Принцип управления: (буровой станок)

Программы и законы регулирования Программа регулирования

План формирования задающего воздействия g (t ) на систему.

Программа регулирования может быть:

    временной: y = y (t );

    параметрической: y = y (s 1 , s 2 , s 3 , ..., s n ).

Например, временная программа приготовления пищи (лапшу варить 12 мин.), или параметрическая программа посадки самолета на палубу авианосца (в зависимости от: бокового ветра, изменений координат посадочной полосы, массы остатка топлива, ...).

Закон регулирования

Зависимость, по которой формируется регулирующее воздействие u (t ) на объект из первичной информации: g (t ) и/или x (t ) и, возможно, f (t ).

Законы регулирования бывают:

    линейные:

;

    нелинейные:

F 1(u , du /dt , ...) = F 2(x , dx /dt , ...; g , ...; f , ...) .

Классификация нелинейных законов регулирования:

    Функциональные.

    Логические.

    Параметрические.

    Оптимизирующие.

Примеры статических функциональных нелинейностей в законах:

Примеры динамических функциональных нелинейностей в законах:

Пример логического нелинейного закона:

Если |x | < 0.2G m , тогда u = k 1 x ;

Если |x | > 0.2G m , тогда u = k 2 x ;

где: k 1 < k 2

Пример параметрического нелинейного закона:

u = k (t [°C]; h [м]; G [кг]) x .

Пример оптимизирующего нелинейного закона:

u = k (min(CO 2); max(КПД)) x .

Линейные непрерывные законы регулирования

Под законом регулирования (управления) понимается алгоритм или функциональная зависимость, определяющая управляющее воздействие u (t ) на объект:

u (t ) = F (x, g, f ) .

Линейные законы описываются линейной формой:

u (t ) = k 1 x (t ) + k 2 x (t )dt + k 3 x (t )dt 2 + ... + k 4 x" (t ) + k 5 x"" (t ) + ...

она же в операторной форме записи:

u (t ) = x (t ) [k 1 + k 2 /p + k 3 /p 2 + ... + k 4 p + k 5 p 2 + ...] (1*).

Наличие в (1*) чувствительности регулятора к пропорциональной, к интегральным или к дифференциальным составляющим в первичной информации x (t ), определяет тип регулятора:

    P - пропорциональный.

    I - интегральный.

    PI - пропорционально интегральный (изодромный).

    PD - пропорционально дифференциальный.

    и более сложные варианты - PID, PIID, PIDD, ...

Пропорциональное регулирование

Пропорциональный закон регулирования имеет вид:

u (t ) = W рег (p ) x (t ) = k 1 x (t ) ,

W (p ) = W рег (p ) W o (p ) = k 1 W o (p ) .

Рассмотрим уравнение ошибки:

В установившемся режиме p 0 (все производные равны нулю); W o (p )k o ; W (p )k 1 k o =k ; где k - контурный коэффициент усиления разомкнутой системы (при W ос (p )=1).

Резюме : P-регулирование позволяет уменьшить установившуюся (статическую) ошибку, но только в 1+k раз, поэтому регулирование будет статическим. Т.е. при любом k x уст 0.

Интегральное регулирование

Интегральный закон регулирования имеет вид:

u (t ) = W рег (p ) x (t ) = k 2 /p x (t ) ,

тогда в разомкнутом состоянии система будет характеризоваться ПФ:

W (p ) = W рег (p ) W o (p ) = k 2 /p W o (p ) .

Рассмотрим уравнение ошибки:

В установившемся режиме p 0, => W (p ); => первая составляющая ошибки g 0 /0. Ошибка от возмущения зависит от вида функции W f (0) и может быть отлична от нуля.

Резюме : I-регулирование позволяет исключить статическую ошибку в системе, т.е. система будет астатической по отношению к задающему воздействию g (t ).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Экстремальные системы управления

Экстремальные СУ - это такие САУ, в которых один из показателей качества работы нужно удерживать на предельном уровне (min или max).

Классическим примером экстремальной СУ является система автоподстройки частоты радиоприёмника.

Рис.1.1 - Амплитудно-частотная характеристика:

1.1 Постановка задачи синтеза экстремальных систем

Объекты описываются уравнениями:

Экстремальная характеристика дрейфует во времени.

Необходимо подобрать такое управляющее воздействие, которое позволяло бы автоматически находить экстремум и удерживать систему в этой точке.

U: extr Y=Y o (1.2)

Рис.1.2 - Статическая экстремальная характеристика:

Необходимо определить такое управляющее воздействие, которое обеспечило выполнение свойства:

1.2 Условие экстремума

Необходимое условие экстремума - равенство нулю первых частных производных.

Достаточное условие экстремума - равенство нулю вторых частных производных. При синтезе экстремальной системы необходимо оценить градиент, но вектор вторых частных производных оценить невозможно, и на практике, вместо достаточного условия экстремума используют соотношение:

Этапы синтеза экстремальной системы:

Оценка градиента.

Организация движения в соответствии с условием движение к экстремуму.

Стабилизация системы в точке экстремума.

Рис.1.3 - Функциональная схема экстремальной системы:

1.3 - Виды экстремальных характеристик

1) Унимодальная экстремальная характеристика типа модуля

Рис. 1.4 - Экстремальная характеристика типа модуля:

2) Экстремальная характеристика типа параболы

Рис. 1.5 - Экстремальная характеристика типа параболы:

3) В общем случае экстремальную характеристику можно описать параболой n-го порядка:

Y = k 1 |y-y o (t)| n + k 2 |y-y o (t)| n -1 + …+k n | y-y o (t)| + k n +1 (t).(1.9)

4) Векторно-матричное представление:

Y = y T By(1.10)

1.4 Способы оценки градиента

1.4.1 Способ деления производных

Рассмотрим его на унимодальной характеристике, y - выход динамический части системы.

yR 1 , Y = Y(y,t)

Найдём полную производную по времени:

При медленном дрейфе, таким образом

Достоинство: простота.

