Допущения о пуассоновском характере потока заявок и о показательном распределении времени обслуживания позволяют применить в теории массового обслуживания аппарат марковских. Процесс, протекающий в физической системе, называется марковским (или процессом без последействия), если для каждого момента времени вероятность любого состояния системы в будущем зависит только от состояния системы в настоящий моменти не зависит от того, каким образом система пришла в это состояние.

Рассмотрим СМО с конечным дискретным множеством состояний (рис. 2.). Определим состояние как состояние СМО, соответствующее наличию в данный моментзанятых каналов. При этом система может изменять свое состояниедискретно в соответствующие дискретные моменты времени. При поступлении на вход СМО одной заявки система изменяет свое состояние сна,

а при уходе одной заявки из системы и соответствующем освобождении одного канала - с на.

Рис. 2. Диаграмма состояний и переходов СМО

Типичным примером СМО является телекоммуникационная система с несколькими обслуживающими серверами. Заявка, поступающая на вход такой СМО, может быть либо обслужена, либо поставлена в очередь, либо получить отказ в обслуживании. В связи с этим СМО делятся на два основных типа: а) СМО с отказами; б) СМО с ожиданием.

В системах с отказами заявка, поступившая в момент, когда все каналы обслуживания заняты, немедленно получает отказ, покидает систему и в дальнейшем процессе обслуживания не участвует.

В системах с ожиданием заявка, заставшая все каналы занятыми, не покидает систему, а становится в очередь и ожидает, пока не освободится какой-нибудь канал.

Классификационные признаки систем массового обслуживания.

В системах массового обслуживания различают три основных эта­па, которые проходит каждая заявка:

1) появление заявки на входе в систему;

2) прохождение очереди;

3) процесс обслуживания, после которого заявка покидает систему.

На каждом этапе используются определенные характеристики, которые следует обсудить прежде, чем строить математические модели.

Характеристики входа:

1) число заявок на входе (размер популяции);

2) режим поступления заявок в систему обслуживания;

3) поведение клиентов.

Число заявок на входе. Число потенциально возможных заявок (размер популяции) может считаться либо бесконечным (неогра­ниченная популяция), либо конечным (ограниченная популяция). Если число заявок, поступивших на вход системы с момента на­чала процесса обслуживания до любого заданного момента вре­мени, является лишь малой частью потенциально возможного числа клиентов, популяция на входе рассматривается как Неогра­ниченная. Примеры неограниченных популяций: автомобили, проходящие через пропускные пункты на скоростных дорогах, покупатели в супермаркете и т. п. В большинстве моделей очередей на входе рассматриваются именно неограниченные популяции.

Если количество заявок, которые могут поступить в систему, сравнимо с числом заявок, уже находящихся в системе массо­вого обслуживания, популяция считается Ограниченной. Пример ограниченной популяции: компьютеры, принадлежащие конкрет­ной организации и поступающие на обслуживание в ремонтную мастерскую.

Режим поступления заявок, в систему обслуживания. Заявки могут поступать в систему обслуживания в соответствии с опреде­ленным графиком (например, один пациент на прием к стомато­логу каждые 15 мин, один автомобиль на конвейере каждые 20 мин) или случайным образом. Появления клиентов считаются Случай­ными, если они независимы друг от друга и точно непредсказу­емы. Часто в задачах массового обслуживания число появлений в единицу времени может быть оценено с помощью пуассоновского распределения вероятностей. При заданном темпе поступления (например, два клиента в час или четыре грузовика в минуту)

дискретное распределение Пуассона описывается следующей фор­мулой:

Где Р (х) - вероятность поступления Х заявок в единицу вре­мени;

Х - число заявок в единицу времени;

L - среднее число заявок в единицу времени (темп по­ступления заявок);

Е = 2,7182 - основание натурального логарифма.

Соответствующие значения вероятностей Р(х) нетрудно опре­делить с помощью таблицы пуассоновского распределения. Если, например, средний темп поступления заявок - два клиента в час, то вероятность того, что в течение часа в систему не поступит ни одной заявки, равна 0,135, вероятность появления одной заявки - около 0,27, двух - также около 0,27, три заявки могут появиться с вероятностью 0,18, четыре - с вероятностью около 0,09 и т. д. Вероятность того, что за час в систему поступят 9 заявок или бо­лее, близка нулю.

На практике вероятности появления заявок, разумеется, не всегда подчиняются пуассоновскому распределению (они могут иметь какое-то другое распределение). Поэтому требуется прово­дить предварительные исследования для того, чтобы проверить, что пуассоновское распределение может служить хорошей аппрок­симацией.

Поведение клиентов. Большинство моделей очередей основы­вается на предположении, что поведение клиентов является стан­дартным, т. е. каждая поступающая в систему заявка встает в оче­редь, дожидается обслуживания и не покидает систему до тех пор, пока ее не обслужат. Другими словами, клиент (человек или ма­шина), вставший в очередь, ждет до тех пор, пока он не будет обслужен, не покидает очередь и не переходит из одной очереди в другую.

Жизнь значительно сложнее. На практике клиенты могут по­кинуть очередь

потому, что она оказалась слишком длинной. Может возникнуть и другая ситуация: клиенты дожидаются сво­ей очереди, но по каким-то причинам уходят необслуженными. Эти случаи также являются предметом теории массового обслу­живания.

Характеристики очереди:

2) правило обслуживания.

Длина очереди. Длина может быть ограничена либо не ограни­чена. Длина очереди (очередь) Ограничена, если она по каким-либо причинам (например, из-за физических ограничений) не может увеличиваться до бесконечности. Если очередь достигает своего максимального размера, то следующая заявка в систему не допускается и происходит отказ. Длина очереди не ограничена, Если в очереди может находиться любое число заявок. Например, очередь автомобилей на бензозаправке.

Правило обслуживания. Большинство реальных систем исполь­зует правило «первым пришел - первым ушел» (FIFO - first in, first out). В некоторых случаях, например в приемном покое боль­ницы, в дополнение к этому правилу могут устанавливаться раз­личные приоритеты. Пациент с инфарктом в критическом со­стоянии, по-видимому, будет иметь приоритет в обслуживании по сравнению с пациентом, сломавшим палец. Порядок запуска компьютерных программ - другой пример установления приорите­тов в обслуживании.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

ВВЕДЕНИЕ

ГЛАВА 1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1 Системы массового обслуживания c отказами

1.2 Моделирование систем массового обслуживания

1.3 Простейшая СМО с отказами

1.4 Одноканальная СМО с отказами

1.5 Многоканальная СМО с отказами

1.6 Одноканальная СМО с ограниченной длиной очереди

1.7 Одноканальная СМО с неограниченной очередью

1.8 Многоканальная СМО с ограниченной длиной очереди

1.9 Многоканальная СМО с неограниченной очередью

1.10 Алгоритм моделирования СМО

ГЛАВА 2. ПРАКТИЧЕСКАЯ ЧАСТЬ

ГЛАВА 3. ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

За последнее время в самых разных областях практики возникла необходимость в решении различных вероятностных задач, связанных с работой так называемых систем массового обслуживания (СМО).

Примерами таких систем могут служить: телефонные станции, ремонтные мастерские, билетные кассы, стоянки такси, парикмахерские и т.п.

Темой данного курсового проекта как раз и является решение подобной задачи.

Однако, в предложенной задаче будет исследована СМО, в которой рассматриваются 2 потока заявок, один из которых обладает приоритетом.

Также рассматриваемые процессы являются немарковскими, т.к. важен фактор времени.

Поэтому решение данной задачи построено не на аналитическом описании системы, а на статистическом моделировании.

Целью курсовой работы является моделирование производственного процесса на основе представления основного оборудования как системы массового обслуживания.

Для достижения цели были поставлены следующие задачи: - Проанализировать особенности управления производственным процессом; - Рассмотреть организацию производственного процесса во времени; - Привести основные варианты сокращения длительности производственного цикла;

Провести анализ методов управления производственным процессом на предприятии;

Рассмотреть особенности моделирования производственного процесса с использованием теории СМО;

Разработать модель производственного процесса и оценить основные характеристики СМО, привести перспективы ее дальнейшей программной реализации.

Закрепления теоретических знаний и получения навыков их практического применения;

Отчет содержит введение, три главы, заключение, список использованной литературы, приложения.

Во второй главе рассматриваются теоретические материалы системы массового обслуживания. А в третьей вычисляем задачу систем массового обслуживания.

ГЛАВА 1 . ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1 Системы массового обслуживания c отказами

Системой массового обслуживания (СМО) называется любая система, предназначенная для обслуживания каких-либо заявок (требований), поступающих на нее в случайные моменты времени. Любое устройство, непосредственно занимающееся обслуживанием заявок, называется каналом обслуживания (или “прибором”). СМО бывают как одно-, так и многоканальными.

Различают СМО с отказами и СМО с очередью. В СМО с отказами заявка, пришедшая в момент, когда все каналы заняты, получает отказ, покидает СМО, а в дальнейшем в процессе ее работы не участвует. В СМО с очередью заявка, пришедшая в момент занятости всех каналов, не покидает СМО, а становится в очередь и ждет, пока не освободится какой-либо канал. Число мест в очереди т может быть как ограниченным, так и неограниченным. При т=0 СМО с очередью превращается в СМО с отказами. Очередь может иметь ограничения не только по количеству стоящих в ней заявок (длине очереди), но и по времени ожидания (такие СМО называются “системами с нетерпеливыми клиентами”).

Аналитическое исследование СМО является наиболее простым, если все потоки событий, переводящие ее из состояния в состояние, - простейшие (стационарные пуассоновские). Это значит, что интервалы времени между событиями в потоках имеют показательное распределение с параметром, равным интенсивности соответствующего потока. Для СМО это допущение означает, что как поток заявок, так и поток обслуживания - простейшие. Под потоком обслуживания понимается поток заявок, обслуживаемых одна за другой одним непрерывно занятым каналом. Этот поток оказывается простейшим, только если время обслуживания заявки tобсл представляет собой случайную величину, имеющую показательное распределение. Параметр этого распределения м есть величина, обратная среднему времени обслуживания:

Вместо фразы “поток обслуживания - простейший” часто говорят “время обслуживания - показательное”. Всякая СМО, в которой все потоки простейшие, называется простейшей СМО.

Если все потоки событий простейшие, то процесс, протекающий в СМО, представляет собой марковский случайный процесс с дискретными состояниями и непрерывным временем. При выполнении некоторых условий для этого процесса существует финальный стационарный режим, при котором как вероятности состояний, так и другие характеристики процесса не зависят от времени.

Модели СМО удобны для описания отдельных подсистем современных вычислительных систем, таких как подсистема процессор - основная память, канал ввода-вывода и т. д.

Вычислительная система в целом представляет собой совокупность взаимосвязанных подсистем, взаимодействие которых носит вероятностный характер. Заявка на решение некоторой задачи, поступающая в вычислительную систему, проходит последовательность этапов счета, обращения к внешним запоминающим устройствам и устройствам ввода-вывода.

После выполнения некоторой последовательности таких этапов, число и продолжительность которых зависит от трудоемкости программы, заявка считается обслуженной и покидает вычислительную систему.

Таким образом, вычислительную систему в целом можно представлять совокупностью СМО, каждая из которых отображает процесс функционирования отдельного устройства или группы однотипных устройств, входящих в состав системы.

Задачи теории массового обслуживания - это нахождение вероят-ностей различных состояний СМО, а также установление зависимости между заданными параметрами (числом каналов п, интенсивностью потока заявок л, распределением времени обслуживания и т. д.) и характеристиками эффективности работы СМО. В качестве таких характеристик могут рассматриваться, например, следующие:

Среднее число заявок А, обслуживаемое СМО в единицу времени, или абсолютная пропускная способность СМО;

Вероятность обслуживания поступившей заявки Q или относительная пропускная способность СМО; Q = А/л;

Вероятность отказа Ротк, т.е. вероятность того, что поступившая заявка не будет обслужена и получит отказ; Ротк= 1 - Q;

Среднее число заявок в СМО (обслуживаемых или ожидающих в очереди) ;

Среднее число заявок в очереди;

Среднее время пребывания заявки в СМО (в очереди или под обслуживанием) ;

Среднее время пребывания заявки в очереди;

Среднее число занятых каналов.

В общем случае все эти характеристики зависят от времени. Но многие СМО работают в неизменных условиях достаточно долгое время, и поэтому для них успевает установиться режим, близкий к стационарному.

Мы здесь повсюду, не оговаривая этого каждый раз специально, будем вычислять финальные вероятности состояний и финальные характеристики эффективности СМО, относящиеся к предельному стационарному режиму ее работы.

СМО называется открытой, если интенсивность поступающего на нее потока заявок не зависит от состояния самой СМО.

Для любой открытой СМО в предельном стационарном режиме среднее время пребывания заявки в системе выражается через среднее число заявок в системе с помощью формулы Литтла:

где л - интенсивность потока заявок.

Аналогичная формула (называемая также формулой Литтла) связывает среднее время пребывания заявки в очереди и среднее число заявок в очереди:

Формулы Литтла очень полезны, так как позволяют вычислять не обе характеристики эффективности (среднее время пребывания и среднее число заявок), а только какую-нибудь одну из них.

Специально подчеркнем, что формулы (1) и (2) справедливы для любой открытой СМО (одноканальной, многоканальной, при любых видах потоков заявок и потоков обслуживания); единственное требование к потокам заявок и обслуживании - чтобы они были стационарными.

Аналогично универсальное значение для открытых СМО имеет формула, выражающая среднее число занятых каналов через абсолютную пропускную способность А:

где - интенсивность потока обслуживания.

Очень многие задачи теории массового обслуживания, касающиеся простейших СМО, решаются при помощи схемы гибели и размножения.

Финальные вероятности состояний выражаются формулами:

Перечень характеристик систем массового обслуживания можно представить следующим образом:

· среднее время обслуживания;

· среднее время ожидания в очереди;

· среднее время пребывания в СМО;

· средняя длина очереди;

· среднее число заявок в СМО;

· количество каналов обслуживания;

· интенсивность входного потока заявок;

· интенсивность обслуживания;

· интенсивность нагрузки;

· коэффициент нагрузки;

· относительная пропускная способность;

· абсолютная пропускная способность;

· доля времени простоя СМО;

· доля обслуженных заявок;

· доля потерянных заявок;

· среднее число занятых каналов;

· среднее число свободных каналов;

· коэффициент загрузки каналов;

· среднее время простоя каналов.

1 . 2 Моделирование систем массового обслуживания

Переходы СМО из одного состояния в другое происходят под воздействием вполне определенных событий - поступления заявок и их обслуживания. Последовательность появления событий, следующих одно за другим в случайные моменты времени, формирует так называемый поток событий. Примерами таких потоков в коммерческой деятельности являются потоки различной природы -- товаров, денег, документов, транспорта, клиентов, покупателей, телефонных звонков, переговоров. Поведение системы обычно определяется не одним, а сразу несколькими потоками событий. Например, обслуживание покупателей в магазине определяется потоком покупателей и потоком обслуживания; в этих потоках случайными являются моменты появления покупателей, время ожидания в очереди и время, затрачиваемое на обслуживание каждого покупателя.

При этом основной характерной чертой потоков является вероятностное распределение времени между соседними событиями. Существуют различные потоки, которые отличаются своими характеристиками.

Поток событий называется регулярным, если в нем события следуют одно за другим через заранее заданные и строго определенные промежутки времени. Такой поток является идеальным и очень редко встречается на практике. Чаще встречаются нерегулярные потоки, не обладающие свойством регулярности.

Поток событий называется стационарным, если вероятность попадания любого числа событий на промежуток времени зависит только от длины этого промежутка и не зависит от того, как далеко расположен этот промежуток от начала отсчета времени. Стационарность потока означает независимость от времени его вероятностных характеристик, в частности, интенсивность такого потока есть среднее число событий в единицу времени и остается величиной постоянной. На практике обычно потоки могут считаться стационарными только на некотором ограниченном промежутке времени. Обычно поток покупателей, например, в магазине существенно меняется в течение рабочего дня. Однако можно выделить определенные временные интервалы, внутри которых этот поток допустимо рассматривать как стационарный, имеющий постоянную интенсивность.

Поток событий называется потоком без последствия, если число событий, попадающих на один из произвольно выбранных промежутков времени, не зависит от числа событий, попавших на другой, также произвольно выбранный промежуток, при условии, что эти промежутки не пересекаются между собой. В потоке без последствия события появляются в последовательные моменты времени независимо друг от друга. Например, поток покупателей, входящих в магазин, можно считать потоком без последствия потому, что причины, обусловившие приход каждого из них, не связаны с аналогичными причинами для других покупателей.

