15.09.2000 Владимир Краюшкин

«PDM - системы управления производственными данными», «PDM - системы управления проектными данными», «PDM - системы управления данными о производственных процессах». Эти и еще множество других «неформальных» определений систем PDM можно встретить в сегодняшней компьютерной литературе. Некоторая размытость определений с одной стороны, и разнообразие применяемых понятий с другой стороны, свидетельствуют о том, что PDM - это развивающийся, многообещающий и интересный сектор рынка промышленных информационных систем.

Среди сотрудников компаний, внедряющих новые информационные технологии в промышленности, гуляет поговорка: «Путь к сердцу руководителя лежит через хороший PDM», а среди директоров ИТ-служб на производстве бытует мнение, что «Хочешь похудеть - купи себе PDM». Разработчики концепций реинжиниринга и системные интеграторы всегда включают в проекты пункты о внедрении PDM, а реальные исполнители внедрения этих систем на производстве - это люди, потерянные для семьи. За десять лет сложилось целое направление в ПО , значение которого еще предстоит оценить.

Этапы большого пути

Первые системы PDM - (Product Data Management) появились в конце 80-х - начале 90-х годов. Их появление было вызвано возрастающими сложностями в области САПР на уровне рабочей группы. Собственно проблемы состояли в том, что для обеспечения эффективной работы над одним сложным изделием группы разработчиков требовалось дополнительное к САПР ПО, которое отслеживало бы состав всех файлов, генерируемых САПР, каталогов внутри группы на предмет их целостности, непротиворечивости и актуальности.

В начале 90-х даже «тяжелые» промышленные САПР уже не рисковали предлагать «встроенные» модули управления совместно используемой проектной информацией, сосредоточившись только на трехмерном твердотельном групповом проектировании сборок. Информационное обеспечение такого рода сборок было выделено в самостоятельную задачу, реализация которой и вызвала к жизни появление систем PDM первого поколения. Как правило, такие PDM имели прямой интерфейс с САПР сборок, встроенную СУБД и генератор отчетов для вывода спецификаций на изделие.

Разработкой PDM первого поколения наиболее плодотворно занимались производители «тяжелых» САПР, которые раньше всех поняли, что успех активного внедрения их основных продуктов требует наличия специального ПО, решающего вопросы взаимной увязки конструкторских данных, надежного хранения наработанного каждым из участников проекта, обеспечения нужного уровня доступа ко всей проектной информации, структурированной в соответствии с конструктивным членением изделия. При таком подходе исходными, «базовыми», данными для работы PDM становились, во-первых, структура изделия (получаемая напрямую из среды параллельного проектирования САПР), во-вторых, структура отношений между участниками проекта (получаемая в ходе выполнения административных задач по адаптации PDM на конкретном подразделении предприятия). В-третьих, дополнительная производственная информация, относящаяся к проекту в целом.

Областью применения систем PDM первого поколения были группы проектировщиков. Основное препятствие, которое устранялось теперь за счет систем PDM - это несогласованность автоматизированной работы группы проектировщиков. Упорядочение, рационализация и координация движения проектной информации внутри группы конструкторов-проектировщиков и достигалось за счет применения систем PDM первого поколения.

К середине 90-х стало ясно, что системы PDM первого поколения успешно решают только задачи информационного обеспечения группы проектировщиков. Для интеграции систем PDM в общий производственный процесс необходимо было уйти от концепции первого поколения, а сами PDM дополнить и расширить. Состав модулей дополнить новой функциональностью, учитывающей не только конструкторские, но и другие аспекты деятельности, в первую очередь - технологические. Необходимо было расширить рамки применимости систем PDM за границы проектных групп, включив в информационный контур управленческие подразделения, технологические и плановые отделы. Характерной задачей PDM второго поколения стало обеспечение управления всеми проектными данными в соответствии с правилами, устанавливаемыми для участников на каждом этапе работ над изделием - задача управления жизненным циклом изделия. В качестве «параллельной» решалась также задача «сотрудничества» с модулями материально-ресурсного планирования производства систем АСУ.

Областью применения систем PDM второго поколения стали группы и подразделения предприятия, непосредственно занятые в процессе производства, а PDM стали претендовать на звание «тяжелых», «промышленных» пакетов. Второе поколение систем PDM позволило расширить информационный обмен, включив в его сферу все подразделения предприятия, автоматизировать некоторые функции принятия решений при продвижении информации об изделии по этапам жизненного цикла, сократить потери на организацию доступа к общему банку данных предприятия для каждого из клиентов системы PDM. Как результат - применение такого рода систем PDM должно было сократить непроизводственные потери, особенно при выполнении работ над образцами новой техники. Характерными представителями второго поколения систем PDM, первыми появившимися на российском рынке, были Optegra от Computervision и IMAN от EDS Unigraphics .

В это же время ведущие системные интеграторы начали активно продвигать идею полного электронного определения изделия - идею тотального охвата всех информационных потоков, касающихся изделия, независимо от того, где, кем и для чего они были произведены. Вдруг выяснилось и стало очевидным фактом совершенно игнорируемое ранее положение - не конструкторы-проектировщики задают структуру изделия, а структура изделия диктуется, пусть и косвенно, составом тактико-технических характеристик разработки. А эта информация, в свою очередь, попадает в ТЗ после анализа «прибыльных» ниш рынка и учета конкретных потребностей заказчиков. Следовательно, уже не конструкторы-разработчики формируют первую версию структуры изделия.