Недостаток: при малых 0 нельзя определить градиент.

Дифференцирующий фильтр.

Рис. 1.6 - Схема оценки частной производной:

1.4.2 Дискретная оценка градиента

Рис. 1.7 - Схема дискретной оценки частной производной:

1.4.3 Дискретная оценка знака градиента

При малом шаге дискретизации заменяем:

1.4.4 Метод синхронного детектирования

Метод синхронного детектирования предполагает добавление ко входному сигналу на экстремальный объект дополнительного синусоидального сигнала малой амплитуды, высокой частоты и выделение из выходного сигнала соответствующей составляющей. По соотношению фаз этих двух сигналов можно сделать вывод о знаке частных производных.

Рис. 1.8 - Функциональная схема оценки частной производной:

Рис. 1.9 - Иллюстрация прохождения поисковых колебаний на выход системы:

y 1 - рабочая точка, при этом разность фаз сигналов равна 0.

y 2 - разность фаз сигналов, в качестве простейшего ФЧУ можно использовать блок перемножения.

Рис. 1.10 - Иллюстрация работы ФЧУ:

В качестве фильтра выбирают усредняющий на периоде фильтр, который позволяет получить на выходе сигнал, пропорциональный значению частной производной.

Рис. 1.11 - Линеаризация статической характеристики в рабочей точке:

Следовательно уравнение экстремальной кривой можно заменить уравнением прямой:

Сигнал на выходе ФЧУ:

k - коэффициент пропорциональности - тангенс угла наклона прямой.

Сигнал на выходе фильтра:

Таким образом:

Метод синхронного детектирования годится для определения не только одной частной производной, но и градиента в целом, при этом на вход подаётся несколько колебаний различной частоты. Соответствующие фильтры на выходе выделяют реакцию на конкретный поисковый сигнал.

1.4.5 Специальный фильтр оценки градиента

Этот метод предполагает введение в систему специальную динамическую систему, промежуточный сигнал которой равен частной производной.

Рис. 1.12 - Схема специального фильтра оценки частной производной:

T- постоянная времени фильтра:

Для оценки полной производной Y используют ДФ - дифференцирующий фильтр, а затем эта оценка полной производной применяется для оценки градиента.

1.5 Организация движения к экстремуму

1.5.1 Системы первого порядка

Организуем закон управления пропорционально градиенту:

Запишем уравнение замкнутой системы:

Это обычное дифференциальное уравнение, которое можно исследовать методами ТАУ.

Рассмотрим уравнение статики системы:

Если с помощью коэффициента усиления k обеспечить устойчивость замкнутой системы, то автоматически в статике мы придём в точку экстремума.

В некоторых случаях с помощью коэффициента k можно кроме устойчивости обеспечить определённую длительность переходного процесса в замкнутой системе, т.е. обеспечить заданное время выхода на экстремум.

Где k - устойчивость

Рис. 1.13 - Функциональная схема градиентной экстремальной системы первого порядка:

Этот способ годится только для унимодальных систем, т.е. систем с одним глобальным экстремумом.

1.5.2 Метод тяжёлого шарика

По аналогии с шариком, который скатывается в овраг и проскакивает точки локальных экстремумов, система АУ с колебательными процессами также проскакивает локальные экстремумы. Для обеспечения колебательных процессов в систему первого порядка вводим дополнительную инерционность.

Рис. 1.14 - Иллюстрация метода “тяжёлого” шарика:

Уравнение замкнутой системы;

Характеристическое уравнение системы:

Чем меньше d тем длиннее переходный процесс.

Анализируя экстремальную характеристику, задаются необходимые перерегулирование и длительность переходного процесса, откуда задаются:

1.5.3 Одноканальные системы общего вида

Закон управления:

Подставив закон управления в управление объекта, получим уравнение замкнутой системы:

В общем случае, для анализа устойчивости замкнутой системы необходимо использовать второй метод Ляпунова, с помощью которого определяется коэффициент усиления регулятора. Т.к. 2 й метод Ляпунова даёт лишь достаточное условие устойчивости, то выбранная функция Ляпунова может оказаться неудачной и регулярную процедуру расчёта регулятора здесь предложить нельзя.

1.5.4 Системы со старшей производной в управлении

Общий случай экстремума объектов:

Функции f, B и g должны удовлетворять условиям существования и единственности решения дифференциального уравнения. Функция g - должна быть многократно дифференцируемой.

С - матрица производных

Задача синтеза разрешима, если матрица произведений будет не вырожденная, т.е.

Анализ условия разрешимости задачи синтеза позволяет определить производную выходных переменных, которая явно зависит от управляющего воздействия.

Если выполняется условие (1.31), то такой производной является первая производная, а следовательно требования к поведению замкнутой системы можно формировать в виде дифференциального уравнения для y, соответствующего порядка.

Сформируем закон управления замкнутой системы, для чего сформируем закон управления, подставив в правую часть управления для:

Уравнение замкнутой системы относительно выходной переменной.

Рассмотрим ситуацию, когда

При соответствующем выборе коэффициента усиления мы получаем желаемое уравнение и автоматический выход на экстремум.

Параметры регулятора выбираются из тех соображений, что и для обычных САУ, т.е. (СВК) i = (20*100), что позволяет обеспечить соответствующую ошибку.