Поток событий называется ординарным, если вероятность попадания на очень малый отрезок времени сразу двух или более событий пренебрежимо мала по сравнению с вероятностью попадания только одного события. В ординарном потоке события происходят поодиночке, а не по два или более разу. Если поток одновременно обладает свойствами стационарности, ординарности и отсутствием последствия, то такой поток называется простейшим (или пуассоновским) потоком событий. Математическое описание воздействия такого потока на системы оказывается наиболее простым. Поэтому, в частности, простейший поток играет среди других существующих потоков особую роль.

Рассмотрим на оси времени некоторый промежуток времени t. Допустим, вероятность попадания случайного события на этот промежуток p, а полное число возможных событий -- п. При наличии свойства ординарности потока событий вероятность р должна быть достаточно малой величиной, а я -- достаточно большим числом, поскольку рассматриваются массовые явления.

В этих условиях для вычисления вероятности попадания на промежуток времени t некоторого числа событий т можно воспользоваться формулой Пуассона:

Pm, n= am_e-a ; (m=0,n),

где величина а = пр - среднее число событий, попадающих на промежуток времени t, которое можно определить через интенсивность потока событий X следующим образом: a= л ф

Размерность интенсивности потока X есть среднее число событий в единицу времени. Между п и л, р и ф имеется следующая связь:

n= л t; p= ф/t

где t- весь промежуток времени, на котором рассматривается действие потока событий.

Необходимо определить распределение интервала времени Т между событиями в таком потоке. Поскольку это случайная величина, найдем ее функцию распределения. Как известно из теории вероятностей, интегральная функция распределения F(t) есть вероятность того, что величина T будет меньше времени t.

F(t)=P(T

По условию в течение времени T не должно произойти ни одного события, а на интервале времени t должно появиться хотя бы одно событие. Эта вероятность вычисляется с помощью вероятности противоположного события на промежутке времени (0; t), куда не попало ни одного события, т.е. m = 0, тогда

F(t)=1-P0=1-(a0*e-a)0!=1-e-Xt,t?0

Для малых?t можно получить приближенную формулу, получаемую заменой функции e-Xt, только двумя членами разложения в ряд по степеням?t, тогда вероятность попадания на малый промежуток времени?t хотя бы одного события составляет

P(T

Плотность распределения промежутка времени между двумя последовательными событиями получим, продифференцировав F(t) по времени,

f(t)= л e- л t ,t?0

Пользуясь полученной функцией плотности распределения, можно получить числовые характеристики случайной величины Т: математическое ожидание М (Т), дисперсию D(T) и среднее квадратическое отклонение у(Т).

М(Т)= л??0 t*e-лt*dt=1/ л; D(T)=1/ л2 ; у(T)=1/ л.

Отсюда можно сделать следующий вывод: средний интервал времени Т между любыми двумя соседними событиями в простейшем потоке в среднем равен 1/л, и его среднее квадратическое отклонение также равно 1/л, л где, -- интенсивность потока, т.е. среднее число событий, происходящих в единицу времени. Закон распределения случайной величины, обладающей такими свойствами М(Т) = Т, называется показательным (или экспоненциальным), а величина л, является параметром этого показательного закона. Таким образом, для простейшего потока математическое ожидание интервала времени между соседними событиями равно его среднеквадратическому отклонению. В этом случае вероятность того, что число заявок, поступающих на обслуживание за промежуток времени t, равно к, определяется по закону Пуассона:

Pk(t)=(лt)k/ k! *e-л t,

где л - интенсивность поступления потока заявок, среднее число событий в СМО за единицу времени, например[чел/мин; руб./час; чеков/час; докум./день; кг./час; т./год] .

Для такого потока заявок время между двумя соседними заявками Т распределено экспоненциально с плотностью вероятности:

ѓ(t)= л e-л t.

Случайное время ожидания в очереди начала обслуживания t тоже можно считать распределенным экспоненциально:

? (tоч)=V*e-v tоч,

где v -- интенсивность потока прохода очереди, определяемая средним числом заявок, проходящих на обслуживание в единицу времени:

v=1/Точ,

где Точ среднее время ожидания обслуживания в очереди.

Выходной поток заявок связан с потоком обслуживания в канале, где длительность обслуживания tобс является тоже случайной величиной и подчиняется во многих случаях показательному закону распределения с плотностью вероятности:

?(t обс)=µ*е µ t обс,

где µ - интенсивность потока обслуживания, т.е. среднее число заявок, обслуживаемых в единицу времени:

µ=1/ t обс[чел/мин; руб./час; чеков/час; докум./день; кг./час; т./год] ,

где t обс - среднее время обслуживания заявок.

Важной характеристикой СМО, объединяющей показатели л и µ , является интенсивность нагрузки: с= л/ µ, которая показывает степень согласования входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.

Кроме понятия простейшего потока событий часто приходится пользоваться понятиями потоков других типов. Поток событий называется потоком Пальма, когда в этом потоке промежутки времени между последовательными событиями T1, T2, ..., Тk ..., Тn являются независимыми, одинаково распределенными, случайными величинами, нов отличие от простейшего потока не обязательно распределенными по показательному закону. Простейший поток является частным случаем потока Пальма.

Важным частным случаем потока Пальма является так называемый поток Эрланга.

Этот поток получается «прореживанием» простейшего потока. Такое «прореживание» производится путем отбора по определенному правилу событий из простейшего потока.

Например, условившись учитывать только каждое второе событие из образующих простейший поток, мы получим поток Эрланга второго порядка. Если брать только каждое третье событие, то образуется поток Эрланга третьего порядка и т.д.

Можно получить потоки Эрланга любого к-го порядка. Очевидно, простейший поток есть поток Эрланга первого порядка.

Любое исследование системы массового обслуживания начинается с изучения того, что необходимо обслуживать, следовательно, с изучения входящего потока заявок и его характеристик.

Поскольку моменты времени t и интервалы времени поступления заявок ф, затем продолжительность операций обслуживания t обс и время ожидания в очереди tоч, а также длина очереди lоч -- случайные величины, то, следовательно, характеристики состояния СМО носят вероятностный характер, а для их описания следует применять методы и модели теории массового обслуживания.

Перечисленные выше характеристики к, ф, л, Lоч, Точ, v, tобс, µ, р, Рk являются наиболее общими для СМО, которые являются обычно лишь некоторой частью целевой функции, поскольку необходимо учитывать еще и показатели коммерческой деятельности.

1 . 3 Простейшая СМО с отказами

На n-канальную СМО с отказами поступает простейший поток заявок с интенсивностью л; время обслуживания - показательное с параметром. Состояния СМО нумеруются по числу заявок, находящихся в СМО (в силу отсутствия очереди оно совпадает с числом занятых каналов):

S0 - СМО свободна;

S1 - занят один канал, остальные свободны;

...;

Sk - занятоk каналов, остальные свободны (1k n );

…;

Sn - заняты все n каналов.

Финальные вероятности состояний выражаются формулами Эрланга:

где с=л/м.

Характеристики эффективности:

A=(1-pn ); Q = 1-pn ; Pотк= pn ; =(1-pn ).

При больших значениях п вероятности состояний (1*) удобно вычислять через табулированные функции:

(распределение Пуассона) и

,

из которых первую можно выразить через вторую:

Пользуясь этими функциями, формулы Эрланга (1*) можно переписать в виде

.

1.4 Одноканальная СМО с отказами

Проведем анализ простой одноканальной СМО с отказами в обслуживании, на которую поступает пуассоновский поток заявок с интенсивностью л, а обслуживание происходит под действием пуассоновского потока с интенсивностью м.

Работу одноканальной СМО n=1 можно представить в виде размеченного графа состояний (3.1).

Переходы СМО из одного состояния S0 в другое S1 происходят под действием входного потока заявок с интенсивностью л, а обратный переход - под действием потока обслуживания с интенсивностью м.

Запишем систему дифференциальных уравнений Колмогорова для вероятностей состояния по изложенным выше правилам:

Откуда получим дифференциальное уравнение для определения вероятности р0(t) состояния S0:

Это уравнение можно решить при начальных условиях в предположении, что система в момент t=0 находилась в состоянии S0, тогда р0(0)=1, р1(0)=0.

В этом случае решение дифференциального уравнения позволяет определить вероятность того, что канал свободен и не занят обслуживанием:

Тогда нетрудно получить выражение для вероятности определения вероятности занятости канала:

Вероятность р0(t) уменьшается с течением времени и в пределе при t>? стремится к величине

а вероятность р1(t) в то же время увеличивается от 0, стремясь в пределе при t>? к величине

Эти пределы вероятностей могут быть получены непосредственно из уравнений Колмогорова при условии

Функции р0(t) и р1(t) определяют переходный процесс в одноканальной СМО и описывают процесс экспоненциального приближения СМО к своему предельному состоянию с постоянной времени характерной для рассматриваемой системы.

С достаточной для практики точностью можно считать, что переходный процесс в СМО заканчивается в течение времени, равно 3ф.

Вероятность р0(t) определяет относительную пропускную способность СМО, которая определяет долю обслуживаемых заявок по отношению к полному числу поступающих заявок, в единицу времени.

Действительно, р0(t) есть вероятность того, что заявка, пришедшая в момент t, будет принята к обслуживанию. Всего в единицу времени приходит в среднем л заявок и из них обслуживается лр0 заявок.

Тогда доля обслуживаемых заявок по отношению ко всему потоку заявок определятся величиной

В пределе при t>? практически уже при t>3ф значение относительной пропускной способности будет равно

Абсолютная пропускная способность, определяющая число заявок, обслуживаемых в единицу времени в пределе при t>?, равна:

Соответственно доля заявок, получивших отказ, составляет в этих же предельных условиях:

а общее число не обслуженных заявок равно

Примерами одноканальных СМО с отказами в обслуживании являются: стол заказов в магазине, диспетчерская автотранспортного предприятия, контора склада, офис управления коммерческой фирмы, с которыми устанавливается связь по телефону.

1.5 Многоканальная СМО с отказами

В коммерческой деятельности примерами многоканальных СМО являются офисы коммерческих предприятий с несколькими телефонными каналами, бесплатная справочная служба по наличию в авто магазинах самых дешевых автомобилей в Москве имеет 7 телефонных номеров, а дозвониться и получить справку, как известно, очень трудно.

Следовательно, авто магазины теряют клиентов, возможность увеличить количество проданных автомобилей и выручку от продаж, товарооборот, прибыль.

Туристические фирмы по продаже путевок имеют два, три, четыре и более каналов, как, например, фирма Express-Line.

Рассмотрим многоканальную СМО с отказами в обслуживании на вход которой поступает пуассоновский поток заявок с интенсивностью л.

Поток обслуживания в каждом канале имеет интенсивность м. По числу заявок СМО определяются ее состояния Sk, представленные в виде размеченного графа:

S0 - все каналы свободны k=0,

S1 - занят только один канал, k=1,

S2 - заняты только два канала, k=2,

Sk - заняты k каналов,

Sn - заняты все n каналов, k= n.

Состояния многоканальной СМО меняются скачкообразно в случайные моменты времени. Переход из одного состояния, например S0 в S1, происходит под воздействием входного потока заявок с интенсивностью л, а обратно - под воздействием потока обслуживания заявок с интенсивностью м.

Для перехода системы из состояния Skв Sk-1 безразлично, какой именно из каналов освободиться, поэтому поток событий, переводящий СМО, имеет интенсивность kм, следовательно, поток событий, переводящий систему из Snв Sn-1, имеет интенсивность nм.

Так формулируется классическая задача Эрланга, названная по имени датского инженера - математика- основателя теории массового обслуживания.

Случайный процесс, протекающий в СМО, представляет собой частный случай процесса «рождения- гибели» и описывается системой дифференциальных уравнений Эрланга, которые позволяют получить выражения для предельных вероятностей состояния рассматриваемой системы, называемые формулами Эрланга:

.

Вычислив все вероятности состояний n - канальной СМО с отказами р0 , р1, р2, …,рk,…, рn, можно найти характеристики системы обслуживания.

Вероятность отказа в обслуживании определяется вероятностью того, что поступившая заявка на обслуживание найдет все n каналов занятыми, система будет находиться в состоянии Sn:

k=n.

В системах с отказами события отказа и обслуживания составляют полную группу событий, поэтому:

Ротк+Робс=1

На этом основании относительная пропускная способность определяется по формуле

Q = Pобс= 1-Ротк=1-Рn

Абсолютную пропускную способность СМО можно определить по формуле

А=л*Робс

Вероятность обслуживания, или доля обслуженных заявок, определяет относительную пропускную способность СМО, которая может быть определена и по другой формуле:

Из этого выражения можно определить среднее число заявок, находящихся под обслуживанием, или, что же самое, среднее число занятых обслуживанием каналов

Коэффициент занятости каналов обслуживанием определятся отношением среднего числа занятых каналов к их общему числу

Вероятность занятости каналов обслуживанием, которая учитывает среднее время занятости tзан и простоя tпр каналов, определяется следующим образом:

Из этого выражения можно определить среднее время простоя каналов

Среднее время пребывания заявки в системе в установившемся режиме определятся формулой Литтла

Тсмо= nз/л.

1.6 Одноканальная СМО с ограниченной длиной очереди

В коммерческой деятельности чаще встречаются СМО с ожиданием (очередью).

Рассмотрим простую одноканальную СМО с ограниченной очередью, в которой число мест в очереди т - фиксированная величина. Следовательно, заявка, поступившая в тот момент, когда все места в очереди заняты, не принимается к обслуживанию, не встает в очередь и.покидает систему.

Граф этой СМО представлен на рис. 3.4 и совпадает с графом рис. 2.1 описывающим процесс «рождения--гибели», с тем отличием, что при наличии только одного канала.

Размеченный граф процесса «рождения - гибели» обслуживания все интенсивности потоков обслуживания равны

Состояния СМО можно представить следующим образом:

S0 - канал обслуживания свободен,

S, - канал обслуживания занят, но очереди нет,

S2- канал обслуживания занят, в очереди стоит одна заявка,

S3- канал обслуживания занят, в очереди стоят две заявки,

Sm+1 - канал обслуживания занят, в очереди все т мест заняты, любая следующая заявка получает отказ.

Для описания случайного процесса СМО можно воспользоваться изложенными ранее правилами и формулами. Напишем выражения, определяющие предельные вероятности состояний:

Выражение для р0 можно в данном случае записать проще, пользуясь тем, что в знаменателе стоит геометрическая прогрессия относительно р, тогда после соответствующих преобразований получаем:

с= (1- с )

Эта формула справедлива для всех р, отличных от 1, если же р = 1, то р0 = 1/(т + 2), а все остальные вероятности также равны 1/(т + 2).

Если предположить т = 0, то мы переходим от рассмотрения одноканальной СМО с ожиданием к уже рассмотренной одноканальной СМО с отказами в обслуживании.

Действительно, выражение для предельной вероятности р0в случае т = 0 имеет вид:

pо = м / (л+м)

И в случае л =м имеет величину р0= 1 / 2.

Определим основные характеристики одноканальной СМО с ожиданием: относительную и абсолютную пропускную способность, вероятность отказа, а также среднюю длину очереди и среднее время ожидания заявки в очереди.

Заявка получает отказ, если она поступает в момент времени, когда СМО уже находится в состоянии Sm+1 и, следовательно, все места в очереди да заняты и один канал обслуживает

Поэтому вероятность отказа определяется вероятностью появлением

Состояния Sm+1:

Pотк = pm+1 = сm+1 * p0

Относительная пропускная способность, или доля обслуживаемых заявок, поступающих в единицу времени, определяется выражением

Q = 1- pотк = 1- сm+1 * p0

абсолютная пропускная способность равна:

Среднее число заявок Lочстоящих в очереди на обслуживание, определяется математическим ожиданием случайной величины к - числа заявок, стоящих в очереди

случайная величина к принимает следующие только целочисленные значения:

1 - в очереди стоит одна заявка,

2 - в очереди две заявки,

т-в очереди все места заняты

Вероятности этих значений определяются соответствующими вероятностями состояний, начиная с состояния S2. Закон распределения дискретной случайной величины к изображается следующим образом:

Таблица 1. Закон распределения дискретной случайной величины

Математическое ожидание этой случайной величины равно:

Lоч = 1* p2 +2* p3 +...+ m* pm+1

В общем случае при p ?1 эту сумму можно преобразовать, пользуясь моделями геометрической прогрессии, к более удобному виду:

Lоч = p2 * 1- pm * (m-m*p+1) * p0

В частном случае при р = 1, когда все вероятности pkоказываются равными, можно воспользоваться выражением для суммы членов числового ряда

1+2+3+ m = m (m +1)

Тогда получим формулу

L"оч= m(m+1) * p0 = m(m+1) (p=1).

