ОПТИМАЛЬНЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

Постановка задачи оптимизации управления

В общем случае автоматическая система состоит из объекта управления и совокупности устройств, которые обеспечивают управление этим объектом. Как правило, эта совокупность устройств включает в себя измерительные устройства, усилительные и преобразовательные устройства, а также исполнительные устройства. Если объединить эти устройство в одно звено (управляющее устройство), то структурная схема системы выглядит следующим образом:

В автоматической системе информация о состоянии объекта управления через измерительное устройство поступает на вход управляющего устройства. Такие системы называются системами с обратной связью или замкнутыми системами. Отсутствие этой информации в алгоритме управления говорит о том, что система разомкнута. Состояние объекта управления в любой момент времени будем описывать переменными , которые называются координатами системы или переменными состояния. Их удобно считать координатами - мерного вектора состояния .

Измерительное устройство выдает информацию о состоянии объекта. Если на основании измерения вектора могут быть найдены значения всех координат вектора состояния , то говорят, что система полностью наблюдаема.

Управляющее устройство вырабатывает управляющее воздействие . Таких управляющих воздействий может быть несколько, они образуют - мерный управляющий вектор .

На вход управляющего устройства поступает задающее входное воздействие . Это входное воздействие несет информацию о том, какое должно быть состояние объекта. На объект управления может действовать возмущающее воздействие , которое представляет собой нагрузку или помеху. Измерение координаты объекта, как правило, осуществляется с некоторыми погрешностями , которые тоже носят случайный характер.

Задачей управляющего устройства является выработка такого управляющего воздействия , чтобы качество функционирования автоматической системы в целом было бы наилучшим в некотором смысле.

Мы будем рассматривать такие объекты управления, которые являются управляемыми. То есть вектор состояния можно изменять требуемым образом путем соответствующего изменения вектора управления. Будем подразумевать, что объект полностью наблюдаемый.

Так, например, положение летательного аппарата характеризуется шестью координатами состояния. Это - координаты центра масс, - углы Эйлера, определяющие ориентацию летательного аппарата относительно центра масс. Положение летательного аппарата можно изменить с помощью рулей высоты, курса, элерона и с помощью уклонения вектора силы тяги. Таким образом управляющий вектор определен следующим образом:

Угол отклонения рулей высоты

Вектор состояния в этом случае определяется следующим образом:

Можно поставить задачу выбора управления, с помощью которого летательный аппарат переводится из заданного начального состояния в заданное конечное состояние с минимальными затратами топлива или за минимальное время.

Дополнительная сложность при решении технических задач возникает в силу того, что на управляющее воздействие и на координаты состояния объекта управления, как правило, накладываются различные ограничения.

На любой угол рулей высоты, курса, элерона существуют ограничения:

Тяга сама по себе ограничена.

На координаты состояния объекта управления и их производные также накладываются ограничения, которые связаны с допустимыми перегрузками.

Мы будем рассматривать объекты управления, которые описываются дифференциальным уравнением:

(1)

Или в векторном виде:

Мерный вектор состояния объекта

Мерный вектор управляющих воздействий

Функция правой части уравнения (1)

На вектор управления накладывается ограничение, мы будем полагать, что его значения принадлежат некоторой замкнутой области некоторого -мерного пространства. Это означает, что управляющая функция в любой момент времени принадлежит области ().

Так, например, если координаты управляющей функции удовлетворяет неравенствам:

то область является -мерным кубом.

Назовем допустимым управлением всякую кусочно-непрерывную функцию , значения которой в каждый момент времени принадлежит области , и которая может иметь разрывы первого рода. Оказывается, даже в некоторых задачах оптимального управления решение может быть получено в классе кусочно-непрерывного управления. Для того, чтобы выбрать управление как функцию времени и начального состояния системы , которое однозначно определяет движение объекта управления, требуется, чтобы система уравнений (1) удовлетворяла условиям теоремы существования и единственности решения в области . В этой области располагаются возможные траектории движения объекта и возможные управляющие функции . Если область изменения переменных является выпуклой, то для существования и единственности решения достаточно, чтобы функции . были непрерывны по всем аргументам и имели непрерывные частные производные по переменным .

В качестве критерия, который характеризует качество работы системы, выбирается функционал вида:

(2)

В качестве функции будем предполагать, что она непрерывна по всем своим аргументам и имеет непрерывные частные производные по .