Рис. 1.15 - Схема системы со старшей производной в управлении:

В системе для оценки полной производной по времени в систему вводят дифференцирующий фильтр, поэтому для оценки градиентов в таких системах удобно использовать фильтр оценки градиента. Т.к. оба этих фильтра имеют малые постоянные времени, то в системе могут возникать разнотемповые процессы, выделить которые можно с помощью метода разделения движений, причём медленные движения будут описываться уравнением (1.34), которое соответствует желаемому при. Быстрые движения нужно анализировать на устойчивость, причём в зависимости от соотношения постоянной времени ДФ и фильтра оценки частных производных (ФОЧП), можно выделить следующие виды движений:

1) Постоянные времени этих фильтров соизмеримы.

Быстрые движения описывают комбинированные процессы в этих двух фильтрах.

2) Постоянные времени различаются на порядок.

В системе наблюдаются кроме медленных движений, быстрые и сверх- быстрые движения, соответствующие наименьшей постоянной времени.

На устойчивость необходимо анализировать оба случая.

2. Оптимальные системы

Оптимальные системы - это системы, в которых заданное качество работы достигается за счет максимального использования возможностей объекта, иными словами это системы, в которых объект работает на пределе своих возможностей. Рассмотрим апериодическое звено первого порядка.

Для которого необходимо обеспечить минимальное время перехода у из начального состояния y(0) в конечное y k . Переходная функция такой системы при K=1 выглядит следующим образом

Рис. 2.1 - Переходная функция системы при U= const:

Рассмотрим ситуацию, когда на вход объекта подаем максимально возможное управляющее воздействие.

Рис. 2.2 - Переходная функция системы при U=A= const:

t 1 - минимально возможное время перехода y из нулевого состояния в конечное для данного объекта.

Для получения такого перехода существует два закона управления:

Второй закон более предпочтителен и позволяет обеспечить управление при помехах.

Рис. 2.3 - Структурная схема системы с законом управления типа обратной связи:

2.2 Постановка задачи синтеза оптимальных систем

2.2.1 Математическая модель объекта

Объект описан переменными состояния

Где функция f(x,u) непрерывна, дифференцируема по всем аргументам и удовлетворяет условию существования и единственности решения дифференциального уравнения.

Эта функция является нелинейной, но стационарной. В качестве частных случаев объект может иметь вид нелинейной системы с аддитивным управлением:

Либо линейной системой

Объект должен быть представлен в одной из трех форм, представленных выше.

2.2.2 Множество начальных и конечных состояний

Задача оптимального перехода из начального состояния в конечное представляет собой краевую задачу

Где начальные и конечные точки могут быть заданы одним из четырех способов, представленных на рис. 2.4.

а) задача с фиксированными концами,

б) задача с фиксированным первым концом (фиксированная начальная точка и множество конечных значений),

в) задача с фиксированным правым концом,

г) задача с подвижными концами.

Рис.2.4 - Фазовые портреты перехода системы из начального состояния в конечное для различных задач:

Для объекта множество начальных состояний может в общем случае совпадать с о всем множеством состояний либо с рабочей областью, а множество конечных состояний является подпространством множества состояний или рабочей области.

Пример 2.1 - В любую ли точку пространства состояний можно перевести объект, описываемый системой уравнений?

Подставив во второе уравнение значение U из первого уравнения u = x 2 0 - 2x 1 0 , получим -5x 1 0 + x 2 0 = 0;

Получили множество конечных состояний, описываемое уравнением x 2 0 = 5x 1 0 ;

Таким образом, множество конечных состояний, задаваемое для объекта (системы), должно быть реализуемым.

2.2.3 Ограничения на состояния и управление

Рис. 2.5 - Общий вид рабочей области пространства состояний:

Выделяется рабочая область пространства состояний, которая оговаривается. Как правило, эта область описывается ее границами с помощью модульных соглашений.

Рис.2.6 - Вид рабочей области пространства состояний, заданной модульными соглашениями:

Также задается U - область допустимых значений управляющего воздействия. На практике область U задается также с помощью модульных соотношений.

Задача синтеза оптимального регулятора решается при условии ограничений на управление и ограниченном ресурсе.

2.2.4 Критерий оптимальности

На этом этапе оговариваются требования, предъявляемые к качеству работы замкнутой системы. Требования задаются в обобщенном виде, а именно в виде интегрального функционала, который носит название критерия оптимальности.

Общий вид критерия оптимальности:

Частные виды критерия оптимальности:

1) критерий оптимальности, обеспечивающий минимум времени переходного процесса (решается задача оптимального быстродействия):

2) критерий оптимальности, обеспечивающий минимум затрат энергии:

По одной из компонент:

По всем переменным состояниям:

По одному управляющему воздействию:

По всем управляющим воздействиям:

По всем компонентам (в самом общем случае):

2.2.5 Форма результата

Необходимо оговорить в каком виде будем искать управляющее воздействие.

Возможны два варианта оптимального управления: u 0 = u 0 (t), используется при отсутствии возмущения, u 0 = u 0 (x), оптимальное управление в виде обратной связи (замкнутое управление).

Формулировка задачи синтеза оптимальной системы в общем виде:

Для объекта, описанного переменными состояниями с заданными ограничениями и множеством начальных и конечных состояний, необходимо найти управляющее воздействие, обеспечивающее качество процессов в замкнутой системе, соответствующее критерию оптимальности.

2.3 Метод динамического программирования

2.3.1 Принцип оптимальности

Исходные данные:

Необходимо найти u 0:

Рис. 2.7 - Фазовый портрет перехода системы из начальной точки в конечную в пространстве состояний:

Траектория перехода из начальной точки в конечную будет оптимальной и единственной.