Применяя аналогичные рассуждения и преобразования, можно показать, что среднее время ожидания обслуживания заявки а очереди определяется формулами Литтла

Точ = Lоч/А (при р? 1) и Т1оч= L"оч /А(при р = 1).

Такой результат, когда оказывается, что Точ ~ 1/ л, может показаться странным: с увеличением интенсивности потока заявок как будто бы должна возрастать длина очереди и уменьшается среднее время ожидания. Однако следует иметь в виду, что, во-первых, величина Lоч является функцией от л и м и, во-вторых, рассматриваемая СМО имеет ограниченную длину очереди не более mзаявок.

Заявка, поступившая в СМО в момент времени, когда все каналы заняты, получает отказ, и, следовательно, время ее «ожидания» в СМО равно нулю. Это приводит в общем случае (при р? 1) к уменьшению Точростом л, поскольку доля таких заявок с ростом л увеличивается.

Если отказаться от ограничения на длину очереди, т.е. устремить m--> >?, то случаи р < 1 и р?1 начинают существенно различаться. Записанные выше формулы для вероятностей состояний преобразуются в случае р < 1 к виду

При достаточно большом к вероятностьpk стремится к нулю. Поэтому относительная пропускная способность будет Q= 1, а абсолютная пропускная способность станет равной А --л Q -- л следовательно, обслуживаются все поступившие заявки, причем средняя длина очереди окажется равной:

Lоч =p 2 1-p

а среднее время ожидания по формуле Литтла

Точ = Lоч/А

В пределе р << 1 получаем Точ = с / м т.е. среднее время ожидания быстро уменьшается с увеличением интенсивности потока обслуживания. В противном случае при р? 1 оказывается, что в СМО отсутствует установившийся режим. Обслуживание не успевает за потоком заявок, и очередь неограниченно растет со временем (при t > ?). Предельные вероятности состояний поэтому не могут быть определены: при Q= 1 они равны нулю. Фактически СМО не выполняет своих функций, поскольку она не в состоянии обслужить все поступающие заявки.

Нетрудно определить, что доля обслуживаемых заявок и абсолютная пропускная способность соответственно составляют в среднем с и м, однако неограниченное увеличение очереди, а следовательно, и времени ожидания в ней приводит к тому, что через некоторое время заявки начинают накапливаться в очереди на неограниченно долгое время.

В качестве одной из характеристик СМО используют среднее время Тсмо пребывания заявки в СМО, включающее среднее время пребывания в очереди и среднее время обслуживания. Эта величина вычисляется по формулам Литтла: если длина очереди ограничена -- среднее число заявок, находящихся в очереди, равно:

Lсмо= m +1 ;2

Тсмо= L смо; при p ?1

A тогда среднее время пребывания заявки в системе массового обслуживания (как в очереди, так и под обслуживанием) равно:

Тсмо= m +1 при p ?1 2м

1.7 Одноканальная СМО с неограниченной очередью

В коммерческой деятельности в качестве одноканальной СМО с неограниченным ожиданием является, например, коммерческий директор, поскольку он, как правило, вынужден выполнять обслуживание заявок различной природы: документы, переговоры по телефону, встречи и беседы с подчиненными, представителями налоговой инспекции, милиции, товароведами, маркетологами, поставщиками продукции и решать задачи в товарно-финансовой сфере с высокой степенью финансовой ответственности, что связано с обязательным выполнением запросов, которые ожидают иногда нетерпеливо выполнения своих требований, а ошибки неправильного обслуживания, как правило, экономически весьма ощутимы. марковский отказ обслуживание модель

В то же время товары, завезенные для продажи (обслуживания), находясь на складе, образуют очередь на обслуживание (продажу).

Длину очереди составляет количество товаров, предназначенных для продажи. В этой ситуации продавцы выступают в роли каналов, обслуживающих товары.

Если количество товаров, предназначенных для продажи, велико, то в этом случае мы имеем дело с типичным случаем СМО с ожиданием.

Рассмотрим простейшую одноканальную СМО с ожиданием обслуживания, на которую поступает пуассоновский поток заявок с интенсивностью л и интенсивностью обслуживания?.

Причем заявка, поступившая в момент, когда канал занят обслуживанием, ставится в очередь и ожидает обслуживания.

Размеченный граф состояний такой системы приведен на рис. 3.5

Количество возможных состояний ее бесконечно:

Канал свободен, очереди нет, ;

Канал занят обслуживанием, очереди нет, ;

Канал занят, одна заявка в очереди, ;

Канал занят, заявка в очереди.

Модели оценки вероятности состояний СМО с неограниченной очередью можно получить из формул, выделенных для СМО с неограниченной очередью, путем перехода к пределу при m>?:

Следует заметить, что для СМО с ограниченной длиной очереди в формуле

имеет место геометрическая прогрессия с первым членом 1 и знаменателем.

Такая последовательность представляет собой сумму бесконечного числа членов при.

Эта сумма сходится, если прогрессия, бесконечно убывающая при, что определяет установившийся режим работы СМО, с при очередь при с течением времени может расти до бесконечности.

Поскольку в рассматриваемой СМО ограничение на длину очереди отсутствует, то любая заявка может быть обслужена, поэтому, следовательно, относительная пропускная способность, соответственно, а абсолютная пропускная способность

Вероятность пребывания в очереди k заявок равна:

Среднее число заявок в очереди -

Среднее число заявок в системе -

Среднее время пребывания заявки в системе -

Среднее время пребывания заявки с системе -

Если в одноканальной СМО с ожиданием интенсивность поступления заявок больше интенсивности обслуживания, то очередь будет постоянно увеличиваться. В связи с этим наибольший интерес представляет анализ устойчивых СМО, работающих в стационарном режиме при.

1.8 Многоканальная СМО с ограниченной длиной очереди

Рассмотрим многоканальную СМО, на вход которой поступает пуассоновский поток заявок с интенсивностью, а интенсивность обслуживания каждого канала составляет, максимально возможное число мест в очереди ограничено величиной m. Дискретные состояния СМО определяются количеством заявок, поступивших в систему, которые можно записать.

Все каналы свободны, ;

Занят только один канал (любой), ;

Заняты только два канала (любых), ;

Заняты все каналов, .

Пока СМО находится в любом из этих состояний, очереди нет. После того как заняты все каналы обслуживания, последующие заявки образуют очередь, тем самым, определяя дальнейшие состояние системы:

Заняты все каналов и одна заявка стоит в очереди,

Заняты все каналов и две заявки стоят в очереди,

Заняты все каналов и все мест в очереди,

Переход СМО в состояние с большими номерами определяется потоком поступающих заявок с интенсивностью, тогда как по условию в обслуживании этих заявок принимают участие одинаковых каналов с интенсивностью потока обслуживания равного для каждого канала. При этом полная интенсивность потока обслуживания возрастает с подключением новых каналов вплоть до такого состояния, когда все n каналов окажутся занятыми. С появлением очереди интенсивность обслуживания более увеличивается, так как она уже достигла максимального значения, равного.

Запишем выражения для предельных вероятностей состояний:

Выражение для можно преобразовать, используя формулу геометрической прогрессии для суммы членов со знаменателем:

Образование очереди возможно, когда вновь поступившая заявка застанет в системе не менее требований, т.е. когда в системе будет находиться требований.

Эти события независимы, поэтому вероятность того, что все каналы заняты, равна сумме соответствующих вероятностей

Поэтому вероятность образования очереди равна:

Вероятность отказа в обслуживании наступает тогда, когда все каналов и все мест в очереди заняты:

Относительная пропускная способность будет равна:

Абсолютная пропускная способность -

Среднее число занятых каналов -

Среднее число простаивающих каналов -

Коэффициент занятости (использования) каналов -

Коэффициент простоя каналов -

Среднее число заявок, находящихся в очередях -

В случае если, эта формула принимает другой вид -

Среднее время ожидания в очереди определяется формулами Литтла -

Среднее время пребывания заявки в СМО, как и для одноканальной СМО, больше среднего времени ожидания в очереди на среднее время обслуживания, равное, поскольку заявка всегда обслуживается только одним каналом:

1.9 Многоканальная СМО с неограниченной очередью

Рассмотрим многоканальную СМО с ожиданием и неограниченной длиной очереди, на которую поступает поток заявок с интенсивностью и которая имеет интенсивность обслуживания каждого канала.

Размеченный граф состояний представлен на рис 3.7 Он имеет бесконечное число состояний:

S - все каналы свободны, k=0;

S - занят один канал, остальные свободны, k=1;

S - заняты два канала, остальные свободны, k=2;

S - заняты все n каналов, k=n, очереди нет;

S - заняты все n каналов, одна заявка в очереди, k=n+1,

S - заняты все n каналов, r заявок в очереди, k=n+r,

Вероятности состояний получим из формул для многоканальной СМО с ограниченной очередью при переходе к пределу при m.

Следует заметить, что сумма геометрической прогрессии в выражении для p расходится при уровне загрузки p/n>1, очередь будет бесконечно возрастать, а при p/n<1 ряд сходится, что определяет установившийся стационарный режим работы СМО.

Очереди нет

Поскольку отказа в обслуживании в таких системах не может быть, то характеристики пропускной способности равны:

среднее число заявок в очереди -

среднее время ожидания в очереди -

среднее число заявок в СМО -

Вероятность того, что СМО находится в состоянии, когда нет заявок и не занято ни одного канала, определяется выражением

Эта вероятность определяет среднюю долю времени простоя канала обслуживания. Вероятность занятости обслуживанием k заявок -

На этом основании можно определить вероятность, или долю времени занятости всех каналов обслуживанием

Если же все каналы уже заняты обслуживанием, то вероятность состояния определяется выражением

Вероятность оказаться в очереди равна вероятности застать все каналы уже занятыми обслуживанием

Среднее число заявок, находящихся в очереди и ожидающих обслуживания, равно:

Среднее время ожидания заявки в очереди по формуле Литтла:

и в системе

среднее число занятых каналов обслуживанием:

среднее число свободных каналов:

коэффициент занятости каналов обслуживанием:

Важно заметить, что параметр характеризует степень согласования входного потока, например покупателей в магазине с интенсивностью потока обслуживания. Процесс обслуживания будет стабилен при Если же в системе будут возрастать средняя длина очереди и среднее время ожидания покупателями начала обслуживания и, следовательно, СМО будет работать неустойчиво.

1.10 Алгоритм моделирования СМО

Рассматриваемая в задаче СМО представляет собой СМО с:

Двухканальным обслуживанием;

Двухканальным входным потоком (имеет 2 входа, на один из которых поступают случайный поток Заявок I, на другой вход - поток Заявок II).

Определение времен поступления и обслуживания заявок:

· Времена поступления и обслуживания заявок генерируются случайно с заданным показательным законом распределения;

· Интенсивности поступления и обслуживания заявок заданы;

Функционирование рассматриваемой СМО:

Каждый канал обслуживает в каждый момент времени одну заявку;

Если в момент поступления новой заявки свободен хотя бы один канал, то пришедшая заявка поступает на обслуживание;

Если отсутствуют Заявки то система простаивает.

Дисциплина обслуживания:

Приоритет Заявок I: если система занята (оба канала обслуживают заявки), причем один из каналов занят Заявкой II, Заявка I вытесняют Заявку II; Заявка II покидает систему необслуженной;

Если к моменту поступления Заявки II оба канала заняты, Заявка II не обслуживается;

Если к моменту поступления Заявки I оба канала обслуживают Заявки I, поступившая Заявка I покидает систему необслуженной;

Задача моделирования:зная параметры входных потоков заявок промоделировать поведение системы и вычислить её основные характеристики её эффективности. Меняя величину Т от меньших значений до больших (интервал времени, в течении которого происходит случайный процесс поступления заявок 1-го и 2-го потока в СМО на обслуживание), можно найти изменения критерия эффективности функционирования и выбрать оптимальный.

Критерии эффективности функционирования СМО:

· Вероятность отказа;

· Относительная пропускная способность;

· Абсолютная пропускная способность;

Принцип моделирования:

Вводим начальные условия: общее время работы системы, значения интенсивностей потоков заявок; число реализаций работы системы;

Генерируем моменты времени, в которые прибывают заявки, последовательность прихода Заявок I Заявок II, время обслуживания каждой пришедшей заявки;

Считаем сколько заявок было обслужено, а сколько получило отказ;

Рассчитываем критерий эффективности СМО;

ГЛАВА 2 . ПРАКТИЧЕСКАЯ ЧАСТЬ

Рисунок 1. Зависимость ОПСС от времени

PROGRAM CAN_SMO;

CHANNAL = (FREE, CLAIM1, CLAIM2);

INTENSITY = word;

STATISTICS = word;

CHANNAL1, CHANNAL2: CHANNAL;{Каналы }

T_, t, tc1, tc2: TIME; {Время}

l1, l2, n1, n2: INTENSITY;{Интенсивности }

served1, not_served1,

served2, not_served2,

S: STATISTICS; {Статистика}

M,N:INTEGER;{число реализаций}

FUNCTION W(t: TIME; l: INTENSITY) : boolean;{Определяет появилась ли заявка}

Begin {по интенсивности потока l}

if random < l/60 then W:= TRUE else W:= FALSE;

FUNCTION F(t: TIME; n: INTENSITY) : TIME;{Определяет сколько будет обрабатываться заявка}

Begin {по интенсивности обслуживания заявок n}

F:= t +round(60/(n));

Рисунок 2. Зависимость ОППС от времени

WRITELN("ВВЕДИТЕ ЧИСЛО РЕАЛИЗАЦИЙ РАБОТЫ СМО");

writeln(M, "-ая реализация");

CHANNAL1:= FREE; CHANNAL2:= FREE;

l1:= 3; l2:= 1; n1:= 2; n2:= 1;

served1:= 0; not_served1:= 0;

served2:= 0; not_served2:= 0;

write("Введите время исследования СМО - Т: "); readln(_T_);

if CHANNAL1 = CLAIM1 then inc(served1) else inc(served2);

CHANNAL1:= FREE;

writeln("Канал1 выполнил заявку");

if CHANNAL2 = CLAIM1 then inc(served1) else inc(served2);

CHANNAL2:= FREE;

writeln("Канал2 выполнил заявку");

Рисунок 3. График зависимости вероятности отказа в системе от времени

writeln("Поступила заявка1");

if CHANNAL1 = FREE then

begin CHANNAL1:= CLAIM1; tc1:= F(t,n1); writeln("Канал1 принял заявку1"); end

else if CHANNAL2 = FREE then

begin CHANNAL2:= CLAIM1; tc2:= F(t,n1); writeln("Канал2 принял заявку1"); end

else if CHANNAL1 = CLAIM2 then

begin CHANNAL1:= CLAIM1; tc1:= F(t,n1); inc(not_served2); writeln("Канал1 принял заявку1 вместо заявки2"); end

else if CHANNAL2 = CLAIM2 then

begin CHANNAL2:= CLAIM1; tc2:= F(t,n1); inc(not_served2); writeln("Канал2 принял заявку1 вместо заявки2"); end

else begin inc(not_served1); writeln("заявка1 не обслужена"); end;

Рисунок 4. Зависимость числа заявок от времени

writeln("Поступила заявка2");

if CHANNAL1 = FREE then

begin CHANNAL1:= CLAIM2; tc1:= F(t,n2); writeln("Канал1 принял заявку2");end

else if CHANNAL2 = FREE then

begin CHANNAL2:= CLAIM2; tc2:= F(t,n2); writeln("Канал2 принял заявку2");end

else begin inc(not_served2); writeln("заявка2 не обслужена"); end;

S:= served1 + not_served1 + served2 + not_served2;

writeln("время работы СМО ",_T_);

writeln("обслужено каналом1: " ,served1);

writeln("обслужено каналом2: ",served2);

writeln("Поступило заявок: ",S);

writeln("Обслужено заявок: ",served1+served2);

writeln("Не обслужено заявок: ",not_served1+not_served2);

{writeln("Интенсивность поступления заявок в систему: ",(served1+served2)/_T_:2:3);}

writeln("Абсолютная пропускная способность системы: ",(served1+served2)/T:2:3);

writeln("Вероятность отказа: ",(not_served1+not_served2)/S*100:2:1,"%");

writeln("Относительная пропускная способность системы: ",(served1+served2)/S:2:3);

writeln("моделирование закончено");

Таблица 2. Результаты работы СМО

Характеристики работы СМО

Время работы СМО

Поступило заявок

Обслужено заявок

Не обслужено заявок

Абсолютная пропускная способность системы

Относительная пропускная способность системы

ГЛАВА 3. ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ

Общее положения

· К работе в компьютерном классе допускаются лица, ознакомленные с инструкцией по технике безопасности и правилам поведения.

· В случае нарушения инструкции студент отстраняется от работы и допускается к занятию только по письменному разрешению преподавателя.

