные кристаллы разнообразной формы, а гидраты, полученные в турбулентном потоке - аморфную массу в виде плотно спрессованного снега.

В большинстве случаев, говоря о сжиженных газах, подразумеваются углеводороды соответствующие ГОСТ 20448-90 «Газы углеводородные сжиженные для коммунально-бытового потребления» и ГОСТ 27578-87 «Газы углеводородные сжиженные для автомобильного транспорта». Они представляют собой смесь, состоящую в основном из пропана, бутана и изобутана. Благодаря идентичности строения их молекул приближенно соблюдается правило аддитивности: параметры смеси пропорциональны концентрациям и параметрам отдельных компонентов. Поэтому по некоторым параметрам можно судить о составе газов.

Сжиженные углеводородные газы относятся к низкокипящим жидкостям, способным находиться в жидком состоянии под давлением насыщенных паров.

  1. Температура кипения:Пропан -42 0 С; Бутан - 0,5 0 С.
  2. При нормальных условиях объем газообразного пропана больше в 270 раз, чем объем пропана сжиженного.
  3. Сжиженные углеводородные газы характеризуются высоким коэффициентом теплового расширения.
  4. СУГ характеризуются низкой плотностью и вязкостью по сравнению со светлыми нефтепродуктами.
  5. Нестабильность агрегатного состояния СУГ при течении по трубопроводам в зависимости от температуры, гидравлических сопротивлений, неравномерности условных проходов.
  6. Транспортирование, хранение и измерение СУГ возможны только посредством закрытых (герметизированных) систем, рассчитанных, как правило, на рабочее давление 1,6 МПа. ГОСТ Р 55085-2012
  7. Перекачивающие, измерительные операции требуют применения специального оборудования, материалов и технологий.

Во всем мире, углеводородные системы и оборудование, а также устройство технологических систем подчинено единым требованиям и правилам.

Сжиженный газ представляет собой ньютоновскую жидкость, поэтому процессы перекачивания и измерения описываются общими законами гидродинамики. Но функция углеводородных систем сводится не только к простому перемещению жидкости и ее измерению, но и обеспечению уменьшения влияния «отрицательных» физико-химических свойств СУГ.

Принципиально, системы, перекачивающие СУГ, мало отличаются от систем для воды и нефтепродуктов, и, тем не менее, необходимо дополнительное оборудование, гарантирующее качественные и количественные характеристики измерения.

Исходя из этого технологическая углеводородная система, как минимум должна иметь в своем составе резервуар, насос, газоотделитель, измеритель, дифференциальный клапан, отсечной или регулирующий клапан, устройства безопасности от превышения давления или скорости потока.

Резервуар хранения должен быть оборудован входным патрубком для налива продукта, линией слива для отпуска и линией паровой фазы, которая используется для выравнивания давления, возврата паров от газоотделителя или калибровки системы.

Насос - обеспечивает давление, необходимое для движения продукта через систему отпуска. Насос должен быть подобран по емкости, производительности и давлению.

Измеритель - включает преобразователь количества продукта и отсчетное устройство (индикацию) которое может быть электронным или механическим.

Газоотделитель - отделяет пар, образованный во время потока жидкости, прежде чем он достигнет счетчика и возвращает его в паровое пространство резервуара.

Дифференциальный клапан - служит для обеспечения прохождения через счетчик только жидкого продукта, посредством создания после счетчика избыточного дифференциального давления, заведомо большего, чем давление паров в емкости.

Состав сжиженных углеводородных газов

Под СУГ понимают такие индивидуальные углеводороды или их смеси, которые при норм.условиях находятся в газообразном состоянии, а при относительно небольшом повышении давления без изменения температуры или незначительном понижении температуры при атмосферном давлении переходит в жидкое состояние.

При нормальных условиях из предельных углеводородов (C n H 2 n +2) газами являются лишь метан, этан, пропан, и бутан.

Рассмотрим какие газы переходят в жидкое состояние при незначительном повышении давления при температуре О 0 С: этан конденсируется в жидкость при повышении давления до 3 Мпа. Пропан до 0,47 Мпа, Н-бутан до 0,116 МПа, Изобутан до 0,16 МПа. Больше всего требуемым условиям соответствует

пропан и бутан.

Рассмотрим какие углеводороды переходят в жидкое состояние при сравнительно небольшом понижении температуры и атмосферном давлении: температура кипения метана – 161,5 0 С; этана – 88,5 0 С; пропана – 42,1 0 С; н-бутана – 0,5 0 С. Наиболее подходящими для практического применения являются пропан и бутан.