Формулировка принципа: Конечный участок оптимальной траектории есть также оптимальная траектория. Если бы переход из промежуточной точки в конечную не осуществлялся бы по оптимальной траектории, то для него можно было бы найти свою оптимальную траекторию. Но в этом случае переход из начальной точки в конечную проходил бы по другой траектории, которая должна была бы быть оптимальной, а это невозможно, так как оптимальная траектория единственная.

2.3.2 Основное уравнение Беллмана

Рассмотрим объект управления произвольного вида:

Рассмотрим переход в пространстве состояний:

Рис. 2.8 - Фазовый портрет перехода системы из начальной точки в конечную x(t) - текущая (начальная) точка, x(t+Дt) - промежуточная точка.

Преобразуем выражение:

Заменим второй интеграл на V(x(t+Дt)):

При малом значении Дt введем допущения:

2) Разложим вспомогательную функцию

Выполняя дальнейшие преобразования, получим:

Где min V(x(t)) и есть критерий оптимальности J.

В результате получили:

Разделим обе части выражения на Дt и устраним Дt к нулю:

Получим основное уравнение Беллмана:

2.2.3 Расчетные соотношения метода динамического программирования:

Основное уравнение Белмана содержит (m+1) - неизвестных величин, т.к. U 0 R m , VR 1:

Продифференцировав m раз, получим систему из (m+1) уравнений.

Для ограниченного круга объектов решение полученной системы уравнений дает точное оптимальное управление. Такая задача носит название задачи АКОР (аналитического конструирования оптимальных регуляторов).

Объекты, для которых рассматривается задача АКОР, должны удовлетворять следующим требованиям:

Критерий оптимальности должен быть квадратичным:

Пример 2.2

Для объекта, описываемого уравнением:

Необходимо обеспечить переход из x(0) в x(T) по критерию оптимальности:

Проанализировав объект на устойчивость, получим:

U 0 = U 2 = -6x.

2.4 Принцип максимума Понтрягина

Введем расширенный вектор состояний, который расширяем за счет нулевой компоненты, в качестве которой выбираем критерий оптимальности. zR n+1

Также введем расширенный вектор правых частей, который расширяем за счет функции, стоящей под интегралом в критерии оптимальности.

Введем Ш - вектор сопряженных координат:

Сформируем Гамильтониан, представляющий собой скалярное произведение Ш и ц(z,u):

H(Ш,z,u) = Ш*ц(z,u),(2.33)

Уравнение (2.34) называется основным уравнением принципа максимума Понтрягина, основанное на уравнении динамического программирования. Оптимальным является управление, которое на заданном интервале времени доставляет максимум Гамильтониана. Если бы ресурс управления не был бы ограничен, то для определения оптимального управления можно было бы воспользоваться необходимыми и достаточными условиями экстремума. В реальной ситуации для отыскания оптимального управления необходимо анализировать величину Гамильтониана при предельном значении уровня. В этом случае U 0 будет функцией расширенного вектора состояний и вектора сопряженных координат u 0 = u 0 .

Для отыскания сопряженных координат необходимо решить систему уравнений:

2.4.1 Процедура расчета системы по принципу максимума Понтрягина.

Уравнения объекта должны быть приведены к виду, стандартному для синтеза оптимальных систем:

Необходимо оговорить также начальные и конечные состояния и записать критерий оптимальности.

Вводятся расширенный вектор состояний

Расширенный вектор правых частей:

И вектор сопряженных координат:

Записываем Гамильтониан как скалярное произведение:

Находим максимум Гамильтониана по u:

По которому определяем оптимальное управление u 0 (Ш,z).

Записываем дифференциальные уравнения для вектора сопряженных координат:

Находим сопряженные координаты как функцию времени:

6. Определяем окончательный оптимальный закон управления:

Как правило, этот способ позволяет получить программный закон управления.

Пример 2.3 - Для объекта, представленного на рис. 2. 9. необходимо обеспечить переход из начальной точки y(t) в конечную y(t) за T= 1c с качеством процесса:

Рис. 2.9 - Модель объекта:

Для определения констант b 1 и b 2 нужно решить краевую задачу.

Запишем уравнение замкнутой системы

Проинтегрируем:

Рассмотрим конечную точку t=T=1с., как x 1 (T)=1 и x 2 (T)=0:

1= 1/6 b 1 + 1/2 b 2

Получили систему уравнений, из которой находим b 2 = 6, b 1 = -12.

Запишем закон управления u 0 = -12t + 6.

2.4.2 Задача оптимального управления

Для объекта общего вида необходимо обеспечить переход из начальной точки в конечную за минимальное время при ограниченном законе управления.

Особенности задачи оптимального быстродействия

Гамильтониан быстродействия:

Релейность управления:

Эта особенность имеет место для релейных объектов.

Теорема о числе переключений управляющего воздействия:

Эта теорема справедлива для линейных моделей с вещественными корнями характеристического уравнения.

Det (pI - A) =0 (2.51)

Л(A) - вектор вещественных собственных чисел.

Формулировка теоремы:

В задаче оптимального быстродействия с вещественными корнями характеристического уравнения число переключений не может быть больше, чем (n-1), где n - порядок объекта, следовательно, число интервалов постоянства управления не будет больше, чем (n-1).

Рис. 2.10 - Вид управляющего воздействия при n=3:

Пример 2.4 - Рассмотрим пример решения задачи оптимального быстродействия:

Ш=[Ш 1 , Ш 2 ]

H б = Ш 1 x 2 + Ш 2 (-2dx 2 -x 1 +u)

При - корни вещественные:

Сумма двух экспонент представляет собой:

Если, то корни комплексно-сопряженные и решение будет представлять собой периодическую функцию. В реальной системе, переключений не более 5 - 6.