Критерии оптимизации

В зависимости от вида подынтегральной функции функционала:

(1)

могут быть получены различные критерии применяемой проектируемой автоматической системой.

Для проектирования оптимальной САУ необходима полная информация об ОУ, возмущающих и задающих воздействиях, начальном и конечном состояниях ОУ. Далее требуется выбрать критерий оптимальности. В качестве такого критерия можно использовать один из показателей качества системы. Однако требования к отдельным показателям качества, как правило, противоречивы (например, повышение точности системы достигается уменьшением запаса устойчивости). Кроме того, оптимальная система должна иметь минимально возможную ошибку не только при отработке какого-то конкретного управляющего воздействия, но в течение всего времени работы системы. Следует также учитывать, что решение задачи оптимального управления зависит не только от структуры системы, но и от параметров составляющих ее элементов.

Достижение оптимального функционирования САУ во многом определяется тем, как осуществляется управление во времени, какова программа, или алгоритм управления. В связи с этим для оценки оптимальности систем используют интегральные критерии, вычисляемые как сумма значений интересующего проектировщиков параметра качества системы за все время процесса управления.

В зависимости от принятого критерия оптимальности рассматривают следующие виды оптимальных систем.

1. Системы , оптимальные по быстродействию , которые обеспечивают минимальное время перевода ОУ из одного состояния в другое. В этом случае критерий оптимальности выглядит следующим образом:

где / н и / к - моменты начала и окончания процесса управления.

В таких системах длительность процесса управления минимальна. Простейший пример - система управления двигателем, обеспечивающая минимальное время разгона его до заданной частоты вращения с учетом всех имеющихся ограничений.

2. Системы , оптимальные по расходу ресурсов , которые гарантируют минимум критерия

где к - коэффициент пропорциональности; U(t) - управляющее воздействие.

Такая система управления двигателем обеспечивает, например, минимальный расход топлива за все время управления.

3. Системы , оптимальные по потерям управления (или по точности), которые обеспечивают минимальные ошибки управления на основании критерия где e(f) - динамическая ошибка.

В принципе задача проектирования оптимальной САУ может быть решена простейшим методом перебора всех возможных вариантов. Конечно, такой метод требует больших затрат времени, но современные ЭВМ позволяют в некоторых случаях им воспользоваться. Для решения задач оптимизации разработаны специальные методы вариационного исчисления (метод максимума, метод динамического программирования и др.), позволяющие учесть все ограничения реальных систем.

В качестве примера рассмотрим, каким должно быть оптимальное по быстродействию управление электродвигателем постоянного тока, если подаваемое на него напряжение ограничено предельной величиной {/ лр, а сам двигатель можно представить в виде апериодического звена 2-го порядка (рис. 13.9, а).

Метод максимума позволяет рассчитать закон изменения и(г), обеспечивающий минимальное время разгона двигателя до частоты вращения (рис. 13.9, б). Процесс управления данным двигателем должен состоять из двух интервалов, в каждом из которых напряжение u(t) принимает свое предельное допустимое значение (в интервале 0 - /,: u(t) = +?/ пр, в интервале /| - / 2: u(t) = -?/ пр)* Для обеспечения такого управления в состав системы должен быть включен релейный элемент.

Как и обычные системы, оптимальные системы бывают разомкнутыми, замкнутыми и комбинированными. Если оптимальное управление, переводящее ОУ из начального состояния в конечное и не зависящее или слабо зависящее от возмущающих воздействий, может быть задано как функция времени U = (/(/), то строится разомкнутая система программного управления (рис. 13.10, а).

В программное устройство ПУ закладывается оптимальная программа П, рассчитанная на достижение экстремума принятого критерия оптимальности. По такой схеме осуществляется управ-


Рис. 13.9.

а - с обшим управляющим устройством; б - с двухуровневым управляющим

устройством

Рис. 13.10. Схемы оптимальных систем: а - разомкнутой; б - комбинированной

ление станками с числовым программным управлением и простейшими роботами, производится вывод ракет на орбиту и т.д.