На ряду с нормальными предельными углеводородами существуют изомерные соединения, отличающиеся характером расположения атомов углерода, а также некоторыми свойствами. Изомер бутана – изобутан. Пропан изомера не имеет.

Структура и ф-ла Н-бутана СН 3 -СН 2 -СН 2 - СН 3

Изобутан:

Помимо предельных в составе СУГ встречаются также группа ненасыщ. Или непредельных углеводородов, характеризуются двойной или тройной связью между атомами углерода. Это этилен, пропилен, бутилен (нормальный и изомерный). Общая формула непредельных углеводородов с двойной связью С n Н 2 n . Этилен С2Н4 СН2=СН2.

Для получения СУГ используется жирные природные газы, т.е. газы из нефтяных и конденсатных месторождений, содержащих большое количество тяжелых углеводородов. На газоперерабатывающих заводах их этих газов выделяются пропан-бутановую фракцию и газовый бензин(С5Н12). Технический пропан и бутан а также их смеси представляют собой сжиженный газ, используемый для газоснабжения потребителей.



Технические газы отличаются от чистых содержанием небольших количеств углеводорода и наличием примеси. Для технического пропана содержание С3Н8+С3Н6(пропилен) д.б. не < 93%. Содержание С2Н6 +С2Н4(этилен) не> 4%. Содержание С4Н10+С4Н8 не >3%.

Для технического бутана: С4Н10+С4Н8 д.б. не < 93%. С3Н8 +С3Н6 не> 4%. С5Н12+С5Н10 не >3%.

Для смеси тех. бутана и пропана содержание: С3Н8+С3Н6, С4Н10+С4Н8 д.б. не < 93%. С2Н6 +С2Н4 не> 4%. С5Н12+С5Н10 не >3%.

Свойство СУГ.

Возможны 3 состояния сжиженного газа, в котором находятся при хранении и использовании:

1) В виде жидкости (жидкая фаза)

2) Пар(паровая фаза), т.е. насыщенные пары, находящиеся совместно с жидкостью в резервуаре или баллоне.

3) Газа(когда давление в паровой фазе ниже давления насыщенных паров при данной температуре).

Свойства сжиженных газов легко переходят из одного состояния в другое, делает их особенно ценным источником газоснабжения, т.к. транспортировать и хранить их можно в жидком виде, а сжигать в виде газа. Т.о. при транспортировки и хранении используется преимущественно жидкие фазы, а при сжигании газообразные.

Упругость насыщенных паров газа – это важнейший параметр по которому определяется рабочее давление в баллонах и резервуарах. Она изменяется пропорционально температуре жидкой фазы и является величиной строго определенной для данной температуры.

Во все уравнения, связывающие физические параметры газообразного или жидкого вещества входят абсолютное давление и температура. А в уравнения для технических расчетов прочности стенок баллонов, резервуаров – избыточное давление.

В газообразном составе СУГ тяжелее воздуха в 1,5-2 раза. В жидком состоянии их плотность находится в пределах 510-580 кг/м 3 ,т.е. они почти в 2 раза легче воды. Вязкость СУГ очень мала,что облегчает транспортировку их по трубопроводам и благоприятствует утечкам.

СУГ имеют низкие пределы воспламенения в воздухе(2,3% для пропана, 1,7% для бутана). Разница между верхним и нижним пределами незначительна, поэтому при их сжимании допускается применение отношения воздух-сжиженный газ.

Диффузия в атмосферу осуществляется очень медленно, особенно при отсутствии ветра. Они обладают невысокими t-ми воспламенения по сравнению с большинством горючих газов (510 0 C для пропана и 490 0 C для бутана).

Возможно образование конденсата при снижении t-ры до точки росы или при повышении давления. Сжиженные газы характеризуются низкой t-рой кипения и поэтому при испарении во время внезапного выхода из трубопровода или резервуара в атмосферу охлаждается до отрицательной t-ры. Жидкая фаза попадая на незащищенную кожу человека может привести к обморожению. По характеру воздействия оно напоминает ожог.

В отличии от большинства жидкостей, которые при изменении t-ры незначительно изменяют свой обьем, жидкая фаза СУГ довольно резко увеличивает свой объем при повышении t-ры (в 16 раз больше чем вода). Поэтому при заполнении резервуаров и баллонов приходится учитывать возможность увеличения объема жидкости.