2.4.3 Метод поверхности переключений

Данный метод позволяет найти управление функций переменной состояния для случая когда оптимальное управление носит релейный характер. Таким образом этот метод можно применять при решении задач оптимального быстродействия, для объекта с аддитивным управлением

Суть метода заключается в том, чтобы во всём пространстве состояний выделить точки, где происходит смена знака управления и объединить их в общую поверхность переключений.

Поверхность переключений

Закон управления будет иметь следующий вид:

Для формирования поверхности переключений удобнее рассматривать переход из произвольной начальной точки в начало координат

Если конечная точка не совпадает с началом координат, то необходимо выбрать новые переменные, для которых это условие будет справедливо.

Имеем объект вида

Рассматриваем переход, с критерием оптимальности:

Этот критерий позволяет найти закон управления такого вида:

С неизвестным, начальные условия нам также неизвестны.

Рассматриваем переход:

Метод обратного времени (метод попятного движения).

Этот метод позволяет определить поверхности переключений.

Суть метода заключается в том, что начальная и конечная точки меняются местами, при этом вместо двух совокупностей начальных условий остаётся одна для.

Каждая из этих траекторий будет оптимальна. Сначала находим точки, где управление меняет знак и объединяем их в поверхность, а затем направление движения меняем на противоположное.

Пример - Передаточная функция объекта имеет вид:

Критерий оптимальности быстродействия:

Ограничение на управление.

Рассмотрим переход:

Оптимальное управление будет иметь релейный характер:

Перейдём в обратное время (т.е.). В обратном времени задача будет иметь такой вид

Рассмотрим два случая:

Получим уравнения замкнутой системы:

Воспользуемся методом непосредственного интегрирования, получим зависимость от и поскольку -, то имеем

Т.к. начальные и конечные точки поменяли местами, то, получим аналогично:

Построим получившееся и по методу фазовой плоскости определим направление

Применив метод непосредственного интегрирования, получим:

Функция будет иметь вид:

Изменив направление:

Точка смены знака (точка переключения).

Общее аналитическое выражение:

Уравнение поверхности:

Оптимальный закон управления:

Подставив уравнение поверхности, получим:

2.5 Субоптимальные системы

Субоптимальные системы - это системы близкие по свойствам к оптимальным

Характеризуется критерием оптимальности.

Абсолютная погрешность.

Относительная погрешность.

Субоптимальным называют процесс близкий к оптимальному с заданной точностью.

Субоптимальная система - система где есть хоть один субоптимальный процесс.

Субоптимальные системы получаются в следующих случаях:

при аппроксимации поверхности переключений (с помощью кусочно-линейной аппроксимации, аппроксимация с помощью сплайнов)

При в субоптимальной системе будет возникать оптимальный процесс.

ограничение рабочей области пространства состояний;

3. АДАПТИВНЫЕ СИСТЕМЫ

3.1 Основные понятия

Адаптивными системами называют такие системы, в которых параметры регулятора меняются вслед за изменением параметров объекта, таким образом, чтобы поведение системы в целом оставалось неизменным и соответствовало желаемому:

Существует два направления в теории адаптивных систем:

адаптивные системы с эталонной моделью (АСЭМ);

адаптивные системы с идентификатором (АСИ).

3.2 Адаптивные системы с идентификатором

Идентификатор - устройство оценки параметров объекта (оценка параметров должна осуществляться в реальном времени).

АР - адаптивный регулятор

ОУ - объект управления

U - идентификатор

Часть, которая выделена пунктиром, может быть реализована в цифровом виде:

V, U, X - могут быть векторы. Объект может быть многоканальным.

Рассмотрим работу системы.

В случае неизменных параметров объекта, структура и параметры адаптивного регулятора не меняются, действует главная обратная связь, сис-тема представляет собой систему стабилизации.

Если параметры объекта меняются, то они оцениваются идентификато-ром в реальном времени и происходит изменение структуры и параметров адаптивного регулятора так, чтобы поведение системы оставалось неизмен-ным. Основные требования предъявляются к идентификатору (быстродействие и т.д.) и к самому алгоритму идентификации. Такой класс систем используют для управления объектами с медленными нестационарностями. Если мы имеем нестационарный объект общего вида:

;.Простейший адаптивный вид будет следующий:

Требования, которые предъявляются к системе:

Где и - матрицы постоянных коэффициентов.

Реально мы имеем:

Если приравнять, то получим соотношение для определения параметров регулятора

3.3 Адаптивные системы с эталонной моделью

В таких системах существует эталонная модель (ЭМ), которая ставится параллельно объекту. БА - блок адаптации.

Рис 2 - Функциональная схема АСЭМ:

Рассмотрим работу системы:

В том случае, когда параметры объекта не меняются или процессы на выходе соответствуют эталонным, ошибка:

автоподстройка управление программирование

Не работает блок адаптации и не перестраивается адаптивный регулятор, в системе действует плавная обратная связь.

Если поведение отлично от эталонного, это происходит при изменении параметров объекта, в этом случае появляется ошибка.

Включается блок адаптации, перестраивается структура адаптивного регулятора, таким образом чтобы свести к эталонной модели объекта.

Блок адаптации должен сводить ошибку к нулю ().

Алгоритм, закладываемый в блок адаптации, формируется различными способами, например, с использованием второго метода Ляпунова:

Если это будет выполняться, то система будет асимптотически устойчива и.

Размещено на Allbest.ru

...

Подобные документы

    Постановка задачи синтеза системы управления. Применение принципа Максимума Понтрягина. Метод аналитического конструирования оптимальных регуляторов. Метод динамического программирования Беллмана. Генетическое программирование и грамматическая эволюция.