Наиболее совершенными, хотя и наиболее сложными, являются комбинированные оптимальные системы (рис. 13.10, б). В таких системах разомкнутый контур осуществляет оптимальное управление по заданной программе, а замкнутый контур, оптимизированный по минимуму ошибки, отрабатывает отклонение выходных параметров. Используя канат измерения возмущений /*, система становится инвариантной относительно всего множества задающих и возмущающих воздействий.

Для того чтобы реализовать столь совершенную систему управления, необходимо точно и быстро измерять все возмущаюшие воздействия. Однако такая возможность имеется далеко не всегда. Гораздо чаще о возмущающих воздействиях известны только усредненные статистические данные. Во многих случаях, особенно в системах телеуправления, даже задающее воздействие поступает в систему вместе с помехами. А так как помеха представляет собой в общем случае случайный процесс, то удается синтезировать только статистически оптимальную систему. Такая система не будет оптимальной для каждой конкретной реализации процесса управления, но она будет в среднем наилучшей для всего множества его реализаций.

Для статистически оптимальных систем в качестве критериев оптимальности используют усредненные вероятностные оценки. Например, для следящей системы, оптимизированной по минимуму ошибки, в качестве статистического критерия оптимальности используют математическое ожидание квадрата отклонения выходного воздействия от заданного значения, т.е. дисперсию:

Используются и другие вероятностные критерии. Например, в системе обнаружения целей, где важно только наличие или отсутствие цели, в качестве критерия оптимальности применяют вероятность ошибочного решения Р ош:

где Р п ц - вероятность пропуска цели; Р ЛО - вероятность ложного обнаружения.

Во многих случаях рассчитанные оптимальные САУ оказываются практически не реализуемыми ввиду их сложности. Как правило, требуется получение точных значений производных высоких порядков от входных воздействий, что технически очень трудно осуществимо. Зачастую даже теоретический точный синтез оптимальной системы оказывается невозможен. Однако методы оптимального проектирования позволяют строить квазиоптимальные системы, хотя и упрощенные в той или иной степени, но все- гаки позволяющие достичь значений принятых критериев оптимальности, близких к экстремальным.

Оптимальное управление

Оптимальное управление - это задача проектирования системы, обеспечивающей для заданного объекта управления или процесса закон управления или управляющую последовательность воздействий, обеспечивающих максимум или минимум заданной совокупности критериев качества системы .

Для решения задачи оптимального управления строится математическая модель управляемого объекта или процесса, описывающая его поведение с течением времени под влиянием управляющих воздействий и собственного текущего состояния. Математическая модель для задачи оптимального управления включает в себя: формулировку цели управления, выраженную через критерий качества управления; определение дифференциальных или разностных уравнений, описывающих возможные способы движения объекта управления; определение ограничений на используемые ресурсы в виде уравнений или неравенств .

Наиболее широко при проектировании систем управления применяются следующие методы: вариационное исчисление , принцип максимума Понтрягина и динамическое программирование Беллмана .

Иногда (например, при управлении сложными объектами, такими как доменная печь в металлургии или при анализе экономической информации) в исходных данных и знаниях об управляемом объекте при постановке задачи оптимального управления содержится неопределённая или нечёткая информация, которая не может быть обработана традиционными количественными методами. В таких случаях можно использовать алгоритмы оптимального управления на основе математической теории нечётких множеств (Нечёткое управление). Используемые понятия и знания преобразуются в нечёткую форму, определяются нечёткие правила вывода принимаемых решений, затем производится обратное преобразование нечётких принятых решений в физические управляющие переменные.

Задача оптимального управления

Сформулируем задачу оптимального управления:

здесь - вектор состояния - управление, - начальный и конечный моменты времени.

Задача оптимального управления заключается в нахождении функций состояния и управления для времени , которые минимизируют функционал.

Вариационное исчисление

Рассмотрим данную задачу оптимального управления как задачу Лагранжа вариационного исчисления . Для нахождения необходимых условий экстремума применим теорему Эйлера-Лагранжа . Функция Лагранжа имеет вид: , где - граничные условия. Лагранжиан имеет вид: , где , , - n-мерные вектора множителей Лагранжа .