Сжимаемость сжиженных газов по сравнению с другими жидкостями весьма значительна. Если сжимаемость воды принять за единицу, то сжимаемость нефти 1,56, а пропана 15. Если жидкая фаза занимает весь объем резервуара, то при повышении t-ры ей расширяться некуда и она начинает сжиматься. Давление в резервуаре повышается. Повышение давления д.б. не больше допустимого расчетного, иначе возможна авария. Поэтому при заполнении резервуаров и баллонов предусматривается оставлять паровую подушку определенной величины, т.е. заполнять их не полностью. Величина паровой подушки для Сжиженные газы имеют более высокую, чем природные газы, объемную теплоту сгорания (в 2,5- 3,4 раза выше).

Сжиженные газы нетоксичны.У них отсутствует запах, цвет и вкус (как в жидком, так и в газообразном виде),что диктует необходимость их одоризации.

подземных резервуаров составляет 10%, для надземных и баллонов 15%.

Определение свойств СУГ

При известном составе сжиженного газа, давление смеси можно рассчитать по формулам:

Плотность газовой смеси заданного состава определяется:

Мольная доля i-ого компонента смеси

– Плотность i-ого компонента смеси, кг/м 3

Она находится по таблице или рассчитывается по закону Авогадро:

Где – молекулярная масса i-ого компонента, кг/кмоль

– Молекулярный объем i-ого компонента, м 3 /кмоль

Средняя плотность жидкой смеси при известном массовом составе определяется по формуле:

При известном молекулярном составе:

,

Где – плотность i-ого компонента входящего в жидкую смесь в жидкой фазе, кг/л

Плотность газовой смеси при повышенном давление находится из уравнения состояния для реальных газов.

,

Где - абсолютное давление (МПа) и t-ра смеси.

– газовая постоянная смеси,(Дж/кг К)

z-коэффициент сжимаемости, учитывающий отклонение реальных газов от з-нов идеальных газов.

Газовая постоянная смеси рассчитывается по универсальной газовой постоянной и по молекулярной массе смеси.

Коэффициент сжимаемости определяется по графику в зависимости от приведённых параметров (давление и температура) газа.

Среднее критическое давление и температура для смеси газов определяется по его составу.

;

Объем газа, получается прииспарение смеси СУГ, м.б. найден по формуле:

– масса i-ого компонента смеси, кг

– молекулярная масса i-ого компонента смеси, кг/кмоль

V Mi -молекулярный объем i-ого компонента

Для подсчета низшей объемной температуры сгорания смеси СУГ используется следующая зависимость

низшая объемная теплота сгорания i-ого компонента, кДж/м 3

Низшая массовая температура сгорания

Пределы воспламенения смеси СУГ, не содержащих балластных примесей, определяются:

L см - нижний или верхний предел воспламенения смеси газов.

– нижний или верхний предел воспламенения i-ого компонента.

За счет разности уровней

Использование гидростатического напора применяется при заполнении подземных резервуаров из железнодорожных и автоцистерн, а так же при разливе СУГ в баллоны, если позволяет рельеф местности. Что бы слить цистерны в резервуар, необходимо соединить их паровые и жидкостные фазы.В сообщающихся сосудах жидкость устанавливается на одном уровне, поэтому жидкая фаза перетечет в нижестоящий резервуар.

Для создания достаточной скорости слива, при одинаковых температуре и давлении, в цистерне и резервуаре необходимо, что бы за счет гидростатического напора создавалась разность давлений не менее 0,7-0,1 МПа.

Минимальная необходимая величина гидростатического напора в этих условиях будет 14-20 метров столба жидкости.

В зимнее время цистерна имеет более низкую температуру, чем резервуар. При подземном размещении резервуара перепад температур может достигать 10-15 0 С. Давление газа в цистерне будет значительно ниже чем в резервуаре.

Для надежного слива необходимо, чтобы разность уровней компенсировала эту разность температур и соответственно разность давлений. Требуемая разность уровней составляет:

,

Где - давление газа в резервуаре, Па

– давление газа в цистерне

– плотность жидкой фазы СУГ, кг/м 3

Полученный мах. перепад необходим для начала слива. В дальнейшем t внутри резервуара начнет понижаться из-за поступления охлажденной жидкости из цистерны. Давление в подземной емкости станет меньше и разность уровней потребуется уже меньше. В начальный момент создать такую разность уровней почти невозможно, поэтому необходимо соединять паровые пр-ва в резервуары и цистерны. В этом случае давление выравнивается и слив пр-т с использованием полного гидростатического напора.