    дипломная работа , добавлен 17.09.2013

    Методы решения задачи синтеза системы управления динамическим объектом. Сравнительная характеристика параметрического и структурно-параметрического синтеза. Схема процесса символьной регрессии. Принцип действия метода аналитического программирования.

    дипломная работа , добавлен 23.09.2013

    Понятие большой системы управления. Модель структурного сопряжения элементов. Организация многоуровневой структуры управления. Общая задача линейного программирования. Элементы динамического программирования. Постановка задачи структурного синтеза.

    учебное пособие , добавлен 24.06.2009

    Постановка задачи динамического программирования. Поведение динамической системы как функция начального состояния. Математическая формулировка задачи оптимального управления. Метод динамического программирования. Дискретная форма вариационной задачи.

    реферат , добавлен 29.09.2008

    Исследование основных динамических характеристик предприятия по заданному каналу управления, результаты которого достаточны для синтеза управляющей системы (СУ). Построение математической модели объекта управления. Анализ частотных характеристик СУ.

    курсовая работа , добавлен 14.07.2012

    Теория автоматического управления. Передаточная функция системы по ее структурной схеме. Структурная схема и передаточная функция непрерывной САР. Устойчивость системы. Исследование переходного процесса. Расчет и построение частотных характеристик.

    курсовая работа , добавлен 14.03.2009

    Общие понятия и классификация локальных систем управления. Математические модели объекта управления ЛСУ. Методы линеаризации нелинейных уравнений объектов управления. Порядок синтеза ЛСУ. Переходные процессы с помощью импульсных переходных функций.

    курс лекций , добавлен 09.03.2012

    Принцип работы и задачи информационных систем управления проектами. Методы критического пути, анализа и оценки планов. Сетевые модель и график, виды путей. Информационный обмен между предприятиями, классификация информационных систем и их рынки сбыта.

    контрольная работа , добавлен 18.11.2009

    Классификация информации по разным признакам. Этапы развития информационных систем. Информационные технологии и системы управления. Уровни процесса управления. Методы структурного проектирования. Методология функционального моделирования IDEF0.

    курсовая работа , добавлен 20.04.2011

    Анализ основных этапов решения задачи синтеза регуляторов в классе линейных стационарных систем. Нахождение оптимальных настроек регулятора и передаточной функции замкнутой системы. Изучение состава и структуры системы автоматизированного управления.

Область применения XPM не ограничивается разработкой программного обеспечения. Экстремальный проектный менеджмент будет эффективен для опытных команд, которые реализуют инновационные проекты, стартапы, работают в хаотичных, непредсказуемых условиях.

Что такое Extreme Project Management?

Концепция XPM была разработана в 2004 году. Но считать его единственным разработчиком было бы несправедливо. Дуг вдохновился рядом методик других авторов:

В основу Extreme Project Management ДеКарло вложил теорию хаоса и сложные адаптивные системы.

Теория хаоса — математическая область, посвящённая описанию и изучению поведения нелинейных динамических систем, которые в определенных условиях подвержены так называемому динамическому хаосу.
Сложная адаптивная система — система из множества взаимодействующих компонентов, которая отвечает ряду условий (фрактальное строение, способность к адаптивной активности и т.д.). В качестве примеров САС можно привести город, экосистемы, фондовый рынок.

Дуг сравнивает экстремальный проектный менеджмент с джазом.

Хоть джаз и может звучать хаотично, у него есть своя структура, благодаря которой музыканты имеют возможность импровизировать и создавать настоящие шедевры.

Вместо того, чтобы идти по проторенной дорожке, в Extreme Project Management проектные менеджеры обсуждают лучшую альтернативу с клиентом, экспериментируют, изучают результаты и используют эти знания в следующем проектном цикле.


Одно из свойств некоторых хаотичных систем,
которые являются объектами рассмотрения теории хаоса — «эффект бабочки»,
ставший популярным после «И грянул гром» Рэя Брэдбери

Брайан Вэрнхем, автор книги « », выделил пять шагов, по которым должна следовать команда, работающая по методике экстремального проектного менеджмента, для успешного завершения проекта:

  1. Увидеть — четко обозначьте видение проекта перед началом экстремального проектного менеджмента
  2. Творить — вовлекайте команду в креативный мыслительный процесс и мозговой штурм для создания и отбора идей по достижению установившегося видения проекта
  3. Обновить — стимулируйте команду проверить свои идеи через внедрение инновационных решений
  4. Переоценить — при приближении цикла разработки к концу команда должна сделать переоценку своей работы
  5. Распространить — после прохождения обучения важно распространить знания и применить их к будущим этапам проекта, а также к новым проектам в целом.

Так как во главе угла Extreme Project Management стоят люди, то это определяет и специфику измерения успеха XPM-проекта:

  • пользователи удовлетворены прогрессом и промежуточными доставками — есть ощущение того, что проект движется в верном направлении, несмотря на окружающую нестабильность.
  • пользователи довольны конечной доставкой.
  • члены команды довольны качеством своей жизни во время работы над проектом. Если спросить их, хотели бы они поработать над похожим проектом, большая часть ответит "да«.