Необходимые условия экстремума, согласно этой теореме, имеют вид:

Необходимые условия (3-5) составляют основу для определения оптимальных траекторий. Написав эти уравнения, получаем двухточечную граничную задачу, где часть граничных условий задана в начальный момент времени, а остальная часть - в конечный момент. Методы решения подобных задач подробно разбираются в книге

Принцип максимума Понтрягина

Необходимость в принципе максимума Понтрягина возникает в случае когда нигде в допустимом диапазоне управляющей переменной невозможно удовлетворить необходимому условию (3), а именно .

В этом случае условие (3) заменяется на условие (6):

(6)

В этом случае согласно принципу максимума Понтрягина величина оптимального управления равна величине управления на одном из концов допустимого диапазона. Уравнения Понтрягина записываются при помощи функции Гамильтона Н, определяемой соотношением . Из уравнений следует, что функция Гамильтона H связана с функцией Лагранжа L следующим образом: . Подставляя L из последнего уравнения в уравнения (3-5) получаем необходимые условия, выраженные через функцию Гамильтона:

Необходимые условия, записанные в такой форме, называются уравнениями Понтрягина. Более подробно принцип максимума Понтрягина разобран в книге .

Где применяется

Принцип максимума особенно важен в системах управления с максимальным быстродействием и минимальным расходом энергии, где применяются управления релейного типа, принимающие крайние, а не промежуточные значения на допустимом интервале управления.

История

За разработку теории оптимального управления Л.С. Понтрягину и его сотрудникам В.Г. Болтянскому , Р.В. Гамкрелидзе и Е.Ф. Мищенко в 1962 г была присуждена Ленинская премия .

Метод динамического программирования

Метод динамического программирования основан на принципе оптимальности Беллмана, который формулируется следующим образом: оптимальная стратегия управления обладает тем свойством, что каково бы ни было начальное состояние и управление в начале процесса последующие управления должны составлять оптимальную стратегию управления относительно состояния, полученного после начальной стадии процесса . Более подробно метод динамического программирования изложен в книге

Примечания

Литература

  1. Растригин Л.А. Современные принципы управления сложными объектами. - М.: Сов. радио, 1980. - 232 с., ББК 32.815, тир. 12000 экз.
  2. Алексеев В.М., Тихомиров В.М. , Фомин С.В. Оптимальное управление. - М.: Наука, 1979, УДК 519.6, - 223 c., тир. 24000 экз.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Оптимальное управление" в других словарях:

    Оптимальное управление - ОУ Управление, обеспечивающее наивыгоднейшее значение определенного критерия оптимальности (КО), характеризующего эффективность управления при заданных ограничениях. В качестве КО могут быть выбраны различные технические или экономические… … Словарь-справочник терминов нормативно-технической документации

    оптимальное управление - Управление, цель которого заключается в обеспечении экстремального значения показателя качества управления. [Сборник рекомендуемых терминов. Выпуск 107. Теория управления. Академия наук СССР. Комитет научно технической терминологии. 1984 г.]… … Справочник технического переводчика

    Оптимальное управление - 1. Основное понятие математической теории оптимальных процессов (принадлежащей разделу математики под тем же названием: «О.у.»); означает выбор таких управляющих параметров, которые обеспечивали бы наилучшее с точки… … Экономико-математический словарь

    Позволяет при заданных условиях (часто противоречивых) достичь поставленной цели наилучшим образом, напр. за минимальное время, с наибольшим экономическим эффектом, с максимальной точностьюБольшой Энциклопедический словарь

    Летательным аппаратом раздел динамики полёта, посвящённый развитию и использованию методов оптимизации для определения законов управления движением летательного аппарата и его траекторий, обеспечивающих максимум или минимум выбранного критерия… … Энциклопедия техники

    Раздел математики, изучающий неклассические вариационные задачи. Объекты, с которыми имеет дело техника, обычно снабжены «рулями» с их помощью человек управляет движением. Математически поведение такого объекта описывается… … Большая советская энциклопедия

    Позволяет при заданных условиях (часто противоречивых) достичь поставленной цели наилучшим образом, например за минимальное время, с наибольшим экономическим эффектом, с максимальной точностью. * * * ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ … Энциклопедический словарь

Любая автоматическая система предназначена для управления каким-либо объектом, должна быть построена таким образом, чтобы осуществляемое ею управление было оптимальным, т.е наилучшем в том или ином смысле. Задачи оптимального управления чаще всего возникают в подсистемах управления технологическими процессами. В каждом случае существует некоторая технологическая задача, для выполнения которой предназначается соответствующая машина или установка (объект управления), снабженная соответствующая системой управления, т.е. речь идет о некоторой САУ, состоящей из объекта управления и совокупности устройств, которые обеспечивают управление этим объектом. Как правило эта совокупность включает в себя измерительные, усилительные преобразовательные и исполнительные устройства. Если объединить усилительные, преобразовательные и исполнительные устройства в одно звено, называемое управляющим устройством или регулятором, то функциональная схема САУ может быть приведена к виду на рис. 1. 1.