· Работа студентов в компьютерном классе разрешается только в присутствии преподавателя (инженера, лаборанта).

· Помните, что каждый студент в ответе за состояние своего рабочего места и сохранность размещенного на нем оборудования.

Перед началом работы:

· Перед началом работы следует убедиться в отсутствии видимых повреждений аппаратуры и проводов. Компьютеры и периферийные устройства должны находиться на столах в устойчивом положении.

· Учащимся категорически запрещается проникать внутрь устройств. Включать устройства можно только по разрешению преподавателя.

При работе в компьютерном классе запрещается:

1. Входить и выходить из класса без разрешения учителя.

2. Опаздывать на урок.

3. Входить в класс в грязной и мокрой обуви, пыльной одежде, в холодное время года в верхней одежде.

4. Работать на компьютере влажными руками.

5. Класть на рабочее место посторонние предметы.

6. Вставать во время работы, поворачиваться по сторонам, разговаривать с соседом.

7. Включать и выключать аппаратуру без разрешения учителя.

8. Нарушать порядок включения и выключения аппаратуры.

9. Трогать клавиатуру и мышь при выключенном компьютере, передвигать мебель и аппаратуру.

10. Трогать экран дисплея, кабели, соединительные провода, разъёмы, вилки и розетки.

11. Подходить к рабочему месту учителя без разрешения

Главная угроза для здоровья человека при работе с ПК - это угроза поражения электрическим током. Поэтому запрещается:

1. Работать на аппаратуре, имеющей видимые дефекты. Открывать системный блок.

2. Присоединять или отсоединять кабели, трогать разъемы соединительных кабелей, провода и розетки, устройствам заземления.

3. Прикасаться к экрану и к тыльной стороне монитора, клавиатуры.

4. Пытаться самостоятельно устранять неисправности в работе аппаратуры.

5. Работать во влажной одежде и влажными руками

6. Выполнять требования преподавателя и лаборанта; Соблюдать тишину и порядок;

7. Находясь в сети работать только под своим именем и паролем;

8. Соблюдать режим работы (согласно Санитарных правил и норм);

9. Начало и окончание работы производить только по разрешению преподавателя.

10. При резком ухудшении самочувствия (появлении рези в глазах, резком ухудшении видимости, невозможности сфокусировать взгляд или навести его на резкость, появления боли в пальцах и кистях рук, усиления сердцебиения) немедленно покинуть рабочее место, сообщить о происшедшем преподавателю и обратиться к врачу;

11. Соблюдать чистоту рабочего места.

12. Окончание работы произвести по разрешению преподавателя.

13. Сдать выполненную работу.

14. Завершить все активные программы и корректно выключить компьютер.

15. Привести рабочее место в порядок.

16. Дежурному проверить готовность кабинета к следующему занятию.

При эксплуатации оборудования необходимо остерегаться: - поражения электрическим током;

- механических повреждений, травм

При возникновении аварийных ситуаций:

1. При обнаружения искрения, появлении запаха гари или обнаружения иных неполадках следует немедленно прекратить работу и сообщить об этом учителю.

2. При поражении кого-либо электротоком необходимо: прекратить работу и отойти на безопасное расстояние; отключить напряжение (на распределительном щитке кабинета); сообщить учителю; приступить к оказанию первой помощи и вызвать врача.

3. При пожаре необходимо: прекратить работу и начать эвакуацию; сообщить учителю и вызвать пожарную охрану (по тел. 01); отключить напряжение (на распределительном щитке кабинета); приступить к тушению пожара огнетушителем (водой тушить запрещается.

Подобные документы

    Математическая теория массового обслуживания как раздел теории случайных процессов. Системы массового обслуживания заявок, поступающих через промежутки времени. Открытая марковская сеть, ее немарковский случай, нахождение стационарных вероятностей.

    курсовая работа , добавлен 07.09.2009

    Понятие системы массового обслуживания, ее сущность и особенности. Теория массового обслуживания как один из разделов теории вероятностей, рассматриваемые вопросы. Понятие и характеристика случайного процесса, его виды и модели. Обслуживание с ожиданием.

    курсовая работа , добавлен 15.02.2009

    Оптимизация управления потоком заявок в сетях массового обслуживания. Методы установления зависимостей между характером требований, числом каналов обслуживания, их производительностью и эффективностью. Теория графов; уравнение Колмогoрова, потоки событий.

    контрольная работа , добавлен 01.07.2015

    Теория массового обслуживания – область прикладной математики, анализирующая процессы в системах производства, в которых однородные события повторяются многократно. Определение параметров системы массового обслуживания при неизменных характеристиках.

    курсовая работа , добавлен 08.01.2009

    Определение случайного процесса и его характеристики. Основные понятия теории массового обслуживания. Понятие марковского случайного процесса. Потоки событий. Уравнения Колмогорова. Предельные вероятности состояний. Процессы гибели и размножения.

    реферат , добавлен 08.01.2013

    Стационарное распределение вероятностей. Построение математических моделей, графов переходов. Получение уравнения равновесия систем массового обслуживания с различным числом приборов, требованиями различных типов и ограниченными очередями на приборах.

    дипломная работа , добавлен 23.12.2012

    Анализ эффективности простейших систем массового обслуживания, расчет их технических и экономических показателей. Сравнение эффективности системы с отказами с соответствующей смешанной системой. Преимущества перехода к системе со смешанными свойствами.

    курсовая работа , добавлен 25.02.2012

    Составление имитационной модели и расчет показателей эффективности системы массового обслуживания по заданны параметрам. Сравнение показателей эффективности с полученными путем численного решения уравнений Колмогорова для вероятностей состояний системы.

    курсовая работа , добавлен 17.12.2009

    Примеры процессов размножения и гибели в случае простейших систем массового обслуживания. Математическое ожидание для системы массового обслуживания. Дополнительный поток и бесконечное число приборов. Система с ограничением на время пребывания заявки.

    курсовая работа , добавлен 26.01.2014

    Некоторые математические вопросы теории обслуживания сложных систем. Организация обслуживания при ограниченной информации о надёжности системы. Алгоритмы безотказной работы системы и нахождение времени плановой предупредительной профилактики систем.

Основы математического моделирования

социально-экономических процессов

Лекция 3

Тема лекции: «Модели систем массового обслуживания»

1. Модели организационных структур управления (ОСУ).

2. Системы и модели массового обслуживания. Классификация систем массового обслуживания (СМО).

3.Модели СМО. Показатели качества функционирования СМО.

  1. МОДЕЛИ ОРГАНИЗАЦИОННЫХ СТРУКТУР УПРАВЛЕНИЯ (ОСУ).

Многие экономические задачи связаны с системами мас-сового обслуживания (СМО), т. е. с такими системами, в кото-рых, с одной стороны, возникают массовые запросы (требо-вания) на выполнение каких-либо услуг, с другой — проис-ходит удовлетворение этих запросов.

СМО включает в себя следующие элементы: источник требований, входящий поток требований, очередь, обслуживающие устройства (каналы обслуживания), выходящий поток требований. Исследованием таких систем занимается теория массового обслуживания (ТМО).

Методами теории массового обслуживания (ТМО) могут быть решены многие задачи исследования процессов, происходящих в экономике. Так, в организации торговли эти методы позволяют определить оптимальное количество торговых то- чек данного профиля, численность продавцов, частоту завоза товаров и другие параметры. Другим характерным примером систем массового обслуживания могут служить склады или базы снабженческо-сбытовых организаций. И задача тео-рии массового обслуживания в данном случае сводится к тому, чтобы установить оптимальное соотношение между числом поступающих на базу требований на обслуживание и числом обслуживающих устройств, при котором суммар-ные расходы на обслуживание и убытки от простоя транс-порта были бы минимальными. Теория массового обслужи-вания может найти применение и при расчете площади складских помещений, при этом складская площадь рас-сматривается как обслуживающее устройство, а прибытие транспортных средств под выгрузку — как требование.

Модели теории массового обслуживания применяются также при решении ряда задач организации и нормирования труда, других социально-экономических проблем. Переход к рынку требует от всех субъектов хозяйствования повышенной надежности и эффективности функционирования производств, гибкости и живучести в ответ на динамичные изменения внешней деловой среды, снижения разновидностей рисков и потерь от запоздалых и некомпетентных управленческих решений.

СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ (СМО) ЯВЛЯЮТСЯ МАТЕМАТИЧЕСКИМИ МОДЕЛЯМИ ОРГАНИЗАЦИОННЫХ СТРУКТУР УПРАВЛЕНИЯ (ОСУ).

ОРГАНИЗАЦИОННЫЕ СТРУКТУРЫ УПРАВЛЕНИЯ (ОСУ) призваны оперативно отслеживать колебания рынка и принимать в зависимости от складывающихся ситуаций компетентные управленческие решения.

Поэтому становится понятным то внимание, которое уделяют субъекты рынка (транснациональные корпорации, промышленные предприятия, коммерческие банки, фирмы, организации, малые предприятия и т.п.) выбору эффективно функционирующих организационных структур управления (ОСУ).

Взамен широко распространенных в 90-х годах двадцатого столетия ОСУ предприятий (иерархических, матричных, дуальных, параллельных и др.) сегодня в мире эффективно используются АЛЬТЕРНАТИВНЫЕ ФОРМЫ МНОГОФУНКЦИОНАЛЬНЫХ СТРУКТУР, базирующихся на принципах самоорганизации, адаптации, автономности отдельных подразделений с мягкими связями между ними .

Подобной структурой обладает множество передовых зарубежных фирм, в составе которых насчитывается множество рабочих групп с сетевыми взаимоотношениями между ними. Популярными в последнее время считаются организации, ориентированные на минимизацию потребления ресурсов, имеющие явно выраженную горизонтальную форму с координацией, осуществляемой не по иерархическому признаку, а самими рабочими группами, организованными в сеть.

Альтернативными моделями, противостоящими моделям ОСУ, созданным на базе организационной логики и жесткого регулирования, являются нечеткие структуры без иерархических уровней и структурных подразделений , основанные на координации личной ответственности и профилировании самоуправляемых групп со следующими признаками:

а) наличием относительно независимых рабочих групп с участием представителей различных подразделений, создаваемых для решения определенных проектов и проблем, при широкой свободе действий и автономии в области координации задач и принятия решений;

б) ликвидацией жестких связей между подразделениями ОСУ с введением гибких взаимосвязей.

На аналогичных принципах базируется современная концепция минимизированного по ресурсам производства: на подобных предприятиях в качестве организационных единиц используют рабочие группы с широкими полномочиями и большими возможностями самоуправления с конечной целью, заключающейся в создании разумной гибкой организации труда, опирающейся на самостоятельно действующих исполнителей, а не на синтезированные специалистами рациональные структуры; сотрудниками оцениваются возникающие проблемы, определяются возможности контактов со специалистами внутри и за пределами системы. Самоуправляемый персонал основной упор делает на самоорганизацию, заменяющую собой привнесенную извне (задаваемую сверху) жесткую упорядоченную структуру.

Крайним случаем такого подхода является создание безорганизационной, постоянно «размороженной», структуры со следующими свойствами:

Широкое творческое обсуждение любых обрабатываемых процедур и поступающих извне сигналов без учета шаблонных решений и прошлого опыта;

Автономная работа членов групп с самостоятельной организацией временных взаимосвязей и производственных соглашений между партнерами по мере необходимости для решения возникающих проблем.

Заметим, что чрезмерное увлечение одной системной функцией — гибкостью, при полном игнорировании прочих функций — интеграции, идентификации, учета и контроля, всегда опасно для устойчиво функционирующих систем, так как трудно обеспечить успешную координацию в рамках данной организации без высокой квалификации сотрудников, их способности к обучению и совершенствованию, к установлению эффективных контактов и координации.При подобной форме организации основное внимание должно уделяться созданию условий для максимального использования интеллекта человеческих ресурсов и повышения их квалификации, выделению высококвалифицированных специалистов — системщиков, увязывающих действия членов организации для достижения конечной цели. При этом в сфере системной координации существует вероятность возможных срывов, конфликтов и негативных последствий, так как ориентация на способность персонала к самоорганизации и самокоординации носит слишком общий характер. Хотя высокая компетентность, инициатива и сила воли каждого работника и влияет на жизнеспособность любой децентрализованной организации, но в целом они не могут заменить регулирующей функции целой организационной структуры.

Сегодня в мире интенсивно развивается новое направление синтеза ОСУ как обучающихся систем, характеризующихся следующими характерными особенностями:

а) привлечением высококвалифицированных экспертов-специалистов к процессам восприятия и накопления информации, а также к обучению и расширению способностей персонала;

б) постоянным изменением в процессе функционирования, расширением своих способностей взаимодействия с окружающей деловой средой и быстрой адаптацией к постоянно меняющимся внешним и внутренним условиям;

в) широким распространением открытых компьютерных сетей, охватывающих не только отдельные организации, предприятия или их конгломераты, но и целые крупные регионы и даже совокупности стран (ЕЭС, СВИФТ и др.), что обусловливает новые возможности организации и повышения эффективности работы предприятий и отраслей в масштабах всей страны и даже всего мира.

Считается, что ОСУ должна создаваться на принципах многофункциональности и многоаспектности, позволяющих эффективно контролировать сложные рынки и распределять имеющиеся ресурсы. Из анализа мирового опыта функционирования ОСУ в условиях рынка применительно к российской экономике и ее субъектам хозяйствования можно выделить следующие рекомендации:

1) иерархическую ОСУ можно сохранять и применять с минимумом риска для предприятия, если высшее руководство фирмы способно выступать в качестве координаторов проблем, а их подчиненные — в качестве «маленьких предпринимателей»; при этом предпринимательская инициатива и ответственность перемещаются с верхних в нижние эшелоны фирменной власти при исполнении иерархами действительно координаторских функций;

2) матричную ОСУ можно сохранять, если в фирме отсутствует механическое дублирование служебных инстанций и существует органичная сетевая структура с оптимальной коммуникацией;

3) дуальную ОСУ следует применять при ясности и контролируемости как ключевых связей между основными и сопутствующими структурами, так и прозрачности функций самой системы сопутствующих вторичных структур, причем они должны быть многофункциональными и многоцелевыми (типа «учебных центров»), а не специализированными, ориентированными лишь на собственные потребности;

4) параллельную ОСУ следует применять при сформированной конструктивной конкурентной культуре, сотрудничестве партнеров на базе доверия, терпимости, готовности разрешать конфликты, а в острых ситуациях иметь нейтральную «третейскую» инстанцию.

При наличии средних предприятий, состоящих из слабо интегрированных функциональных подразделений, на вторичные структуры можно возложить решение интеграционных проблем, но эффект от реализации этого механизма получится при осознании руководством подразделений создания структурной надстройки как средства поддержки их собственной позиции, а не как угрозу для их существования.

Развитие на стыке кибернетики, вычислительных сетей, менеджмента и социальной психологии направления Groupware (США), связанного с электронными информационными системами, локальными диалоговыми сетями и средствами их поддержки, обеспечивает распределенную работу больших коллективов людей в режиме прямого доступа, позволяя хранить в машинной памяти огромный объем информации (любую деловую, производственно-техническую и прочую документацию, совещания, переговоры организации и даже обычные разговоры ее сотрудников, а также всю предысторию и опыт работы), используя ее при необходимости для корректировки структуры, функций, задач, стратегии и тактики управления в деятельности конкретной организации. Такой подход по-новому раскрывает понятие обучающейся организации, обеспечивает проведение аналогий между процессами, протекающими в живых и в диалоговых компьютерных системах.

Если обучение и память обусловливают выживание живых систем, то аналогично организационное обучение и память влияют на эффективность деятельности любой организации при изменении деловой внешней среды. Обучение, как живых, так и организационных систем обязательно ведет к структурным изменениям. Организационно правильно построенная компьютерная сеть может вызывать качественный сдвиг в улучшении корпоративной деятельности. Гибкость и широта функциональных возможностей рабочих групп, реализующих управление проектами при минимуме затрат на координацию их работы, обусловливают рост и качество исполнения крупных задач, стоящих перед фирмами, необходимость оптимизации функциональных подразделений и организационных структур в целом, изменения связей между функциональными единицами в зависимости от складывающихся ситуаций.

Качество реструктуризации в живых и организационных системах определяется совокупностью унаследованного и приобретенного поведения, эффективностью обучения и памяти, организации инфраструктур, обеспечивающих совершенствование взаимосвязей и диалогов между людьми. Повышение скорости обучения и эффективности памяти организации зависит от способа управления взаимоотношениями и диалогами между людьми. Сегодня коммуникации — это координация действий, а не передача информации. Организационные инфраструктуры должны расширять возможности формирования и поддержки диалогов между людьми независимо от их традиций, культуры и др. Пример тому организация и распространение сети Internet и ей подобных.