Плюсы и минусы XPM

Среди основных преимуществ методологии нужно отметить такие:

  • целостность — несмотря на то, что Extreme Project Management включает самые разные методы, инструменты и шаблоны, они имеют смысл только при применению ко всему проекту в целом. Вы как проектный менеджер можете видеть весь проект как единую систему без необходимости анализировать отдельные её части
  • человеко-ориентированность — в XPM акцент делается на динамике проекта. Он позволяет заинтересованным сторонам взаимодействовать и общаться, и в итоге — удовлетворять потребности клиента
  • фокус на бизнес — как только будет достигнут результат, у вас будет четкое видение того, как проект может принести пользу вашему клиенту. Команда постоянно сосредоточена на ранней и частой доставке продукта
  • гуманизм — один из принципов Extreme Project Management. Заключается в учёте качества жизни вовлеченных в проект людей. Будучи неотъемлемой частью проекта, увлечение работой и корпоративный дух сильно влияют на бизнес, поэтому во время работы над проектом важно физическое и моральное состояние команды
  • реальность в качестве основы — экстремальный проектный менеджмент позволяет работать в непредсказуемой, хаотичной среде. Вы не можете изменить реальность для приспособления к проекту. Происходит обратное: вы адаптируете проект под внешние факторы.

Не обошлось и без минусов. К ним можно причислить:

  • неопределённость — эта особенность отсекает большой сектор проектов, начиная с имеющих критическую опасность (военные объекты, атомные станции, приложения интернет-банкинга и т.п.), заканчивая тендерными проектами со строго оговоренным бюджетом, сроками и другими свойствами проекта;
  • высокие требования к опыту и квалификации проектной команды — необходимо постоянно приспосабливаться к изменениям в проектной среде, наладить эффективную коммуникацию друг с другом, стейкхолдерами и проектным менеджером, и работать короткими итерациями (последнее актуально для IT-сферы);
  • необходимость сменить образ мышления — в отличие от традиционного проектного менеджмента, в котором работа над проектом идёт по привычным этапам, согласно утвержденному плану и ролям, в XPM команде нужно перестроиться и быть готовым к невозможности полного контроля над проектом;
  • невозможность долгосрочного планирования — вчерашний план по актуальности будет не свежее новостей за прошлый месяц. Для корректной работы команды по достижению цели проекта нужно проявить качества гибкости и самоорганизации.


  1. проект создаётся в динамичной среде — происходит постоянная смена обстоятельств, скорости, требований;
  2. возможно применение метода проб и ошибок в работе над проектом;
  3. над проектом работает опытная команда — в отличие от традиционного проектного менеджмента, во главе угла стоят люди, а не процессы;
  4. разрабатываете приложение — за жизненный цикл разработки программное обеспечение в большинстве случаев успевает сменить функционал или расширить список доступных платформ. Чем больше пользователей пользуются ПО, тем больше изменений может быть внесено, для чего и отлично подходит экстремальный проектный менеджмент
  5. это мета-проект — то есть который делится на много мелких проектов. XPM в этом случае поможет справиться с задержкой в старте работы;
  6. владелец бизнеса готов участвовать в работе над проектом от начала до конца. Должны быть налажены связи «проектный-менеджер — бизнесмен»,
    «проектный-менеджер — стейкхолдер»,
    "менеджер проекта — владелец бизнеса — стейкхолдер«.
Стейкхолдеры — люди и организации, которые так или иначе оказывают влияние на проект. Сюда относятся и активно вовлеченные в него (проектная команда, спонсор), и те, кто будут пользоваться результатами проекта (заказчик), и люди, которые могут влиять на проект, хотя и не участвуют в нём (акционеры, компании-партнёры).

Экстремальный проектный менеджмент требует быстрой адаптации команды к необычным, постоянно меняющимся условиям, в которых предстоит работать. Поэтому можно выделить несколько ключевых правил, которые обязательны для эффективного использования Extreme Project Management:

  1. условия, в которых выполняется проект, хаотичные и непредсказуемые;
  2. команда должна уметь работать в условиях неопределенности;
  3. полный контроль над проектами в рамках XPM невозможен;
  4. изменения неизбежны;
  5. гибкость и открытость — важные характеристики для проектной команды.


Наочный пример отличия классического проектного менеджмента от экстремального . В первом достигается запланированный результат, во втором — желаемый.

eXtreme Project Management:
Using Leadership, Principles, and Tools to Deliver Value in the Face of Volatility Дуг ДеКарло

№ 1 для всех, кто хочет освоить Extreme Project Management. На основе опыта работы с более чем 250 проектными командами автор написал подробный справочник по экстремальному проектному менеджменту. О книге восторженно отзываются проектные менеджеры крупнейших международных организаций: Management Solutions Group, Inc., Zero Boundary Inc., Guru Unlimited и т.д.

Effective Project Management: Traditional, Adaptive, Extreme,
Third Edition Роберт К. Высоцкий

Прочитав который можно составить представление не только об экстремальном проектном менеджменте, но и адаптивном. Из интересного — в конце каждой главы даются вопросы для упорядочивания поданного материала, который насыщен реальными кейсами проектов из разных сфер.

Radical Project Management Роб Томсетт

В экстремальный проектный менеджмент представлен от «А» до «Я», разобран каждый инструмент и техника, с помощью которых внедряется Extreme Project Management. Максимум практической информации с разбором кейсов.

Architectural Practices: Extreme Project Management for Architects

Не книга, а , но не включить его в подборку нельзя из-за уникальности. Это емкий ресурс по использованию XPM в архитектуре и строительстве. К сожалению, автор сайта больше его не обновляет, но в качестве шпаргалки страница годится до сих пор.

Вердикт

искусством и наукой о содействии и управлении потоком мыслей, эмоций и действий таким образом, чтобы получать максимальные результаты в сложных и нестабильных условиях.

Причины успеха XPM среди остальных методик менеджмента лежат в трех плоскостях:

  1. Extreme Project Management делает возможным непрерывную самокоррекцию и самосовершенствование в режиме реального времени;
  2. XPM фокусируется на определении и следовании миссии проекта , прививая уверенность стейкхолдерам и проектной команде;
  3. человеко-ориентированность , гуманизм и приоритет людей над процессами как ключевые особенности методологии.