Рис. 1. 2 Функциональная схема оптимальной системы

На вход управляющего устройства поступает задающее воздействие, которое содержит инструкцию о том, каково должно быть состояние объекта - так называемое «желаемое состояние».

На объект управления может поступать возмущающие воздействие z, представляющие нагрузку или помеху. Измерение координат объекта измерительным устройством может производиться с некоторыми случайными погрешностями x (ошибка) .

Таким образом, задачей управляющего устройства является выработка такого управляющего воздействия, чтобы качество функционирования САУ в целом было бы наилучшим в некотором смысле. Для определения алгоритма управляющего устройства необходимо знать характеристики объекта и характер информации об объекте и возмущениях, которая поступает в управляющее устройство.

Под характеристиками объекта понимают зависимость выходных величин объекта от входных

где F, в общем случае,-- оператор, который устанавливает закон соответствия между двумя множествами функций. Оператор F объекта может быть задан различными способами: с помощью формул, таблиц, графиков. Его задают и в виде системы дифференциальных уравнений, которая в векторной форме записывается так

где и задавалось начальное и конечное значения вектора.

Существует много различных путей решения рассматриваемой задачи. Но только один способ управления объектом дает наилучший в некотором смысле результат. Этот способ управления и реализующую его систему называют оптимальными.

Чтобы иметь количественные основания для предпочтения одного способа управления всем другим, необходимо определить цель управления, а затем ввести меру, характеризующую эффективность достижения цели -критерий оптимальности управления. Обычно критерий оптимальности - это числовая величина, зависящая от изменяющихся во времени и пространстве координат и параметров системы так, что каждому закону управления соответствует определенное значение критерия. В качестве критерия оптимальности могут быть выбраны различные технические и экономические показатели рассматриваемого процесса.

Иногда к системе управления предъявляются различные, подчас противоречивые требования. Законы управления, которые одновременно наилучшим образом удовлетворяли бы каждому требованию, не существует. Поэтому из всех требований нужно выбрать одно главное, которое должно удовлетворяться наилучшим образом. Другие требования играют роль ограничений. Следовательно, выбор критерия оптимальности должен производиться, только на основании изучения технологии и экономики рассматриваемого объекта и среды. Эта задача выходит за рамки теории ОУ.

При решении задач оптимального управления наиболее важным является задание цели управления, что математически можно рассматривать как задачу достижения экстремума некоторой величины Q -- критерия оптимальности. В математике такую величину называют функционалом. В зависимости от решаемой задачи необходимо достижение минимума либо максимума Q. Например, запишем критерий оптимальности, в котором Q должно быть минимально

Как видно, величина Q зависит от функций.

В качестве критерия оптимальности могут быть приняты различные технические и технико-экономические показатели и оценки. Выбор критерия оптимальности -- это инженерная и инженерно-экономическая задача, которая решается на основе глубокого и всестороннего изучения управляемого процесса. В теории управления широко распространены интегральные функционалы, характеризующие качество функционирования системы. Достижение максимального или минимального значения этого функционала указывает на оптимальное поведение или состояние системы. Интегральные функционалы обычно отражают условия работы объектов управления и учитывают ограничения (по нагреву, прочности, мощности источников энергии и т. д.), накладываемые на координаты .

Для процессов управления использоваться такие критерии:

1. оптимальное быстродействие (время переходного процесса)

2. минимум среднеквадратичного значения ошибки.

3. минимум расхода затрачиваемой энергии.

Таким образом, критерий оптимальности может относиться к переходному или к установившемуся процессу в системе.

В зависимости от критерия оптимальности оптимальные системы можно разделить на два основных класса -- оптимальные по быстродействию и оптимальные по точности.