Летом, в начальный момент слива, возможно расположение цистерн ниже резервуара. Но здесь скажется влияние температуры в резервуаре от более нагретой жидкости из цистерны, и величина перепада давления упадет примерно до 0. Слив прекратится. Поэтому летом, при сливе, паровые фазы автоцистерны и резервуара соединять не нужно.

«+» метода:1.Простота схемы

2. Отсутствие механических агрегатов

3. Надежность работы всех устройств

4. Готовность схемы к работе в любой момент, независимо от наличия постороннего источника энергии

5. Малые затраты на ремонт и обслуживание

«-» метода:

1. Невозможность использования местности с гористым рельефом.

2. Большая продолжительность процесса.

3. Большие потери газа при отправлении его обратно в виде паров в слитых цистернах.

Газонаполнительные станции

ГНС являются базой снабжения сжиженным газами и предназначены для приема, хранения и поставки потребителям сжиженных газов, поступающих железнодорожным, автомобильным, водным транспортом, и с предприятий где производится эти газы (газобензиновые заводы).

Объем резервуаров для хранения газа на станции не более 8000 м 3 . Обычно запас газа не превышает 300-600 тонн и производительность от 6000 до 24000 т/год.

На ГНС выполняются след.работы:

Приём сжиженных газов от поставщика

Слив сж.газов в свои хранилища

Хранение СУГ в надземных, подземных или изотермических резервуарах, в баллонах или подземных пустотах.

Слив неиспарившихся остатков из баллона и сж.газа из баллонов, имеющих к-л неисправности

Разлив сж.газа в баллоны, передвижные резервуары и автоцистерны

Приём пустых и выдача наполненных баллонов

Транспортировка сж.газов по внутренней сети трубопровод

Ремонт баллонов и их переосвидетельствование

Техническое обслуживание и ремонт оборудования на станции

В ряде случаев на ГНС производится:

Заправка автомобилей, работающих на сж.газе из автозаправочной колонки

Регазификация СУГ

Смешение паров газа с воздухом или низкокалорийными газами

Выдача паров сж.газа газовоздушных и газовых смесей в городские распределительные системы.

Для выполнения этих операций на ГНС имеются след. отделения и цеха:
-сливная эстакада ж/д ветки или ввод тр-да с отключающими устройствами

База хранения СУГ,состоящая из надземных или подземных резервуаров,работающих под давлением, изотермич.резервуаров или подземных хранилищ в пустотах

Насосно-компрессорный цех для слива СУГ из ж/д цистерн в хранилища и и подача его для наполнения баллонов и автоцистерн

Цех для наполнения баллонов и слива из них неиспарившихся тяжёлых остатков

Склад суточного запаса пустых и заполненных баллонов

Колонки для заполнения автоцистерн

Коммуникации жидкой и паровой фаз, связывающие все отделения ГНС и обеспечивающих движение потоков жидкости и пара.

ГНС следует размещать вне населённых пунктов с подветренной стороны господствующих ветров, при этом следует соблюдать требуемые расстояния между ГНС и остальными сооружениями.

В зависимости от объёма хранилищ, способа установки резервуаров эти расстояния от 40 до 300 м.

По периметру территории ГНС ограждается ж/б забором выстой 3,4м. При емкости резервуаров > 200 м 3 , территория ГНС разделяется легкой оградой на 2 территории – рабочую, включающую перечисленные отделения и цеха,и вспомогательную, включающую административно-хозяйственные помещения, гаражи, водонапорную башню и резервуар для противопожарного запаса воды.

Принципиальная схема снабжения потребителей СУГ показана на рисунке:

Изотермическое хранение СУГ

Хранилища представляют собой тонкостенные резервуары большого объёма от 5000 до 50000м 3 цилиндрической формы со сводчатой или конусной крышей. Наружная пов-ть их теплоизолируется. Стальные хранилища могут быть как наземными, так и заглублёнными. Поддержание низкой t (-42⁰С –для пропана) м.б. осуществлено путём испарения части СУГ и сброса паров в газовые сети или спец. холодильной уст-кой. Поступление тепла через стенки резервуара незначительно и вызывает испарение 0,3-0,5% объёма, хранящийся жидкости в сутки.

Различают 3 основные технологические схемы изотермич. хранилищ:

С комплекс.холодильной уст-кой

С буферными ёмкостями

-с промежуточным охлаждением

“горячий” продукт, поступ-й по тубе 1 дросселируется в резервуаре 2 с падением t и p . Пары образующиеся за счёт теплопритока из вне и поступающего “гор.“ продукта подаются компрессором 3 по трубопроводу 4 в холодильный агрегат 5, где охлаждается и конденсируются. Конденсат через дроссель-вентиль 6 поступает в изотермич. резервуар.