Задача оптимизации обычно состоит в отыскании и поддержании таких управляющих воздействий, при которых обеспечивается экстремум некоторого критерия качества функционирования объекта управления. Эта задача может решаться автоматически с помощью экстремальных регуляторов, осуществляющих в процессе работы поиск оптимальных управляющих воздействий. Системы, реализующие автоматический поиск и сопровождение экстремума некоторого показателя качества работы объекта, называются экстремальными системами управления или системами автоматической оптимизации. Системы автоматической оптимизации, благодаря реализации в них алгоритмов поиска оптимальных управлений, обладают рядом преимуществ, главным из которых является их свойство нормально функционировать в условиях неполной априорной информации об объекте и о действующих на него возмущениях. Применение экстремальных систем управления целесообразно в тех случаях, когда критерий качества работы объекта имеет ярко выраженный экстремум и имеются возможности реализации поиска и поддержания оптимального (экстремального) его режима функционирования. Развитие теории и техники экстремальных систем управления достигло в настоящее время значительного уровня. Промышленностью выпускаются типовые экстремальные регуляторы (автоматические оптимизаторы) для ряда технологических процессов.

Экстремальные системы управления составляют один из наиболее теоритически и практически развитых классов адаптивных систем. Экстремальными называются такие объекты автоматического управления, в которых статическая характеристика имеет экстремум, положение и величина которого не известны и могут изменяться непрерывным образом.

Обычно экстремальный регулятор осуществляет поиск и поддержание таких значений координат объекта , при которых выход достигает экстремального значения. Такой режим работы объекта и системы в целом является оптимальным в смысле минимума или максимума критерия качества. Примером одномерного экстремального объекта может служить самолет. Зависимость километрового расхода топлива y от скорости полета x характеризуется наличием экстремума, величина и положение которого изменяются при изменении веса самолета за счет расхода топлива.

В зависимости от количества экстремумов объекты разделяются на одноэкстремальные и многоэкстремальные, причем в последнем случае задача управления заключается в отыскании глобального экстремума, т.е. наибольшего максимума или наименьшего минимума. В зависимости от числа управляющих воздействий, формируемых в экстремальном регуляторе, различают одномерные и многомерные системы экстремального управления. По характеру работы во времени экстремальные системы могут быть непрерывными и дискретными. В зависимости от характера поискового сигнала различают экстремальные системы с детерминированными и случайными поисковыми сигналами.

Назначением экстремальной системы является автоматическое отыскание регулирующих (управляющих) воздействий, соответствующих оптимальному (экстремальному) значению показателя качества при неконтролируемом изменении характеристик системы и внешних условий, влияющих на положение экстремальной точки показателя качества.

Рис. 12.2. Общая схема экстремальной системы О - объект; ЧЭ - чувствительный элемент; УФ - устройство формирования показателя качества; ИЭ - исполнительный элемент; УАП - устройство автоматического поиска экстремума; ЭР - экстремальный регулятор

В экстремальной системе соответствующая перестройка входных воздействий производится путем анализа результатов пробных движений (колебаний), в процессе которых изучается тенденция изменения показателя качества системы. Можно говорить, что в экстремальной системе существует своеобразная обратная связь по показателю качества. На рис. 12.2 представлена принципиальная схема экстремальной системы. Особенностью ее является наличие устройства автоматического поиска экстремума УАП, которое производит анализ показателя качества и через исполнительный элемент ИЭ подает на вход объекта управляющее воздействие такое, чтобы характеристика получила экстремальное значение

В экстремальной системе устройство поиска экстремума выполняет роль анализатора и синтезатора.

Экстремальный регулятор целесообразно использовать только тогда, когда функция характеризующая показатель качества, является «плавающей» (рис. 12.3), т. е. как сама величина так и

соответствующее ей значение существенно меняются неконтролируемым образом.

Обычно показатель качества зависит от нескольких регулирующих воздействий, т. е. В точке экстремума

где - базисные векторы.

Рис. 12.3. Экстремальные характеристики

Таким образом, экстремальная система должна обеспечить движение рабочей точки по поверхности в пространстве до точки, где Для осуществления такого движения необходимо, во-первых, определить градиент и, во-вторых, в соответствии со значением градиента организовать движение к точке экстремума.

Рис. 12.4. Синхронное детектирование

Первая задача - определение градиента - может решаться несколькими способами, наиболее распространенными из которых являются способы синхронного детектирования, непосредственного измерения производной и запоминания и удержания экстремума.

Способ синхронного детектирования основан на том (рис. 12.4), что для ориентации рабочей точки относительно экстремума

показателя качества к основным медленно меняющимся входным сигналам добавляются малые гармонические (обычно периодические) составляющие. Синхронные детекторы выполняют операцию умножения функции на соответствующие гармонические составляющие и операцию усреднения во времени этих произведений. В результате на выходах синхронных детекторов получаются величины, пропорциональные с точностью до малых высших порядков составляющим градиента в точке

Действительно, разложим функцию в окрестности точки в ряд Тейлора:

После умножения выражения (12.1) на и усреднения получим

Если учесть, что при медленном изменении справедливы соотношения:

то выражение (12.2) можно привести к виду

где погрешность, имеющая больший, чем первое слагаемое, порядок малости.

В результате на выходах синхронных детекторов получаются сигналы

Способ непосредственного измерения производной предполагает дифференцирование функции по времени. Для производной, имеем

Допустим, что имеется возможность задавать поочередно величины }