Учет специфики моделей разновидностей СМО в практической деятельности субъектов рынка позволяет:

Провести более глубокий анализ особенностей функционирования сложных систем, оценить их качество и эффективность с получением конкретных количественных оценок;

Вскрыть имеющиеся резервы и возможности по оптимизации протекающих процессов, экономии финансовых и прочих ресурсов, снижению рисков в условиях неопределенности деловой внешней и внутренней среды.

Рассмотрим эти вопросы подробнее.

2. СИСТЕМЫ И МОДЕЛИ МАССОВОГО ОБСЛУЖИВАНИЯ. КЛАССИФИКАЦИЯ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ (СМО).

Теория массового обслуживания опирается на теорию вероятностей и математическую статистику. Первоначальное развитие теории массового обслуживания связано с именем датского уче-ного А. К. Эрланга (1878—1929), с его трудами в области проекти-рования и эксплуатации телефонных станций.

Теория массового обслуживания - область прикладной мате-матики, занимающаяся анализом процессов в системах произ-водства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и пере-дачи информации; автоматических линиях производства и др.

Большой вклад в развитие этой теории внесли российские математики А. Я. Хинчин, Б. В. Гнеденко, А. Н. Колмогоров, Е. С. Вентцель и др.

Предметом теории массового обслуживания является установ-ление зависимостей между характером потока заявок, числом ка-налов обслуживания, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами. Задачи теории массового обслуживания носят оптимизационный характер и в конечном итоге включают экономический аспект по определению такого варианта системы, при котором будет обеспечен минимум сум-марных затрат от ожидания обслуживания, потерь времени и ре-сурсов на обслуживание и от простоев каналов обслуживания.

Задачи организации массового обслуживания возникают практически во всех сферах человеческой деятельности, напри-мер обслуживание продавцами покупателей в магазинах, обслу-живание посетителей на предприятиях общественного питания, обслуживание клиентов на предприятиях бытового обслужива-ния, обеспечение телефонных разговоров на телефонной стан-ции, оказание медицинской помощи больным в поликлинике и т.д. Во всех приведенных примерах возникает необходимость в удовлетворении запросов большого числа потребителей.

Перечисленные задачи можно успешно решать с помощью методов и моделей специально созданной для этих целей теории массового обслуживания (ТМО). В этой теории поясняется, что обслуживать необходимо кого-либо или что-либо, что определяется понятием «заявка (требование) на обслуживание», а опера-ции обслуживания выполняются кем-либо или чем-либо, назы-ваемыми каналами (узлами) обслуживания.

Заявки в силу массовости поступления на обслуживание об-разуют потоки, которые до выполнения операций обслужива-ния называются входящими, а после возможного ожидания начала обслуживания, т.е. простоя в очереди, образуют потоки об-служивания в каналах, а затем формируется выходящий поток заявок. В целом совокупность элементов входящего потока за-явок, очереди, каналов обслуживания и выходящего потока за-явок образует простейшую систему массового обслуживания — СМО.

Одним из параметров входного потока заявок является интенсивность входящего потока заявок λ ;

К параметрам каналов обслуживания заявок относятся: интенсивность обслуживания μ , число каналов обслуживания n .

Параметрами очереди являются: максимальное число мест в очереди L max ; дисциплина очереди D («первым пришел - первым ушел» (FIFO); «последним пришел - первым ушел» (LIFO); с приоритетами; случайный выбор из очереди).

Процедура обслуживания считается завершенной, когда заяв-ка на обслуживание покидает систему. Продолжительность ин-тервала времени, требуемого для реализации процедуры обслу-живания, зависит в основном от характера запроса заявки на об-служивание, состояния самой обслуживающей системы и канала обслуживания.

Действительно, например, продолжительность пребывания покупателя в супермаркете зависит, с одной стороны, от личностных качеств покупателя, его запросов, от ассортимента товаров, который он собирается приобрести, а с другой — от формы организации об-служивания и обслуживающего персонала, что может значитель-но повлиять на время пребывания покупателя в супермаркете и интенсивность обслуживания.

Под обслуживанием заявок мы будем понимать процесс удовле-творения потребности. Обслуживание имеет различный характер по своей природе. Однако во всех примерах поступившие заявки нуждаются в обслуживании со стороны какого-либо устройства.

В некоторых случаях обслуживание производится одним челове-ком (обслуживание покупателя одним продавцом), в некоторых — группой людей (обслуживание клиента в ресторане), а в некоторых случаях — техническими устройст-вами (продажа газированной воды, бутербродов автоматами).

Совокупность средств, которые осуществляют обслуживание за-явок, называется каналом обслуживания.

Если каналы обслуживания способны удовлетворить одина-ковые заявки, то каналы обслуживания называются однородны-ми.

Совокупность однородных каналов обслуживания называет-ся обслуживающей системой.

В систему массового обслуживания поступает большое коли-чество заявок в случайные моменты времени, длительность обслу-живания которых также является случайной величиной. Последо-вательное поступление заявок в систему обслуживания называет-ся входящим потоком заявок , а последовательность заявок, покидающих систему обслуживания, — выходящим потоком .

Если максимальная длина очереди L max = 0 , то СМО является системой без очередей.

Если L max = N 0 , где N 0 >0 - некоторое положительное число, то СМО является системой с ограниченной очередью.

Если L max → ∞, то СМО является системой с бесконечной очередью.

Случайный характер распределения длительности выполне-ния операций обслуживания, наряду со случайным характером поступления требований на обслуживание, приводит к тому, что в каналах обслуживания протекает случайный процесс, который может быть назван (по аналогии с входным потоком заявок) потоком обслуживания заявок или просто потоком обслуживания .

Заметим, что заявки, поступающие в систему обслуживания, могут покинуть ее и будучи не обслуженными. Например, если покупатель не найдет в магазине нужный товар, то он покидает магазин, будучи не обслуженным. Покупатель может покинуть магазин также, если нужный товар имеется, но большая очередь, а покупатель не располагает временем.

Теория массового обслуживания занимается изучением про-цессов, связанных с массовым обслуживанием, разработкой ме-тодов решения типичных задач массового обслуживания.

При исследовании эффективности работы системы обслужи-вания важную роль играют различные способы расположения в системе каналов обслуживания.

При параллельном расположении каналов обслуживания тре-бование может быть обслужено любым свободным каналом.

Примером такой системы обслуживания является расчетный узел в магазинах самообслуживания, где число каналов обслужи-вания совпадает с числом кассиров-контролеров.

На практике часто обслуживание одной заявки осуществля-ется последовательно несколькими каналами обслуживания .

При этом очередной канал обслуживания начинает работу по обслуживанию заявки после того, как предыдущий канал закончил свою работу. В таких системах процесс обслуживания носит многофазовый характер , обслуживание заявки одним каналом называется фазой обслуживания . Например, если в магазине са-мообслуживания имеются отделы с продавцами, то покупатели сначала обслуживаются продавцами, а потом уже кассирами-контролерами.

Организация системы обслуживания зависит от воли челове-ка. Под качеством функционирования системы в теории массо-вого обслуживания понимают не то, насколько хорошо выполне-но обслуживание, а то, насколько полно загружена система об-служивания, не простаивают ли каналы обслуживания, не образуется ли очередь .

Работу системы обслуживания характеризуют такие показате-ли, как время ожидания начала обслуживания, длина очереди, возможность получения отказа в обслуживании, возможность простоя каналов обслуживания, стоимость обслуживания и в ко-нечном итоге удовлетворение качеством обслуживания.

Чтобы улучшить качество функционирования системы об-служивания, необходимо определить, каким образом распреде-лить поступающие заявки между каналами обслуживания, какое количество каналов обслуживания необходимо иметь, как распо-ложить или сгруппировать каналы обслуживания или обслужива-ющие аппараты для улучшения показателей. Для решения перечисленных задач существует эффек-тивный метод моделирования, включающий и объединяющий достижения разных наук, в том числе математики.

Потоки событий.

Переходы СМО из одного состояния в другое происходят под воздействием вполне определенных событий — поступле-ния заявок и их обслуживания. Последовательность появления событий, следующих одно за другим в случайные моменты вре-мени, формирует так называемый поток событий .

Примерами таких потоков являются потоки различной природы — потоки товаров, денег, документов; транспортные потоки; потоки клиентов, покупателей; потоки телефонных звонков, переговоров и др. По-ведение системы обычно определяется не одним, а сразу не-сколькими потоками событий. Например, обслуживание поку-пателей в магазине определяется потоком покупателей и пото-ком обслуживания; в этих потоках случайными являются моменты появления покупателей, время ожидания в очереди и время, затрачиваемое на обслуживание каждого покупателя.

При этом основной характерной чертой потоков является веро-ятностное распределение времени между соседними события-ми. Существуют различные потоки, которые отличаются свои-ми характеристиками.

Поток событий называется регулярным , если в нем события следуют одно за другим через заранее заданные и строго опреде-ленные промежутки времени. Такой поток является идеальным и очень редко встречается на практике. Чаще встречаются нерегу-лярные потоки, не обладающие свойством регулярности.

Поток событий называется стационарным, если вероятность попадания любого числа событий на промежуток времени зави-сит только от длины этого промежутка и не зависит от того, как далеко расположен этот промежуток от начала отсчета времени.

То есть стационарным называется поток , для которого математическое ожидание числа требований, поступающих в систему в единицу времени (обозначим λ), не меняется во времени. Таким образом, вероятность поступления в систему определен-ного количества требований в течение заданного промежутка времени?t зависит от его величины и не зависит от начала его отсчета на оси времени.

Стационарность потока означает независимость от времени его вероятностных характеристик; в частности, интенсивность тако-го потока есть среднее число событий в единицу времени и оста-ется величиной постоянной. На практике обычно потоки могут считаться стационарными только на некотором ограниченном промежутке времени. Обычно поток покупателей, например, в магазине существенно меняется в течение рабочего дня. Однако можно выделить определенные временные интервалы, внутри которых этот поток допустимо рассматривать как стационарный, имеющий постоянную интенсивность.

Отсутствие последействия означает, что число требова-ний, поступивших в систему до момента t, не определяет того, сколько требований поступит в систему за промежуток вре-мени от t до t+?t.

Например, если на ткацком станке в данный момент произошел обрыв нити, и он устранен ткачихой, то это не оп-ределяет, произойдет новый обрыв на данном станке в следующий момент или нет, тем более это не влияет на веро-ятность возникновения обрыва на других станках.

Поток событий называется потоком без последствия , если число событий, попадающих на один из произвольно выбран-ных промежутков времени, не зависит от числа событий, попавших на другой, также произвольно выбранный промежуток, при условии, что эти промежутки не пересекаются между собой.

В потоке без последствия события появляются в последовательные моменты времени независимо друг от друга. Например, поток покупателей, входящих в магазин, можно считать потоком без последствия потому, что причины, обусловившие приход каждо-го из них, не связаны с аналогичными причинами для других по-купателей.

Поток событий называется ординарным , если вероятность по-падания на очень малый отрезок времени сразу двух или более событий пренебрежимо мала по сравнению с вероятностью попа-дания только одного события.

Другими словами, ординарность потока означает практическую невозмож-ность одновременного поступления двух и более требований. Например, достаточно малой является вероятность того, что из группы станков, обслуживаемых бригадой ремонтников, одновременно выйдут из строя сразу несколько станков. В ординарном потоке события происходят поодиночке, а не по два (или более) сразу.

Если поток одновременно обладает свойствами стационарнос-ти, ординарности и отсутствием последствия , то такой поток назы-вается простейшим (или пуассоновским) потоком событий .

Мате-матическое описание воздействия такого потока на системы ока-зывается наиболее простым. Поэтому, в частности, простейший поток играет среди других существующих потоков особую роль.

Методы и модели, применяющиеся в теории массового обслуживания (ТМО), можно условно разделить на АНАЛИТИЧЕСКИЕ и ИМИТАЦИОННЫЕ.

Аналитические методы теории массового обслуживания позволяют получить характеристики системы как некото-рые функции параметров ее функционирования. Благодаря этому появляется возможность проводить качественный анализ влияния отдельных факторов на эффективность работы СМО.

Имитационные методы основаны на моделировании процес-сов массового обслуживания на ЭВМ и применяются, если невозможно применение аналитических моделей.

В настоящее время теоретически наиболее разработаны и удобны в практических приложениях методы решения та-ких задач массового обслуживания, в которых входящий поток требований является простейшим (пуассоновским).

Для простейшего потока частота поступления требований в систему подчиняется закону Пуассона, т.е. вероятность по-ступления за время t ровно k требований задается формулой:

Важная характеристика СМО — время обслуживания требований в системе.

Время обслуживания одного требования является, как правило, случайной величиной и, следователь-но, может быть описано законом распределения.

Наибольшее распространение в теории и особенно в практических прило-жениях получил экспоненциальный закон распределения времени обслуживания . Функция распределения для этого закона имеет вид:

F(t) = 1 - e - μ t , (2)

т.е. вероятность того, что время обслуживания не превосхо-дит некоторой величины t, определяется формулой (2), где μ — параметр экспоненциального закона распределения времени обслуживания требований в системе. То есть μ - это величина, обратная среднему времени обслуживания ? o6 . :

μ = 1/ ? o6 . (3)

Кроме понятия простейшего потока событий часто приходит-ся пользоваться понятиями потоков других типов.

Поток собы-тий называется потоком Пальма , когда в этом потоке промежутки времени между последовательными событиями T1, T2, ..., Тn являются независимыми, одинаково распределенными, слу-чайными величинами, но в отличие от простейшего потока необязательно распределенными по показательному закону.

Про-стейший поток является частным случаем потока Пальма.

Важным частным случаем потока Пальма является так назы-ваемый поток Эрланга . Этот поток получается «прореживанием» простейшего потока. Такое «прореживание» производится путем отбора по определенному правилу событий из простейшего пото-ка. Например, условившись учитывать только каждое второе со-бытие из образующих простейший поток, мы получим поток Эрланга второго порядка. Если брать только каждое третье событие, то образуется поток Эрланга третьего порядка и т.д. Можно полу-чить потоки Эрланга любого k-го порядка. Очевидно, простей-ший поток есть поток Эрланга первого порядка.

КЛАССИФИКАЦИЯ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ.

Любое исследование системы массового обслуживания (СМО) начи-нается с изучения того, что необходимо обслуживать, следова-тельно, с изучения входящего потока заявок и его характеристик.

1. В зависимости от условий ожидания начала обслуживания различают:

СМО с потерями (отказами),

СМО с ожиданием.

В СМО с отказами требования, поступающие в момент, когда все каналы обслуживания заняты, получают отказ и теряются. Классическим примером системы с отказами явля-ется телефонная станция. Если вызываемый абонент занят, то требование на соединение с ним получает отказ и теряется.

В СМО с ожиданием требование, застав все обслуживаю-щие каналы занятыми, становится в очередь и ожидает, пока не освободится один из обслуживающих каналов.

СМО, допускающие очередь, но с ограниченным числом требований в ней, называются системами с ограниченной длиной очереди .

СМО, допускающие очередь , но с ограниченным сроком пребывания каждого требования в ней, называются систе-мами с ограниченным временем ожидания.

2. По числу каналов обслуживания СМО делятся на

- одноканальные ;

- многоканальные .

3. По месту нахождения источника требований

СМО делятся на:

- разомкнутые , когда источник требования находится вне системы;

- замкнутые , когда источник находится в самой системе.

Примером разомкнутой системы может служить мастерская по обслуживанию и ремонту бытовой техники. Здесь неисправные устройства — это источник требований на их обслуживание, находятся вне самой системы, число требований можно считать неограни-ченным.

К замкнутым СМО относится, например, станочный участок, в котором станки являются источником неисправностей, и, следовательно, источником требований на их обслу-живание , например, бригадой наладчиков.

Возможны и другие признаки классификации СМО, на-пример, по дисциплине обслуживания , однофазные и многофазные СМО и др.

3. МОДЕЛИ СМО. ПОКАЗАТЕЛИ КАЧЕСТВА ФУНКЦИОНИРОВАНИЯ СМО.

Рассмотрим аналитические модели наиболее распростра-ненных СМО с ожиданием, т.е. таких СМО, в которых требо-вания, поступившие в момент, когда все обслуживающие ка-налы заняты, ставятся в очередь и обслуживаются по мере освобождения каналов.

ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ СОСТОИТ В СЛЕДУЮЩЕМ.

Система имеет n обслуживающих каналов , каждый из которых может одновременно обслуживать только одно требование.

В систему поступает простейший (пуассоновский) поток требований с параметром λ .

Если в момент поступления оче-редного требования в системе на обслуживании уже находится не меньше n требований (т.е. все каналы заняты), то это требование становится в очередь и ждет начала обслуживания.