Мощность холд. агрегата зависит от суммарного притока тепла в резервуар и опред-ся:

- поступления тепла заливаемым “гор” продуктом

Где - ск-ть слива СУГ из цистерны кг/ч;

Теплоёмкость жидкой фазы СУГ кДЖ/(кг⁰С);

И – температура в цистерне и резервуаре.

– приток тела из внешней среды;

где M – масса сжиженного газа в изотермич. резервуаре, кг;

r – теплота парообразования СУГ, кДж/кг;

0,005 – 5% испаряется в сутки.

– неучтенные теплопоступления:

b=0,04..0,12

Из формулы для определения видно, что уменьшить мощность холод.установки можно за счет снижения скорости наполнения резервуара. Обычно при сливе 3х ж/д цистерн она сост. 33-35т/ч, что требует очень мощного холод.оборудования, работающего только несколько часов в сутки (при сливе). В ост.время холод. нужны только для сжижения газа, испаряющегося в резервуаре, что сост. мах 0,5% от хранящихся СУГ.


Транспорт сжиженного газа

В странах СНГ наибольшее распространение получили перевозки СУГ в ж/д и машинныхцистернах, а также баллонах. При расстоянии до 300 км используется машинныйтранспорт, при большем – ж\д. Ж/д цистерна рассчитана на рабочее давление при перевозке пропана 2 МПа, бутана – 0,8 МПа.

Широкое применение получили горизонтальные цилиндрические цистерны объемом 50-100 м 3 . В верхней части цистерны имеется горловина, которая служит люком и предназначена для осмотра и ремонта внутренней полости цистерны. Крышка люка выполнена в виде фланца, на которой предусмотрена арматура: имеются устройства для налива и слива жидкой фазы со скоростными клапанами, подачи и отбора паровой фазы со скоростными клапанами, предохранительного клапана.

Для перевозки СУГ по машинным дорогам используется автоцистерны , вместимость от 2 до 5т. сжиженного газа. В верхней части цистерны установлен предохранительный клапан. В центре заднего днища имеется, люк на внутренней полости крышки которой располагается КИП: термометр, манометр, указатель уровня. Указатель уровня представляет собой стеклянную трубку, заключенную в стальную трубку. Для наполнения и слива цистерн с обеих сторон имеется 6 вентелей, предусмотрено 4 шланга до3,5 м.

Индивидуальные потребители, расположенные вблизи ГНС получают СУГ в баллонах. Баллоны доставляют бортовыми автомобилями или спец. Приспособленными для этих целей(в контейнерах). Контейнер представляет собой сварную клеть, предназначенную для 2-х или 3-х ярусного расположения баллонов.

Перевозить СУГ водным путем получило широкое распространение в странах Западной Европы.

Существует 3 типа судов для перевозки СУГ:

1) Танкеры с резервуарами под давлением 1,6 МПа

2) Танкеры с термоизолирующими резервуарами под пониженным давлением. СУГ транспортируется при промежуточном охлаждении от -5 0 С до +5 0 С и пониженном давлении (0,3…0,6 МПа)

3) Танкеры с термоизолирующими резервуарами под давлением близким к атмосферному и при низкой температуре (- 42 0 С для пропана, -161 0 С для природного газа)

Для снабжения северных районов России широко используется речной транспорт. Для снабжения СУГ потребит.в Арктике и Антарктике используется авиаперевозки.

Пленочные испарители СУГ.

Представляет собой теплообменник труба в трубе. Тонкая пленка СУГ создается путем разбрызгивания его на стенки внутренней трубы 3 с помощью форсунок 2 . Теплоноситель (горячая вода или водяной пар) поступает в кольцевое межтрубное пространство 4 , обеспечивая интенсивное испарение СУГ внутри трубы 3 . Для равномерного распределения температуры по длине испарителя теплоноситель подается в 2 точки, а отводится в одной.

Во избежание недопустимого повышения давления в испарителе на трубе 3 установлен предохранительно-сбросной клапан 5 . Неиспарившийся конденсат отводится через дренажный штуцер 6 . При необходимости увеличения производительности установки к коллектору 1 может быть присоединено несколько испарителей. Коэффициент теплопередачи примерно в 2 раза выше, чем в змеевиковых и трубчатых, поэтому они более компактны и менее металлоемки.

Температуры горения газа.

Основное количество тепла, выделяющегося при сжигании газа расходуется на нагрев продуктов сгорания до определённой температуры.