Системы оптимального управления в зависимости от характера критерия оптимальности можно разделить на три типа:

а) равномерно-оптимальные системы;

б) статистически-оптимальные системы;

в) минимаксно-оптимальные системы.

Равномерно-оптимальная -- это такая система, у которой каждый отдельный процесс является оптимальным. Например, в оптимальных по быстродействию системах при любых начальных условиях и любых возмущениях система приходит наикратчайшим во времени путем к требуемому состоянию.

В статистически-оптимальных системах критерий оптимальности имеет статистический характер. Такие системы должны быть наилучшими в среднем. Здесь не требуется или невозможна оптимизация в каждом отдельном процессе. В качестве статистического критерия чаще всего фигурирует среднее значение какого-либо первичного критерия, например математическое ожидание выхода некоторой величины за определенные пределы.

Минимаксно-оптимальные -- это такие системы, которые в наихудшем случае дают возможно наилучший результат. Они отличаются от равномерно-оптимальных тем, что в ненаихудшем случае могут дать худший результат, чем какая-либо другая система .

Оптимальные системы можно также подразделить на три типа в зависимости от способа получения информация об управляемом объекте:

оптимальные системы с полной информацией об объекте;

оптимальные системы с неполной информацией об объекте и пассивным ее накоплением;

оптимальные системы с неполной информацией об объекте и активным ее накоплением в процессе управления (системы дуального управления).

Существует две разновидности задач синтеза оптимальных систем:

Определение оптимальных значений параметров регулятора при заданных параметрах объекта и заданной структуре системы;

Синтез структуры и определение параметров регулятора при заданных параметрах и структуре объекта управления.

Решение задач первого типа возможно различными аналитическими методами при минимизации интегральных оценок, а также с помощью вычислительной техники (моделирование на ЭВМ), рассматривая заданный критерий оптимальности.

Решение задач второго типа основано на использовании специальных методов: методы классического вариационного исчисления, принципа максимума Понтрягина и динамического программирования Беллмана, а также методы математического программирования. Для синтеза оптимальных систем при случайных сигналах используются методы Винера, вариационные и частотные методы. При разработке адаптивных систем наиболее широкое применение имеют градиентные методы, позволяющие определить законы, изменения настраиваемых параметров.

В общем случае система автоматического управления состоит из объекта управления ОУ с рабочим параметром Y, регулятора Р и программатора (задатчика) П (рис. 6.3), вырабатывающего задающее воздействие (программу) для достижения целей управления при условии выполнения качественных и количественных требований. Программатор учитывает совокупность внешней информации (сигнал И).

Рис. 6.3. Структура оптимального управления

Задача создания оптимальной системы состоит в том, чтобы для заданного объекта управления синтезировать регулятор и программатор, которые наилучшим образом решают требуемую цель управления.
В теории автоматического управления рассматриваются две родственные задачи: синтез оптимального программатора и синтез оптимального регулятора. Математически они формулируются одинаково и решаются одними и теми же методами. В то же время задачи имеют специфические особенности, которые на определенном этапе требуют дифференцированного подхода.

Система с оптимальным программатором (оптимальное программное управление) получила название оптимальной по режиму управления. Систему с оптимальным регулятором называют оптимальной по переходному режиму. Система автоматического управления называется оптимальной, если оптимальными являются регулятор и программатор.
В ряде случаев считается, что программатор задан и требуется определить только оптимальный регулятор.

Задача синтеза оптимальных систем формулируется как вариационная задача или задача математического программирования. При этом, кроме передаточной функции объекта управления, задаются ограничения на управляющие воздействия и рабочие параметры объекта управления, краевые условия и критерий оптимальности. Краевые (граничные) условия определяют состояние объекта в начальный и конечный момент времени. Критерий оптимальности, который является числовым показателем качества системы, обычно задается в виде функционала

J = J [u (t ), y (t )],

где u (t ) – управляющие воздействия; y (t ) – параметры объекта управления.

Задача оптимального управления формулируется следующим образом: при заданном объекте управления, ограничениях и краевых условиях найти такое управление (программатор или регулятор), при котором критерий оптимальности принимает минимальное (или максимальное) значение.

28. Обработка информации в АСУ ТП. Связь интервала корреляции с час­тотой опроса первичных измерительных преобразователей. Выбор частоты опроса первичных измерительных преобразователей.