Время обслуживания каждого требования t об. — случайная величина, которая подчиняется экспоненциальному за-кону распределения с параметром μ .

СМО С ОЖИДАНИЕМ МОЖНО РАЗБИТЬ НА ДВЕ БОЛЬШИЕ ГРУППЫ: ЗАМКНУТЫЕ И РАЗОМКНУТЫЕ.

К замкнутым относятся системы, в которых поступающий поток требований возникает в самой системе и ограничен .

Например, мастер, задачей кото-рого является наладка станков в цехе, должен периодически их обслуживать. Каждый налаженный станок становится потенциальным источником требований на накладку. В по-добных системах общее число циркулирующих требования конечно и чаще всего постоянно.

Если питающий источник обладает бесконечным числом требований , то системы называются разомкнутыми.

Приме-рами подобных систем могут служить магазины, кассы вокза-лов, портов и др. Для этих систем поступающий поток требо-ваний можно считать неограниченным.

Отмеченные особенности функционирования систем этих двух видов накладывают определенные условия на исполь-зуемый математический аппарат. Расчет характеристик работы СМО различного вида может быть проведен на основе расчета вероятностей состояний СМО (так называемые фор-мулы Эрланга ).

  1. 1. РАЗОМКНУТАЯ СИСТЕМА МАССОВОГО ОБСЛУЖИВАНИЯ С ОЖИДАНИЕМ.

Рассмотрим алгоритмы расчета показателей качества функционирования разомкнутой СМО с ожиданием.

При изучении таких систем рассчитывают различные по-казатели эффективности обслуживающей системы. В каче-стве основных показателей могут быть вероятность того, что все каналы свободны или заняты, математическое ожидание длины очереди (средняя длина очереди), коэффициенты за-нятости и простоя каналов обслуживания и др.

Введем в рассмотрение параметр α = λ/μ . Заметим, что если выполняется неравенство α / n < 1, то очередь не может расти безгранично.

Это условие имеет следующий смысл: λ — среднее число требо-ваний, поступающих за единицу времени , 1/μ — среднее время обслуживания одним каналом одного требования, тогда α = λ (1/ μ) — среднее число каналов, которое необходимо иметь, чтобы обслуживать в единицу времени все поступаю-щие требования. Тогда μ - среднее число требований, обслуживаемых одним каналом за единицу времени.

Поэтому условие: α / n < 1, означает, что чис-ло обслуживающих каналов должно быть больше среднего числа каналов, необходимых для того, чтобы за единицу времени обслужить все поступившие требования .

ВАЖНЕЙ-ШИЕ ХАРАКТЕРИСТИКИ РАБОТЫ СМО (для разомкнутой системы массового обслуживания с ожиданием ):

1. Вероятность P 0 того, что все обслуживающие каналы сво-бодны:

2. Вероятность P k того, что занято ровно k обслуживающих каналов при условии, что общее число требований, находя-щихся на обслуживании, не превосходит числа обслуживающих аппаратов, то есть при 1 k n :

3. Вероятность P k того, что в системе находится k требований в случае, когда их число больше числа обслуживающих каналов, то есть при k > n :

4. Вероятность Pn того, что все обслуживающие каналы заняты:

5. Среднее время ожидания требованием начала обслу-живания в системе:

6. Средняя длина очереди:

7. Среднее число свободных от обслуживания каналов:

8. Коэффициент простоя каналов:

9. Среднее число занятых обслуживанием каналов:

10. Коэффициент загрузки каналов

Фирма по обслуживанию и ремонту бытовой техники и электроники имеет филиал: мастерскую по ремонту мобильных телефонов, в которой работает n = 5 опытных мастеров. В среднем в течение рабочего дня от населения поступает в ремонт λ =10 мобильных телефонов. Общее число мобильных телефонов, находящихся в эксплуатации у населения, очень велико, и они независимо друг от друга в различное время выходят из строя. Поэтому есть основания считать, что поток заявок на ремонт ап-паратуры является случайным, пуассоновским. В свою оче-редь каждый мобильный телефон в зависимости от характера неисправ-ности также требует различного случайного времени на ре-монт. Время на проведение ремонта зависит во многом от серьезности полученного повреждения, квалификации мас-тера и множества других причин. Пусть статистика показа-ла, что время ремонта подчиняется экспоненциальному за-кону; при этом в среднем в течение рабочего дня каждый из мастеров успевает отремонтировать μ = 2,5 мобильных телефона.

Требуется оценить работу филиала фирмы по ремонту -бытовой техники и электроники, рассчитав ряд основных характеристик данной СМО.

За единицу времени принимаем 1 рабочий день (7 часов).

1. Определим параметр

α = λ / μ = 10/ 2,5 = 4.

Так как α < n = 5, то можно сделать вывод: очередь не может расти безгранично.

2. Вероятность P 0 того, что все мастера свободны от ремонта аппаратуры, равна согласно (4):

P0 = (1 + 4 + 16/2 + 64/3! + 256/4! + 1024/5!(1- 4/5)) -1 = (77) -1 ≈ 0,013.

3. Вероятность P5 того, что все мастера заняты ремонтом, находим по формуле (7) (Pn при n=5):

P5 = P0 1024 /5! (1-4/5) = P0 256 /6 ≈ 0,554.

Это означает, что 55,4% времени мастера полностью за-гружены работой.

4. Среднее время обслуживания (ремонта) одного аппарата согласно формуле (3):

? o6. = 1/ μ = 7/2,5 = 2,8 ч./аппарат (важно: единица времени - 1 рабочий день, т. е. 7 часов).

5. В среднем время ожидания каждого неисправного мобильного телефона начала ремонта равно по формуле (8):

Ож. = Pn/(μ (n-α)) = 0,554 2,8/(5 - 4) =1,55 часа.

6. Очень важной характеристикой является средняя длина очереди, которая определяет необходимое место для хранения аппаратуры, требующей ремонта; находим ее по формуле (9):

Оч. = 4 P5/ (5-4) ≈ 2,2 моб. телефона.

7. Определим среднее число мастеров, свободных от ра-боты, по формуле (10):

Ñ0 = P0 (5 + 16 + 24+ 64/3 + 32/3) = P0 77 ≈ 1 мастер.

Таким образом, в среднем в течение рабочего дня ремонтом заняты четыре мастера из пяти.

  1. 2. ЗАМКНУТАЯ СИСТЕМА МАССОВОГО ОБСЛУЖИВАНИЯ.

Перейдем к рассмотрению алгоритмов расчета характери-стик функционирования замкнутых СМО.

Поскольку система замкнутая, то к постановке задачи следует добавить условие: поток поступающих требований ограничен, т.е. в системе обслуживания одновременно не может находиться больше m требований (m — число обслуживаемых объектов).

За критерий, характеризующий качество функциониро-вания рассматриваемой системы, выберем отношение средней длины очереди к наибольшему числу требований, находя-щихся одновременно в обслуживающей системе — коэффици-ент простоя обслуживаемого объекта .

В качестве другого критерия возьмем отношение среднего числа незанятых об-служивающих каналов к их общему числу — коэффициент простоя обслуживаемого канала .

Первый из названных критериев характеризует потери времени из-за ожидания начала обслуживания ; второй по-казывает полноту загрузки обслуживающей системы .

Очевидно, что очередь может возникнуть, лишь когда число каналов обслуживания меньше наибольшего числа требований, нахо-дящихся одновременно в обслуживающей системе (n < m).

Приведем последовательность расчетов характеристик замкнутых СМО и необходимые формулы.

ПАРАМЕТРЫ ЗАМКНУТЫХ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ.

1. Определим параметр α = λ / μ — показатель загрузки системы , то есть математическое ожидание числа требований, поступающих в систему за время, равное средней длитель-ности обслуживания (1/μ = ?o6.).

2. Вероятность P k того, что занято k обслуживающих каналов при условии, что число требований, находящихся в системе, не превосходит числа обслуживающих каналов системы (то есть при m n ) :

3. Вероятность P k того, что в системе находится k требований для случая, когда их число больше числа обслуживающих каналов (то есть при k > n , при этом k m ):

4. Вероятность P 0 того, что все обслуживающие каналы сво-бодны, определим, используя очевидное условие:

Тогда величина P 0 будет равна:

5. Среднее число M оч. требований, ожидающих начала обслу-живания (средняя длина очереди):

Или с учетом формулы (15)

6. Коэффициент простоя обслуживаемого требования (объекта):

7. Среднее число M требований, находящихся в обслуживаю-щей системе, обслуживаемых и ожидающих обслуживания:

где для вычислений первой и второй суммы применяются формулы (14) и (15) соответственно.

8. Среднее число свободных обслуживающих каналов

где P k вычисляется по формуле (14).

9. Коэффициент простоя обслуживающего канала

Рассмотрим пример расчета характеристик замкнутой СМО.

Рабочий обслуживает группу автоматов, состоя-щую из 3 станков. Поток поступающих требований на обслу-живание станков является пуассоновским с параметром λ = 2 ст./ч.

Обслуживание одного станка занимает у рабочего в среднем 12 минут, а время обслуживания подчинено экспоненци-альному закону.

Тогда 1/μ = 0,2 ч./ст., т.е. μ = 5 ст./ч., Параметр α = λ/μ = 0,4.

Необходимо определить среднее число автоматов, ожи-дающих обслуживания, коэффициент простоя автомата, ко-эффициент простоя рабочего.

Обслуживающим каналом здесь является рабочий; так как станки обслуживает один рабочий, то n = 1 . Общее число требований не может пре-взойти числа станков, т.е. m = 3 .

Система может находиться в четырех различных состоя-ниях: 1) все станки работают; 2) один стоит и обслуживается рабочим, а два работают; 3) два стоят, один обслуживается, один ждет обслуживания; 4) три стоят, из них один обслу-живается, а два ждут очереди.

Для ответа на поставленные вопросы можно воспользо-ваться формулами (14) и (15).

P1 = P0 6 0,4/2 = 1,2 P0;

P2 = P0 6 0,4 0,4 = 0,96 P0;

P3 = P0 6 0,4 0,4 0,4= 0,384 P0;

Сведем вычисления в таблицу (рис. 1).

∑P k /P 0 = 3,5440

∑ (k-n)P k = 0,4875

∑k P k = 1,2053

Рис. 1. Вычисление характеристик замкнутой СМО.

В этой таблице первым вычисляется третий столбец, т.е. отношения P k /P 0 при k = 0,1,2,3.

Затем, суммируя величины по третьему столбцу и учитывая, что ∑ P k = 1, получаем 1/P 0 = 3,544. Откуда Р 0 ≈ 0,2822.

Умножая значения, стоящие в третьем столбце, на Р 0 , получаем в соответствующих строках значения четвертого столбца.

Величина Р 0 = 0,2822, рав-ная вероятности того, что все автоматы работают, может быть истолкована как вероятность того, что рабочий свобо-ден. Получается, что в рассматриваемом случае рабочий будет свободен более 1/4 всего рабочего времени. Однако это не оз-начает, что «очередь» станков, ожидающих обслуживания, всегда будет отсутствовать. Математическое ожидание числа автоматов, стоящих в очереди, равно

Суммируя значения, стоящие в пятом столбце таблицы, получим среднюю длину очереди M оч. = 0,4875. Следова-тельно, в среднем из трех станков 0,49 станка будет про-стаивать в ожидании, пока освободится рабочий.

Суммируя значения, стоящие в шестом столбце таблицы, получим математическое ожи-дание числа простаивающих станков (ремонтируемых и ожидающих ремонта): М = 1,2053. То есть в среднем 1,2 станка не будет выдавать продукцию.

Ко-эффициент простоя станка равен К пр.об. = M оч. /3 = 0,1625. То есть каждый станок простаивает примерно 0,16 часть рабо-чего времени в ожидании, пока рабочий освободится.

Коэффициент простоя рабочего в данном случае совпадает с P 0 , так как n = 1 (все обслуживающие каналы свободны), поэтому

К пр.кан. = N 0 /n = 0,2822.

Абчук В.А. Экономико-математические методы: Элементарная математика и логика. Методы исследования операций. - СПб.: Союз, 1999. - 320.

Елтаренко Е.А. Исследование операций (системы массового обслуживания, теория игр, модели управления запасами). Учебное пособие. - М.: МИФИ, 2007. - С. 157.

Фомин Г. П. Математические методы и модели в коммерческой дея-тельности: Учебник. — 2-е изд., перераб. и доп. — М.: Финан-сы и статистика, 2005. — 616 с: ил.

Шелобаев С. И. Математические методы и модели в экономике, финансах, бизнесе: Учеб. пособие для вузов. — М.: ЮНИТИ- ДАНА, 2001. - 367 с.

Экономико-математические методы и прикладные модели: Учебное пособие для вузов/ В.В. Федосеев, А.Н. Гармаш, Д.М. Дайитбегов и др.; Под ред. В.В. Федосеева. — М.: ЮНИТИ, 1999. - 391 с.

Московский государственный технический университет

имени Н.Э. Баумана (Калужский филиал)

Кафедра высшей математики

Курсовая работа

по курсу «Исследование операций»

Имитационное моделирование системы массового обслуживания

Задание на работу: Составить имитационную модель и рассчитать показатели эффективности системы массового обслуживания (СМО) со следующими характеристиками:

Число каналов обслуживания n; максимальная длина очереди т;

Поток поступающих в систему заявок простейший со средней интенсивностью λ и показательным законом распределения времени между поступлением заявок;

Поток обслуживаемых в системе заявок простейший со средней интенсивностью µ и показательным законом распределения времени обслуживания.

Сравнить найденные значения показателей с результатами. полученными путем численного решения уравнении Колмогорова для вероятностей состояний системы. Значения параметров СМО приведены в таблице.


Введение

Глава 1. Основные характеристики CМО и показатели их эффективности

1.1 Понятие марковского случайного процесса

1.2 Потоки событий

1.3 Уравнения Колмогорова

1.4 Финальные вероятности и граф состояний СМО

1.5 Показатели эффективности СМО

1.6 Основные понятия имитационного моделирования

1.7 Построение имитационных моделей

Глава 2. Аналитическое моделирование СМО

2.1 Граф состояний системы и уравнения Колмогорова

2.2 Расчет показатели эффективности системы по финальным вероятностям

Глава 3. Имитационное моделирование СМО

3.1 Алгоритм метода имитационного моделирования СМО (пошаговый подход)

3.2 Блок-схема программы

3.3 Расчет показателей эффективности СМО на основе результатов ее имитационного моделирования

3.4 Статистическая обработка результатов и их сравнение с результатами аналитического моделирования

Заключение

Литература

Приложение 1

При исследовании операций часто приходится сталкиваться с системами, предназначенными для многоразового использования при решении однотипных задач. Возникающие при этом процессы получили название процессов обслуживания, а системы – систем массового обслуживания (СМО).

Каждая СМО состоит из определенного числа обслуживающих единиц (приборов, устройств, пунктов, станций), которые называются каналами обслуживания. Каналами могут быть линии связи, рабочие точки, вычислительные машины, продавцы и др. По числу каналов СМО подразделяют на одноканальные и многоканальные.

Заявки поступают в СМО обычно не регулярно, а случайно, образуя так называемый случайный поток заявок (требований). Обслуживание заявок также продолжается какое-то случайное время. Случайный характер потока заявок и времени обслуживания приводит к тому, что СМО оказывается загруженной неравномерно: в какие-то периоды времени скапливается очень большое количество заявок (они либо становятся в очередь, либо покидают СМО не обслуженными), в другие же периоды СМО работает с недогрузкой или простаивает.

Предметом теории массового обслуживания является построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, характер потока заявок и т.п.) с показателями эффективности СМО, описывающими ее способность справляться с потоком заявок.

В качестве показателей эффективности СМО используются:

Абсолютная пропускная способность системы (А), т.е. среднее число заявок, обслуживаемых в единицу времени;

Относительная пропускная способность (Q), т.е. средняя доля поступивших заявок, обслуживаемых системой;

Вероятность отказа обслуживания заявки (

);

Среднее число занятых каналов (k);

Среднее число заявок в СМО (

);

Среднее время пребывания заявки в системе (

);

Среднее число заявок в очереди (

);

Среднее время пребывания заявки в очереди (

);

Среднее число заявок, обслуживаемых в единицу времени;

Среднее время ожидания обслуживания;

Вероятность того, что число заявок в очереди превысит определенное значение и т.п.

СМО делят на 2 основных типа: СМО с отказами и СМО с ожиданием (очередью). В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует (например, заявка на телефонный разговор в момент, когда все каналы заняты, получает отказ и покидает СМО не обслуженной). В СМО с ожиданием заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь на обслуживание.