Различают следующие температуры горения газов:

Жаропроизводительность

Калориметрическую

Теоретическую

Действительную

Жаропроизводительность - это t продуктов полного сгорания горючих газов в адиабатических условиях при α=1 и при первоначальной t газа и воздуха = 0 0 С.

Q н =i пр. сгор = V пр. сгор ∙С р пр. сгор ∙t ж

i пр. сгор- теплосодержание продуктов сгорания кДж/м 3

t ж -жаропроизводительность, 0 С.

t ж = Q н / V пр. сгор ∙С р пр. сгор = Q н /(V co 2 ∙C р СО2 +V Н20 ∙С р H 20 + V N 2 ∙С р N 2)

V co 2 V Н20 V N 2 –объем сотавных частей продуктов сгорания 1 м 3 газа.

С р –средняя объёмная теплоёмкость при P=const. составных частей продуктов сгорания.

В формуле используется средняя теплоёмкость, так как Ср- величина непостоянная, растёт с повышением температуры.

t ж:для метана 2043 0 С; для пропана 2110 0 С; для водорода 2235 0 С

Эти данные при горении в сухом воздухе.

Калориметрическая- t горения газа, учитывающая коэф. Избытка воздуха и физическое тепло газа и воздуха, т.е принимается действительные значения тем-ры. другими словами это t до которой нагрелись бы продукты полного сгорания, если бы всё тепло топлива и воздуха пошло на их нагрев.

Q н +i г +i в =i пр.сгор.

i г i в- энтальпия газа и воздуха кДж/м 3

Написав уравнение в развёрнутом виде и решив его относительно калорим. тем-ры Получим:

T г t в –исходная темпетатура газа и воздуха.

T к ≈1900 0 C,

Расход газа,

Теоретическое количество воздуха необходимое для сжигания 1 метра куб. газа.

Физическое тепло газа и воздуха следует учитывать, если они перед сжиганием нагреты свыше 100 0 C, так как при меньших t эта величина незначительна по сравнению с теплотой сгорания.

Теоретическая температура горения учитывает потери тепла за счёт химической неполноты сгорания и при эндотермических реакциях диссоциации продуктов сгорания.

CO 2 ↔CO+0,5O 2 -Q

H 2 O↔H 2 +0,5O 2 -Q ;

Qx- потери теплоты за счёт химической неполноты сгорания и на диссациацию СО2 и Н20.

При t до 1500 0 C(имеет место в топках котлов и пром. Печей) величину Qx можно не учитывать так как в этом случае диссоциирует ничтожная доля продуктов сгорания. При более высоких температурах надо учитывать.).

Действительная темература горения достигается в реальных условиях сжигания топлива, она ниже теоретической, так как при ее определении учитываются теплопотери в окружающую среду, длительность процесса горения, метод сжигания газа и другие факторы.

t д = t т ∙η п

η п - опытный пирометрический коэффициент.Для большинства топок котлов и печей 0,65. Для наиболее совершенных 0,8- 0,85


Диффузионные горелки

У этого типа горелок газ и воздух отдельными потоками поступают в топку, где происходит смесеобразование и горение. Простейшая диф. Горелка представляет собой требу с высверленными в ней отверстиями.

Такие горелки м.б. прямыми, круглыми, Т- и П-образными и т.д. Газ подводится внутрь таких горелок и выходит через отверстия многочисленными струйками, образуя отдельные факелы. Количество отверстий и их диаметр зависят от производительности горелки. Шаг между отверстиями выбирается так, чтобы не было слияния факела обеспечивалось беглость огня при дожигании газа на горелке.

Диаметр отверстия д.б. от 0,5 до 5 мм. При этом следует учитывать легкуюзасоряемость отверстия малого диаметра. Для хорошего перемешивания газа с воздухом рекомендуется делать не более двух рядов отверстий в каждой трубке диф. горелки. Сечение трубы, подводящей газ д.б. не меньше суммарного сечения горелочных отверстий.

«+» диф горелок:

· Просты в изготовлении, надежны в эксплуатации (исключается проскок пламени),

· имеет большие пределы регулирования, могут работать как на низком, так и на среднем давлении газа без дутья,

· дают устойчивый светящийся факел, обладающий высокой радиацией.

«-» диф горелок:

· Имеются небольшие тепловые нагрузки;

· работают с повышенным α (1,2-1,5). Несмотря на большой избыток воздуха эти горелки часто работают с хим. недожогом.

· Большая длина факела

· Необходимость обеспечения устойчивого разряжения в топочном объеме

· Трудность автоматизации процесса сжигания газа (автоматического пропорционирования газа и воздуха)

Созданы конструкции более крупных диф горелок, обладающим неплохими эксплуатационными свойствами (прим., горелка для отопления и пром. котлов). Хорошее перемешивание газа с воздухом достигается за счет многоструйного выхода газа под углом к оси горелки, сто приводит к закручиванию потока

1-внутренний стакан

2-наружный корпус

3-тангенциальные сопловые щели

4,5- воздушные дроссели

Внутренний стакан вставляется в корпус большего диаметра. По внутреннему пространству между корпусом и стаканом проходит газ, вытекающий через 3 в топку. Около 50% потребляемого воздуха подводится через внутренний стакан. Остальное количество – через наружную кольцевую щель. Движение воздуха обусловлено наличием разряжения в топке. Производительность такой горелки от 30 до 350 м 3 /ч. Они м.б. низкого и среднего давления.

Диф горелки незаменимы в высокотемпературных печах (тепловаренных, сталеплавильных) при подогреве воздуха до температур значительно превышающих температуру воспламенения газа. Предварительное смешение газа с воздухом неосуществимо, поэтому в таких печах диф сжигание газа является не только вынужденным, но и наиболее оправданным, т.к. позволяет получить ярко светящийся сажистый факел большой степенью черноты и интенсивной радиацией.

Подовые горелки

В котельной технике диф горелки могут располагаться нафронтовой или боковой стенках топки, а также внутри нее, на поду. Горелки последнего типа получили название подовые. Используются при переводе отопительных и производственных котлов со слоевыми топками на газообразное топливо. Газ из горелки выходит в топку, куда из-под колосников поступает воздух. Газовые струйки у подовых горелок направляются под углом к потоку воздуха и равномерно распределяются по его сечению.

Процесс смешения осуществляется в спец. щели, образованной огнеупорной кладкой. Это интенсифицирует смешение газа с воздухом, уменьшает α и обеспечивает устойчивое зажигание в образующейся смеси.

1- Коллектор

Коллектор горелки устанавливается на кирпичах, расположенных на колосниковой решетке. Над коллектором огнеупорная кладка образует прямые щели, в которые входит газ, не смешенный с воздухом. Отверстия для выхода газа расположены в 2 ряда в шахматном порядке, симметричном по отношению к вертикальной плоскости с углом между рядами от 90 до 180 о. Воздух подается под колосниковую решетку вентилятором или за счет разряжения в топке, поддерживаемого тягой и проходом через щель, омывая коллектор с двух сторон.

Струя газа в результате турбулентной диффузии перемешивается с воздухом и на расстоянии 20 – 40 мм от отверстия начинает гореть. Заканчивается процесс горения на расстоянии 0,5 – 1 м от горелки. Здесь осуществляется диффузионный принцип сжигания газа. Процесс смесеобразования активизируется тем, что поток газа разбит на мелкие струйки, выходящие с большой скоростью под углом к прямому потоку воздуха. Огнеупорные стенки щели выполняют роль стабилизатора горения, предотвращая отрыв пламени, и являются косвенными излучателями.

Максимальная температура на поверхности щели от 900 – 1000 о С. На поверхности коллектора от 300 – 500 о С. Температура колосниковой решетки под щелью 75 – 80 о С. Подовые горелки обеспечивают полноесжигпние газа при α от 1,1 до 1,3. Давление газа от 500 до 5000 Па (номинальное порядка 1000Па). Давление воздуха от 600 до 1000 Па. При работе без дутья в топке д.б. разряжение 20 – 30 Па для котлов средней производительности (от 2 до 10 тонн пара в час) и не более 8 Па для небольших отопительных котлов.

Подовые горелки отопительных котлов имеют размеры: диаметр отверстий от 1,3 до 3 мм (мах 10 – 20 мм), высота щели 130 – 200 мм; ширина определяется расчетом и обычно в пределах 80 – 110 мм.

Еще в 52

§ простота конструкции

§ Возможность работы на низком давлении газа

§ Нет необходимости подачи воздуха под давлением

§ Полное сжигание газа различных характеристик

§ Устойчивая работа в широком диапазоне изменения нагрузок

§ Бесшумность работы, надежность и простота эксплуатации

§ Высокий коэффициент избытка воздуха

§ Малая производительность (не более120 кВт одной горелкой)

§ Ввиду конструктивных особенностей (горелка в топке) значительного α нельзя использовать высокотемпературных установках.

Смесительные горелки.