Одним из методов расчета показателей эффективности СМО является метод имитационного моделирования. Практическое использование компьютерного имитационного моделирования предполагает построение соответствующей математической модели, учитывающей факторы неопределенности, динамические характеристики и весь комплекс взаимосвязей между элементами изучаемой системы. Имитационное моделирование работы системы начинается с некоторого конкретного начального состояния. Вследствие реализации различных событий случайного характера, модель системы переходит в последующие моменты времени в другие свои возможные состояния. Этот эволюционный процесс продолжается до конечного момента планового периода, т.е. до конечного момента моделирования.


Пусть имеется некоторая система, которая с течением времени изменяет свое состояние случайным образом. В этом случае говорят, что в системе протекает случайный процесс.

Процесс называется процессом с дискретными состояниями, если его состояния

можно заранее перечислить и переход системы из одного состояния в другое происходит скачком. Процесс называется процессом с непрерывным временем, если переходы системы из состояния в состояние происходят мгновенно.

Процесс работы СМО – это случайный процесс с дискретными состояниями и непрерывным временем.

Случайный процесс называют марковским или случайным процессом без последействия, если для любого момента времени

вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент и не зависят от того, когда и как система пришла в это состояние.

1.2 Потоки событий

Поток событий – последовательность однородных событий, следующих одно за другим в случайные моменты времени.

Поток характеризуется интенсивностью λ – частотой появления событий или средним числом событий, поступающих в СМО в единицу времени.

Поток событий называется регулярным, если события следуют одно за другим через определенные равные промежутки времени.

Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени. В частности, интенсивность стационарного потока есть величина постоянная:

.

Поток событий называется ординарным, если вероятность попадания на малый участок времени

двух и более событий мала по сравнению с вероятностью попадания одного события, т.е., если события появляются в нем поодиночке, а не группами.

Поток событий называется потоком без последействия, если для любых двух непересекающихся участков времени

Большой класс систем, которые сложно изучить аналитическими способами, но которые хорошо изучаются методами статистического моделирования, сводится к системам массового обслуживания (СМО).

В СМО подразумевается, что есть типовые пути (каналы обслуживания), через которые в процессе обработки проходят заявки . Принято говорить, что заявки обслуживаются каналами. Каналы могут быть разными по назначению, характеристикам, они могут сочетаться в разных комбинациях; заявки могут находиться в очередях и ожидать обслуживания. Часть заявок может быть обслужена каналами, а части могут отказать в этом. Важно, что заявки, с точки зрения системы, абстрактны: это то, что желает обслужиться, то есть пройти определенный путь в системе. Каналы являются также абстракцией: это то, что обслуживает заявки.

Заявки могут приходить неравномерно, каналы могут обслуживать разные заявки за разное время и так далее, количество заявок всегда весьма велико. Все это делает такие системы сложными для изучения и управления, и проследить все причинно-следственные связи в них не представляется возможным. Поэтому принято представление о том, что обслуживание в сложных системах носит случайный характер.

Примерами СМО (см. табл. 30.1) могут служить: автобусный маршрут и перевозка пассажиров; производственный конвейер по обработке деталей; влетающая на чужую территорию эскадрилья самолетов, которая «обслуживается» зенитками ПВО; ствол и рожок автомата, которые «обслуживают» патроны; электрические заряды, перемещающиеся в некотором устройстве и т. д.

Таблица 30.1.
Примеры систем массового обслуживания
СМО Заявки Каналы
Автобусный маршрут и перевозка пассажиров Пассажиры Автобусы
Производственный конвейер по обработке деталей Детали, узлы Станки, склады
Влетающая на чужую территорию эскадрилья самолетов,
которая «обслуживается» зенитками ПВО
Самолеты Зенитные орудия, радары,
стрелки, снаряды
Ствол и рожок автомата, которые «обслуживают» патроны Патроны Ствол, рожок
Электрические заряды, перемещающиеся в некотором устройстве Заряды Каскады технического
устройства

Но все эти системы объединены в один класс СМО, поскольку подход к их изучению един. Он состоит в том, что, во-первых , с помощью генератора случайных чисел разыгрываются случайные числа, которые имитируют СЛУЧАЙНЫЕ моменты появления заявок и время их обслуживания в каналах. Но в совокупности эти случайные числа, конечно, подчинены статистическим закономерностям.

К примеру, пусть сказано: «заявки в среднем приходят в количестве 5 штук в час». Это означает, что времена между приходом двух соседних заявок случайны, например: 0.1; 0.3; 0.1; 0.4; 0.2, как это показано на рис. 30.1 , но в сумме они дают в среднем 1 (обратите внимание, что в примере это не точно 1, а 1.1 — но зато в другой час эта сумма, например, может быть равной 0.9); и только за достаточно большое время среднее этих чисел станет близким к одному часу.

Результат (например, пропускная способность системы), конечно, тоже будет случайной величиной на отдельных промежутках времени. Но измеренная на большом промежутке времени, эта величина будет уже, в среднем, соответствовать точному решению. То есть для характеристики СМО интересуются ответами в статистическом смысле.

Итак, систему испытывают случайными входными сигналами, подчиненными заданному статистическому закону, а в качестве результата принимают статистические показатели, усредненные по времени рассмотрения или по количеству опытов. Ранее, в лекции 21 (см. рис. 21.1), мы уже разработали схему для такого статистического эксперимента (см. рис. 30.2 ).

Рис. 30.2. Схема статистического эксперимента для изучения систем массового обслуживания

Во-вторых , все модели СМО собираются типовым образом из небольшого набора элементов (канал, источник заявок, очередь, заявка, дисциплина обслуживания, стек, кольцо и так далее), что позволяет имитировать эти задачи типовым образом. Для этого модель системы собирают из конструктора таких элементов. Неважно, какая конкретно система изучается, важно, что схема системы собирается из одних и тех же элементов. Разумеется, структура схемы будет всегда различной.

Перечислим некоторые основные понятия СМО.

Каналы — то, что обслуживает; бывают горячие (начинают обслуживать заявку в момент ее поступления в канал) и холодные (каналу для начала обслуживания требуется время на подготовку). Источники заявок — порождают заявки в случайные моменты времени, согласно заданному пользователем статистическому закону. Заявки , они же клиенты , входят в систему (порождаются источниками заявок), проходят через ее элементы (обслуживаются), покидают ее обслуженными или неудовлетворенными. Бывают нетерпеливые заявки — такие, которым надоело ожидать или находиться в системе и которые покидают по собственной воле СМО. Заявки образуют потоки — поток заявок на входе системы , поток обслуженных заявок, поток отказанных заявок. Поток характеризуется количеством заявок определенного сорта, наблюдаемым в некотором месте СМО за единицу времени (час, сутки, месяц), то есть поток есть величина статистическая.

Очереди характеризуются правилами стояния в очереди (дисциплиной обслуживания), количеством мест в очереди (сколько клиентов максимум может находиться в очереди), структурой очереди (связь между местами в очереди). Бывают ограниченные и неограниченные очереди. Перечислим важнейшие дисциплины обслуживания. FIFO (First In, First Out — первым пришел, первым ушел): если заявка первой пришла в очередь, то она первой уйдет на обслуживание. LIFO (Last In, First Out — последним пришел, первым ушел): если заявка последней пришла в очередь, то она первой уйдет на обслуживание (пример — патроны в рожке автомата). SF (Short Forward — короткие вперед): в первую очередь обслуживаются те заявки из очереди, которые имеют меньшее время обслуживания.

Дадим яркий пример, показывающий, как правильный выбор той или иной дисциплины обслуживания позволяет получить ощутимую экономию по времени.

Пусть имеется два магазина. В магазине № 1 обслуживание осуществляется в порядке очереди, то есть здесь реализована дисциплина обслуживания FIFO (см. рис. 30.3 ).

Рис. 30.3. Организация очереди по дисциплине FIFO

Время обслуживания t обслуж. на рис. 30.3 показывает, сколько времени продавец затратит на обслуживание одного покупателя. Понятно, что при покупке штучного товара продавец затратит меньше времени на обслуживание, чем при покупке, скажем, сыпучих продуктов, требующих дополнительных манипуляций (набрать, взвесить, высчитать цену и т. п). Время ожидания t ожид. показывает, через какое время очередной покупатель будет обслужен продавцом.

В магазине № 2 реализована дисциплина SF (см. рис. 30.4 ), означающая, что штучный товар можно купить вне очереди, так как время обслуживания t обслуж. такой покупки невелико.

Рис. 30.4. Организация очереди по дисциплине SF

Как видно из обоих рисунков, последний (пятый) покупатель собирается приобрести штучный товар, поэтому время его обслуживания невелико — 0.5 минут. Если этот покупатель придет в магазин № 1, он будет вынужден выстоять в очереди целых 8 минут, в то время как в магазине № 2 его обслужат сразу же, вне очереди. Таким образом, среднее время обслуживания каждого из покупателей в магазине с дисциплиной обслуживания FIFO составит 4 минуты, а в магазине с дисциплиной обслуживания КВ — лишь 2.8 минуты. А общественная польза, экономия времени составит: (1 – 2.8/4) · 100% = 30 процентов! Итак, 30% сэкономленного для общества времени — и это лишь за счет правильного выбора дисциплины обслуживания.

Специалист по системам должен хорошо понимать ресурсы производительности и эффективности проектируемых им систем, скрытые в оптимизации параметров, структур и дисциплинах обслуживания. Моделирование помогает выявить эти скрытые резервы .

При анализе результатов моделирования важно также указать интересы и степень их выполнения. Различают интересы клиента и интересы владельца системы. Заметим, что эти интересы совпадают не всегда.

Судить о результатах работы СМО можно по показателям . Наиболее популярные из них:

  • вероятность обслуживания клиента системой;
  • пропускная способность системы;
  • вероятность отказа клиенту в обслуживании;
  • вероятность занятости каждого из канала и всех вместе;
  • среднее время занятости каждого канала;
  • вероятность занятости всех каналов;
  • среднее количество занятых каналов;
  • вероятность простоя каждого канала;
  • вероятность простоя всей системы;
  • среднее количество заявок, стоящих в очереди;
  • среднее время ожидания заявки в очереди;
  • среднее время обслуживания заявки;
  • среднее время нахождения заявки в системе.

Судить о качестве полученной системы нужно по совокупности значений показателей. При анализе результатов моделирования (показателей) важно также обращать внимание на интересы клиента и интересы владельца системы , то есть минимизировать или максимизировать надо тот или иной показатель, а также на степень их выполнения. Заметим, что чаще всего интересы клиента и владельца между собой не совпадают или совпадают не всегда. Показатели будем обозначать далее H = {h 1 , h 2 , …} .

Параметрами СМО могут быть: интенсивность потока заявок, интенсивность потока обслуживания, среднее время, в течение которого заявка готова ожидать обслуживания в очереди, количество каналов обслуживания, дисциплина обслуживания и так далее. Параметры — это то, что влияет на показатели системы. Параметры будем обозначать далее как R = {r 1 , r 2 , …} .

Пример. Автозаправочная станция (АЗС) .

1. Постановка задачи . На рис. 30.5 приведен план АЗС. Рассмотрим метод моделирования СМО на ее примере и план ее исследования. Водители, проезжая по дороге мимо АЗС по дороге, могут захотеть заправить свой автомобиль. Хотят обслужиться (заправить машину бензином) не все автомобилисты подряд; допустим, что из всего потока машин на заправку в среднем заезжает 5 машин в час.

Рис. 30.5. План моделируемой АЗС

На АЗС две одинаковые колонки, статистическая производительность каждой из которых известна. Первая колонка в среднем обслуживает 1 машину в час, вторая в среднем — 3 машины в час. Владелец АЗС заасфальтировал для машин место, где они могут ожидать обслуживания. Если колонки заняты, то на этом месте могут ожидать обслуживания другие машины, но не более двух одновременно. Очередь будем считать общей. Как только одна из колонок освободится, то первая машина из очереди может занять ее место на колонке (при этом вторая машина продвигается на первое место в очереди). Если появляется третья машина, а все места (их два) в очереди заняты, то ей отказывают в обслуживании, так как стоять на дороге запрещено (см. дорожные знаки около АЗС). Такая машина уезжает прочь из системы навсегда и как потенциальный клиент является потерянной для владельца АЗС. Можно усложнить задачу, рассмотрев кассу (еще один канал обслуживания, куда надо попасть после обслуживания в одной из колонок) и очередь к ней и так далее. Но в простейшем варианте очевидно, что пути движения потоков заявок по СМО можно изобразить в виде эквивалентной схемы, а добавив значения и обозначения характеристик каждого элемента СМО, получаем окончательно схему, изображенную на рис. 30.6 .

Рис. 30.6. Эквивалентная схема объекта моделирования

2. Метод исследования СМО . Применим в нашем примере принцип последовательной проводки заявок (подробно о принципах моделирования см. лекцию 32). Его идея заключается в том, что заявку проводят через всю систему от входа до выхода, и только после этого берутся за моделирование следующей заявки.

Для наглядности построим временную диаграмму работы СМО, отражая на каждой линейке (ось времени t ) состояние отдельного элемента системы. Временных линеек проводится столько, сколько имеется различных мест в СМО, потоков. В нашем примере их 7 (поток заявок, поток ожидания на первом месте в очереди, поток ожидания на втором месте в очереди, поток обслуживания в канале 1, поток обслуживания в канале 2, поток обслуженных системой заявок, поток отказанных заявок).

Для генерации времени прихода заявок используем формулу вычисления интервала между моментами прихода двух случайных событий (см. лекцию 28):

В этой формуле величина потока λ должна быть задана (до этого она должна быть определена экспериментально на объекте как статистическое среднее), r — случайное равномерно распределенное число от 0 до 1 из ГСЧ или таблицы , в которой случайные числа нужно брать подряд (не выбирая специально).

Задача . Сгенерируйте поток из 10 случайных событий с интенсивностью появления событий 5 шт/час.

Решение задачи . Возьмем случайные числа, равномерно распределенные в интервале от 0 до 1 (см. таблицу), и вычислим их натуральные логарифмы (см. табл. 30.2).

Формула пуассоновского потока определяет расстояние между двумя случайными событиями следующим образом: t = –Ln(r рр)/λ . Тогда, учитывая, что λ = 5 , имеем расстояния между двумя случайными соседними событиями: 0.68, 0.21, 0.31, 0.12 часа. То есть события наступают: первое — в момент времени t = 0 , второе — в момент времени t = 0.68 , третье — в момент времени t = 0.89 , четвертое — в момент времени t = 1.20 , пятое — в момент времени t = 1.32 и так далее. События — приход заявок отразим на первой линейке (см. рис. 30.7 ).


Рис. 30.7. Временная диаграмма работы СМО

Берется первая заявка и, так как в этот момент каналы свободны, устанавливается на обслуживание в первый канал. Заявка 1 переносится на линейку «1 канал».

Время обслуживания в канале тоже случайное и вычисляется по аналогичной формуле:

где роль интенсивности играет величина потока обслуживания μ 1 или μ 2 , в зависимости от того, какой канал обслуживает заявку. Находим на диаграмме момент окончания обслуживания, откладывая сгенерированное время обслуживания от момента начала обслуживания, и опускаем заявку на линейку «Обслуженные».

Заявка прошла в СМО весь путь. Теперь можно, согласно принципу последовательной проводки заявок, также проимитировать путь второй заявки.

Если в некоторый момент окажется, что оба канала заняты, то следует установить заявку в очередь. На рис. 30.7 это заявка с номером 3. Заметим, что по условиям задачи в очереди в отличие от каналов заявки находятся не случайное время, а ожидают, когда освободится какой-то из каналов. После освобождения канала заявка поднимается на линейку соответствующего канала и там организуется ее обслуживание.

Если все места в очереди в момент, когда придет очередная заявка, будут заняты, то заявку следует отправить на линейку «Отказанные». На рис. 30.7 это заявка с номером 6.

Процедуру имитации обслуживания заявок продолжают некоторое время наблюдения T н . Чем больше это время, тем точнее в дальнейшем будут результаты моделирования. Реально для простых систем выбирают T н , равное 50—100 и более часов, хотя иногда лучше мерить эту величину количеством рассмотренных заявок.

Анализ временной диаграммы

Анализ проведем на уже рассмотренном примере.

Сначала нужно дождаться установившегося режима. Откидываем первые четыре заявки как нехарактерные, протекающие во время процесса установления работы системы. Измеряем время наблюдения, допустим, что в нашем примере оно составит T н = 5 часов. Подсчитываем из диаграммы количество обслуженных заявок N обс. , времена простоя и другие величины. В результате можем вычислить показатели, характеризующие качество работы СМО.