Смесительные горелки с принудительной подачей воздуха находят широкое применение. Конструктивно они выполняются так, что бы обеспечить наилучшее перемещение потоков газа и воздуха, который подводится в горелку по отдельным трубам. Проявление смесеобразования начинается в самой горелке и активно завершается в топочной камере. Вследствие этого газ сгорает коротким и несветящимся пламенем. Смешение газа с воздухом осуществляется в результате турбулентной диффузии. Поэтому они называются горелками турбулентного смешивания или просто смесителями.

Для повышения интенсивности сжигания газа следует максимально интенсифицировать смешение газа с воздухом, так как смесеобразование является тормозящим звеном всего процесса. Инжекция процесса смесеобразования достигается следующим образом: закручиванием потока воздуха направляющими лопатками, тангенциальным подводом, подачей газа в виде мелких струй под ушлом к потоку воздуха, расчленением потоков газа и воздуха на мелкие потоки, в которых происходит смесеобразование.

Положительными качествами горелок являются:

1) Возможность сжигания большого количества газа при сравнительно небольших габаритах горелки.

2) Широкий диапазон решения производительности горелки.

3) Возможность подогрева газа и воздуха до t, превышающейt воспламенения, что имеет большое значение для высокотемпературных печей.

4) Сравнительно легкая возможность выполнения консистенций с комбинированным сжиманием топлива, а именно: газ-мазут или газ-угольная пыль.

Основные недостатки:

1) Принудительная подача воздуха

2) Сжигание газа с меньшим объемным тепловым напряжением, чем при кинетическом горении.

3) Сжигание газа с химической неполнотой больше, чем при кинетическом горении.

Имеется производительность 60кВт-60МВт. Используются для обогрева промышленных печей и котлов.

Горелка турбулентного смешивания:

1-корпус, 2- сопло, 3- наконечник сопла, 4 –носик.

Газ входит в горелку через патрубок и с определенной скоростью истекает из сопла. Воздух в гарелку подается под давлением. Перед входом в носик горелки он закручивается. Смешение газа с воздухом начинается внутри горелки при выходе газа из сопла и инжектируется закрученным потоком воздуха. При многоструйной подаче газа процесс образования смеси происходит быстрее и газ сгорает в коротком факеле. При одноструйном наконечнике создается удлиненный факел. Достоинствами горелки являются простота и компактность конструкции, возможность работы при низких давлениях газа и воздуха, широкие пределы регулирования производительности.

Широко применяются многоструйные вихревые горелки, основанные на принципе дробления потоков газа и воздуха на несколько мелких потоков. Внутри них происходит инжекционный процесс смешивания, их производительность 40-940 м 3 /ч.

Смесительные горелки часто выполняются комбинированными. Они позволяют быстро переводить агрегат с одного вида топлива на другой. Кроме того газ в них может сжиматься одновременно с др. видом топлива.

Метод вытеснения.

Используется при хранении СУГ в подземных хранилищах на глубине от 100 до 1200м (в соляных пластах).

Отбор сжиженного газа осуществляется за счет вытеснения его инертной жидкой или газообразной средой. Наиболее часто используется рассол.

1-центральная колонна для рассола

2-рассолопровод

3-наружная колонна для подачи СУГ

4-трубопровод сжиженного газа

5-подземная емкость

7-сжиженный газ

Подземная емкость сообщ-ся с поверхностью 2хколонной системой:

Обсадная труба (3) и свободно подвешенная в устье скважины центральная колонна 1.

СУГ подают и отбирают из емкости по межтрубному пространству.

Центральная колонна опущена до самого низа емкости. Т.к плотность рассола больше плотности СУГ в 2 раза, то последний хранится на рассольной подушке.

Для опорожнения подземной емкости достаточно лишь подвести рассол к устью центральной колонны и под его гидростатическим давлением (1,3 МПа при глубине 100 м) СУГ будет поступать в раздаточный трубопровод с избыточным напором. Его можно транспортировать без применения насосов.

СУГ закачивается в хранилище под давлением, опред-емым противодавлением столба рассола и потерями давления на трение при движении жидкости по межтрубному пространству и центральной колонне.

«+» метода:

1. простота конструктивного исполнения

2. возможность выдать газ в 1 время даже при отсутствии постороннего источника энергии

3. надежность работы всех устройств

4.затраты энергии только на удаление рассола при закачивании сжиженного газа в хранилище

5. необходимость для закачивания только высокопроизводительных насосов, имеющих большое КПД

«-» метода:

1. необходимость постороннего источника энергии с достаточной мощностью при сливе