  1. Вероятность обслуживания: P обс. = N обс. /N = 5/7 = 0.714 . Для расчета вероятности обслуживания заявки в системе достаточно разделить число заявок, которым удалось обслужиться за время T н (см. линейку «Обслуженные») N обс. , на число заявок N , которые хотели обслужиться за это же время. Как и раньше вероятность экспериментально определяем отношением свершившихся событий к общему числу событий, которые могли совершиться!
  2. Пропускная способность системы: A = N обс. /T н = 7/5 = 1.4 [шт/час] . Для расчета пропускной способности системы достаточно разделить число обслуженных заявок N обс. на время T н , за которое произошло это обслуживание (см. линейку «Обслуженные»).
  3. Вероятность отказа: P отк. = N отк. /N = 3/7 = 0.43 . Для расчета вероятности отказа заявке в обслуживании достаточно разделить число заявок N отк. , которым отказали за время T н (см. линейку «Отказанные»), на число заявок N , которые хотели обслужиться за это же время, то есть поступили в систему. Обратите внимание . P отк. + P обс. в теории должно быть равно 1. На самом деле экспериментально получилось, что P отк. + P обс. = 0.714 + 0.43 = 1.144 . Эта неточность объясняется тем, что время наблюдения T н мало и статистика накоплена недостаточная для получения точного ответа. Погрешность это показателя сейчас составляет 14%!
  4. Вероятность занятости одного канала: P 1 = T зан. /T н = 0.05/5 = 0.01 , где T зан. — время занятости только одного канала (первого или второго). Измерениям подлежат временные отрезки, на которых происходят определенные события. Например, на диаграмме ищутся такие отрезки, во время которых заняты или первый или второй канал. В данном примере есть один такой отрезок в конце диаграммы длиной 0.05 часа. Доля этого отрезка в общем времени рассмотрения (T н = 5 часов) определяется делением и составляет искомую вероятность занятости.
  5. Вероятность занятости двух каналов: P 2 = T зан. /T н = 4.95/5 = 0.99 . На диаграмме ищутся такие отрезки, во время которых одновременно заняты и первый, и второй канал. В данном примере таких отрезков четыре, их сумма равна 4.95 часа. Доля продолжительности этих события в общем времени рассмотрения (T н = 5 часов) определяется делением и составляет искомую вероятность занятости.
  6. Среднее количество занятых каналов: N ск = 0 · P 0 + 1 · P 1 + 2 · P 2 = 0.01 + 2 · 0.99 = 1.99 . Чтобы подсчитать, сколько каналов занято в системе в среднем, достаточно знать долю (вероятность занятости одного канала) и умножить на вес этой доли (один канал), знать долю (вероятность занятости двух каналов) и умножить на вес этой доли (два канала) и так далее. Полученная цифра 1.99 говорит о том, что из возможных двух каналов в среднем загружено 1.99 канала. Это высокий показатель загрузки, 99.5%, система хорошо использует ресурс.
  7. Вероятность простоя хотя бы одного канала: P * 1 = T простоя1 /T н = 0.05/5 = 0.01 .
  8. Вероятность простоя двух каналов одновременно: P * 2 = T простоя2 /T н = 0 .
  9. Вероятность простоя всей системы: P * c = T простоя сист. /T н = 0 .
  10. Среднее количество заявок в очереди: N сз = 0 · P 0з + 1 · P 1з + 2 · P 2з = 0.34 + 2 · 0.64 = 1.62 [шт] . Чтобы определить среднее количество заявок в очереди, надо определить отдельно вероятность того, что в очереди будет одна заявка P 1з , вероятность того, в очереди будет стоять две заявки P 2з и т. д. и снова с соответствующими весами их сложить.
  11. Вероятность того, что в очереди будет одна заявка: P 1з = T 1з /T н = 1.7/5 = 0.34 (всего на диаграмме четырех таких отрезка, в сумме дающих 1.7 часа).
  12. Вероятность того, в очереди будет стоять одновременно две заявки: P 2з = T 2з /T н = 3.2/5 = 0.64 (всего на диаграмме три таких отрезка, в сумме дающих 3.25 часа).
  13. Среднее время ожидания заявки в очереди:

    (Сложить все временные интервалы, в течение которых какая-либо заявка находилась в очереди, и разделить на количество заявок). На временной диаграмме таких заявок 4.

  14. Среднее время обслуживания заявки:

    (Сложить все временные интервалы, в течение которых какая-либо заявка находилась на обслуживании в каком-либо канале, и разделить на количество заявок).

  15. Среднее время нахождения заявки в системе: T ср. сист. = T ср. ож. + T ср. обсл. .
  16. Среднее количество заявок в системе:

    Разобьем интервал наблюдения, например, на десятиминутки. Получится на пяти часах K подынтервалов (в нашем случае K = 30 ). В каждом подынтервале определим по временной диаграмме, сколько заявок в этот момент находится в системе. Смотреть надо на 2, 3, 4 и 5-ю линейки — какие из них заняты в данный момент. Затем сумму K слагаемых усреднить.

Далее следует оценить точность каждого из полученных результатов. То есть ответить на вопрос: насколько мы можем доверять этим значениям? Оценка точности проводится по методике, описанной в лекции 34 .

Если точность не является удовлетворительной, то следует увеличить время эксперимента и тем самым улучшить статистику. Можно сделать и по-другому. Снова несколько раз запустить эксперимент на время T н . А в последствии усреднить значения этих экспериментов. И снова проверить результаты на критерий точности. Эту процедуру следует повторять до тех пор, пока не будет достигнута требуемая точность.

Далее следует составить таблицу результатов и оценить значения каждого из них с точки зрения клиента и владельца СМО (см. табл. 30.3).. В конце, учитывая сказанное в каждом пункте, следует сделать общий вывод. Таблица должна иметь примерно такой вид, какой показан в табл. 30.3.

Таблица 30.3.
Показатели СМО
Показатель Формула Значение Интересы владельца СМО Интересы клиента СМО
Вероятность обслуживания P обс. = N обс. /N 0.714 Вероятность обслуживания мала, много клиентов уходят из системы неудовлетворенными, их деньги для владельца потеряны. Это «минус». Вероятность обслуживания мала, каждый третий клиент хочет, но не может обслужиться. Это «минус».
… … … … …
Среднее количество заявок в очереди N сз = 0 · P 0з + 1 · P 1з + 2 · P 1.62 Очередь практически все время вся забита. Все места в очереди используются достаточно эффективно. Вложения на организацию очереди окупают затраты на нее. Это «плюс».
Клиенты, которые долго стоят в очереди, могут уйти, не дождавшись обслуживания. Клиенты, простаивая, могут нанести ущерб системе, ломать оборудование. Много отказов, потерянных клиентов. Это «минусы».
Очередь практически все время вся забита. Клиенту приходится стоять в очереди, прежде чем он попадет на обслуживание. Клиент может не попасть даже в очередь. Это «минус».
Общий итог: В интересах владельца: а) увеличить пропускную способность каналов, чтобы не терять клиентов (правда, модернизация каналов стоит денег); б) увеличить число мест в очереди (это тоже стоит денег), чтобы задержать потенциальных клиентов. Клиенты заинтересованы в значительном увеличении пропускной способности для уменьшения времени ожидания и уменьшения отказов.

Синтез СМО

Мы проделали анализ существующей системы. Это дало возможность увидеть ее недостатки и определить направления улучшения ее качества. Но остаются непонятными ответы на конкретные вопросы, что именно надо сделать — увеличивать количество каналов или увеличивать их пропускную способность, или увеличивать количество мест в очереди, и, если увеличивать, то насколько? Есть и такие вопросы, что лучше — создать 3 канала с производительностью 5 шт/час или один с производительностью 15 шт/час?

Чтобы оценить чувствительность каждого показателя к изменению значения определенного параметра, поступают следующим образом. Фиксируют все параметры кроме одного, выбранного. Затем снимают значение всех показателей при нескольких значениях этого выбранного параметра. Конечно, приходится повторять снова и снова процедуру имитации и усреднять показатели при каждом значении параметра, оценивать точность. Но в результате получаются надежные статистические зависимости характеристик (показателей) от параметра.

Например, для 12 показателей нашего примера можно получить 12 зависимостей от одного параметра: зависимость вероятности отказов P отк. от количества мест в очереди (КМО), зависимость пропускной способности A от количества мест в очереди, и так далее (см. рис. 30.8 ).

Рис. 30.8. Примерный вид зависимостей показателей от параметров СМО

Затем так же можно снять еще 12 зависимостей показателей P от другого параметра R , зафиксировав остальные параметры. И так далее. Образуется своеобразная матрица зависимостей показателей P от параметров R , по которой можно провести дополнительный анализ о перспективах движения (улучшения показателей) в ту или иную сторону. Наклон кривых хорошо показывает чувствительность, эффект от движения по определенному показателю. В математике эту матрицу называют якобианом J , в которой роль наклона кривых играют значения производных ΔP i R j , см. рис. 30.9 . (Напомним, что производная связана геометрически с углом наклона касательной к зависимости.)

Рис. 30.9. Якобиан — матрица чувствительностей показателей
в зависимости от изменения параметров СМО

Если показателей 12, а параметров, например, 5, то матрица имеет размерность 12 x 5. Каждый элемент матрицы — кривая, зависимость i -го показателя от j -го параметра. Каждая точка кривой — среднее значение показателя на достаточно представительном отрезке T н или усреднено по нескольким экспериментам.

Следует понимать, что кривые снимались в предположении того, что все параметры кроме одного в процессе их снятия были неизменны. (Если бы все параметры меняли значения, то кривые были бы другими. Но так не делают, так как получится полная неразбериха и зависимостей не будет видно.)

Поэтому, если на основании рассмотрения снятых кривых принимается решение о том, что некоторый параметр будет в СМО изменен, то все кривые для новой точки, в которой опять будет исследоваться вопрос о том, какой параметр следует изменить, чтобы улучшить показатели, следует снимать заново .

Так шаг за шагом можно попытаться улучшить качество системы. Но пока эта методика не может ответить на ряд вопросов. Дело в том, что, во-первых, если кривые монотонно растут, то возникает вопрос, где же все-таки следует остановиться. Во-вторых, могут возникать противоречия, один показатель может улучшаться при изменении выбранного параметра, в то время как другой будет одновременно ухудшаться. В-третьих, ряд параметров сложно выразить численно, например, изменение дисциплины обслуживания, изменение направлений потоков, изменение топологии СМО. Поиск решения в двух последних случаях проводится с применением методов экспертизы (см. лекцию 36. Экспертиза) и методами искусственного интеллекта (см. .

Поэтому сейчас обсудим только первый вопрос. Как принять решение, каким должно быть все-таки значение параметра, если с его ростом показатель все время монотонно улучшается? Вряд ли значение бесконечности устроит инженера.

Параметр R — управление, это то, что находится в распоряжении владельца СМО (например, возможность заасфальтировать площадку и тем самым увеличить количество мест в очереди, поставить дополнительные каналы, увеличить поток заявок за счет увеличения затрат на рекламу и так далее). Меняя управление, можно влиять на значение показателя P , цель, критерий (вероятность отказов, пропускную способность, среднее время обслуживания и так далее). Из рис. 30.10 видно, что если увеличивать управление R , то можно добиться всегда улучшение показателя P . Но очевидно, что любое управление связано с затратами Z . И чем больше прилагают усилия для управления, чем больше значение управляющего параметра, тем больше затраты. Обычно затраты на управление растут линейно: Z = C 1 · R . Хотя встречаются случаи, когда, например, в иерархических системах, они растут экспоненциально, иногда — обратно экспоненциально (скидки за опт) и так далее.

Рис. 30.10. Зависимость показателя Р
от управляемого параметра R (пример)

В любом случае ясно, что когда-то вложение все новых затрат просто перестанет себя окупать. Например, эффект от заасфальтированной площадки размером в 1 км 2 вряд ли окупит затраты владельца бензоколонки в Урюпинске, там просто не будет столько желающих заправиться бензином. Иными словами показатель P в сложных системах не может расти бесконечно. Рано или поздно его рост замедляется. А затраты Z растут (см. рис. 30.11 ).

Рис. 30.11. Зависимости эффекта от применения показателя Р

Из рис. 30.11 видно, что при назначении цены C 1 за единицу затрат R и цены C 2 за единицу показателя P , эти кривые можно сложить. Кривые складывают, если их требуется одновременно минимизировать или максимизировать. Если одна кривая подлежит максимизации, а другая минимизации, то следует найти их разность, например по точкам. Тогда результирующая кривая (см. рис. 30.12 ), учитывающая и эффект от управления и затраты на это, будет иметь экстремум. Значение параметра R , доставляющего экстремум функции, и есть решение задачи синтеза .

Рис. 30.12. Суммарная зависимость эффекта от применения показателя Р
и затрат Z на его получение как функции управляемого параметра R

Кроме управления R и показателя P в системах действует возмущение. Возмущения обозначим как D = {d 1 , d 2 , …} , см. рис. 30.13 . Возмущение — это входное воздействие, которое, в отличие от управляющего параметра, не зависит от воли владельца системы. Например, низкие температуры на улице, конкуренция снижают, к сожалению, поток клиентов, поломки оборудования досадно снижают производительность системы. И управлять этими величинами непосредственно владелец системы не может. Обычно возмущение действует «назло» владельцу, снижая эффект P от управляющих усилий R . Это происходит потому, что, в общем случае, система создается для достижения целей, недостижимых самих по себе в природе. Человек, организуя систему, всегда надеется посредством ее достичь некоторой цели P . На это он затрачивает усилия R , идя наперекор природе. Система — организация доступных человеку, изученных им природных компонент для достижения некоторой новой цели, недостижимой ранее другими способами .

Рис. 30.13. Условное обозначение изучаемой системы,
на которую воздействуют управляющие воздействия R и возмущения D

Итак, если мы снимем зависимость показателя P от управления R еще раз (как показано на рис. 30.10 ), но в условиях появившегося возмущения D , то, возможно, характер кривой изменится. Скорее всего, показатель будет при одинаковых значениях управлений находиться ниже, так как возмущение носит «противный» характер, снижая показатели системы (см. рис. 30.14 ). Система, предоставленная сама себе, без усилий управляющего характера, перестает обеспечивать цель, для достижения которой она была создана . Если, как и ранее, построить зависимость затрат, соотнести ее с зависимостью показателя от параметра управления, то найденная точка экстремума сместится (см. рис. 30.15 ) по сравнению со случаем «возмущение = 0» (см. рис. 30.12 ).

Рис. 30.14. Зависимость показателя P от управляющего параметра R
при различных значениях действующих на систему возмущений D

Если снова увеличить возмущение, то кривые изменятся (см. рис. 30.14 ) и, как следствие, снова изменится положение точки экстремума (см. рис. 30.15 ).

Рис. 30.15. Нахождение точки экстремума на суммарной зависимости
при различных значениях действующего возмущающего фактора D

В конечном итоге, все найденные положения точек экстремума переносятся на новый график, где образуют зависимость Показателя P от Управляющего параметра R при изменении Возмущений D (см. рис. 30.16 ).

Рис. 30.16. Зависимость показателя P от управляющего
параметра R при изменении значений возмущений D
(кривая состоит только из точек экстремумов)

Обратите внимание, что на самом деле на этом графике могут быть и другие рабочие точки (график пронизан как бы семействами кривых), но нанесенные нами точки задают такие координаты управляющего параметра, при которых при заданных возмущениях (!) достигается наибольшее из возможных значение показателя P .

Этот график (см. рис. 30.16 ) связывает Показатель P , Управление (ресурс) R и Возмущение D в сложных системах, указывая, как действовать наилучшим образом ЛПР (лицу, принимающему решение) в условиях возникших возмущений. Теперь пользователь может, зная реальную обстановку на объекте (значение возмущения), быстро по графику определить, какое управляющее воздействие на объект необходимо, чтобы обеспечить наилучшее значение интересующего его показателя.

Заметьте, если управляющее воздействие будет меньше оптимального, то суммарный эффект снизится, возникнет ситуация недополученной прибыли. Если управляющее воздействие будет больше оптимального, то эффект также снизится, так как заплатить за очередное увеличение управляющих усилий надо будет по величине больше, чем та, которую вы получите в результате ее использования (ситуация банкротства).

Примечание . В тексте лекции мы использовали слова «управление» и «ресурс», то есть считали, что R = U . Следует пояснить, что управление действительно играет роль некоторой ограниченной ценности для владельца системы. То есть всегда является ценным для него ресурсом, за который всегда приходится платить, и которого всегда не хватает. Действительно, если бы эта величина не была ограничена, то мы бы могли достигать за счет бесконечной величины управлений бесконечно больших значений целей, а вот бесконечно больших результатов в природе явно не наблюдается.

Иногда различают собственно управление U и ресурс R , называя ресурсом некоторый запас, то есть границу возможного значения управляющего воздействия. В этом случае понятия ресурс и управление не совпадают: U < R . Иногда различают предельное значение управления U R и интегральный ресурс U d t R .