Важный поворотный пункт в эволюции PDM состоит в том, что если раньше информация о структуре изделий формировалась внешними «тяжелыми» САПР (сборки CADDS5, UG, CATIA и т.п.) и экспортировалась в PDM, то теперь формирование структуры изделия («дерева сборки») становится непосредственной задачей самих систем PDM. «Тяжелые» САПР теперь уже становятся получателями, а не производителями, информации о структуре изделия. Результатом нового видения проблемы охвата информационного потока стало значительное ужесточение требований к системам PDM в части платформенной независимости, универсальности, многофункциональности, открытости и дружественности интерфейсов пользователя.

Провозглашенное стремление к тотальному охвату информационных потоков потребовало также со стороны систем PDM более тесной интеграции с ERP-системами: R/3, Baan IV, J.D. Edwards и т.д. Однако стандарта на структуры данных «де юре» для таких систем не существовало, поэтому в качестве рабочего варианта для средств интеграции PDM и ERP были взяты форматы описания состава изделия из R/3 и структура данных STEP для автомобилестроения или авиастроения.

Для первых систем PDM третьего поколения характерны следующие особенности: полная реализация идеологии клиент-сервер, реализация СУБД на базе самых производительных ядер, наличие интерфейса с ERP-системами, вызов клиентских модулей через унифицированный пользовательский графический интерфейс. Базовыми функциональными возможностями систем третьего поколения считаются: контроль структуры изделия, контроль жизненного цикла изделия, контроль версий и «релизов» информационных объектов, генератор спецификаций. Дополнительно решалась задача контроля потока работ каждого конкретного исполнителя. Как результат, применение систем PDM третьего поколения должно было существенно сократить непроизводственные потери не только при выполнении работ над образцами новой техники, но и при организации работ по серийному и мелкосерийному выпуску продукции. К этому поколению принадлежит продукт EPD.Connect , уже нашедший применение в ряде отраслей российской промышленности.

К концу 90-х на рынке систем PDM возникли новые задачи, которые нельзя было решить в системах третьего поколения. Речь идет об электронной коммерции и все более углубляющейся глобализации промышленного производства. Все это требовало появления ПО, учитывающего оптимальный по количеству и рациональный по производительности состав соисполнителей, допустимых для участия в крупном машиностроительном проекте вне зависимости от их реального географического расположения. Теперь центр тяжести в структуризации для систем PDM нового, четвертого поколения перемещался с категории «изделие» на категорию «процесс изготовления и сопровождения изделия». Именно при таком изменении «видения» проблемы достигается реальный прорыв в качестве управления и оперативности его применения. В новых условиях успех фирмы-изготовителя определяется уже не просто способностью быстро «выбросить» на рынок новую модификацию серийного изделия или новое изделие, а тем, как быстро производитель сумеет перестроить свой производственный процесс под многочисленные и разнообразные требования заказчиков, насколько рационально она сможет перестроиться с массового и серийного производства на производство «под заказ». Ясно, что понятие «изделие» при такой методике перестает быть чем-то раз и навсегда заданным, «информационной основой», «структурной базой» PDM, зато на первый план выступают структуры производственных отношений, их изменение и упорядочение в ходе выполнения сформированного портфеля заказов.

В системах PDM четвертого поколения существенно возросли функциональные возможности отслеживания запросов на внесение изменений в модельный ряд управления модификациями и протоколирования-рассылки хода изменений. Реально полноценная организация связей с заказчиками (напрямую или, что чаще всего - через сеть дилеров-поставщиков) возможна только через Internet при помощи Web-технологии. При этом чистая, «классическая», клиент-серверная модель уже перестает работать, необходимо ориентироваться на широкое использование принципов организации среды WEB, особенностей применения Java, HTML и XML для формирования страниц взаимодействия с пользователями системы и т.д. Совокупность всех этих требований приводит к появлению принципиально нового поколения Web-ориентированных систем PDM, которые уже успели «окрестить» как cPDm (collaborative Product Definition management) . От систем ожидается не централизованный характер управления данными (в проекте - один директор, «иерархия» отношений соответствует структуре «классического» унитарного предприятия), а «collaborative» - характер производственных связей, подразумевающий сотрудничество, а не прямое подчинение (в проекте - несколько предприятий, объединяющихся для выполнения одних целей, а в другое время - вольных входить в любые другие производственные союзы, связи и кооперативные объединения). Еще заметим, что «Data» («данные») в новой аббревиатуре заменено на слово «Definition» («определение»), что несомненно отображает широту информационного охвата при работе с изделием. Однако пока будем придерживаться «традиционного» наименования - PDM.

PDM сегодня

Рассмотрим типичный состав и функциональность современной системы PDM. Прежде всего, система должна быть основана на универсальных принципах сетевого взаимодействия (IP-адресация, независимость от физических характеристик среды передачи сигнала, глобальный охват), а ее пользовательский интерфейс должен быть тесно интегрирован со средствами для просмотра Web-страниц. В состав современной системы PDM должны входить модули генерации и сохранения («Vaulting») объектов, их версий и релизов. Само хранение выполняется в системах четвертого поколения независимо от географического расположения сервера базы данных - храниться на нем могут на равных правах как сами объекты, так и ссылки на них (URL, NFS-локализация, сетевой адрес файл-сервера и т.д.). При реальной сетевой реализации идеи «Vaulting» серверов может быть несколько, база данных при этом получается распределенной, а СУБД должна выполнять в полной мере сетевой сервис. Реально СУБД, позволяющие реализовать идею «сетевого распределенного хранилища данных» («Distributed Vault» в зарубежной литературе) представлены пока только семейством Oracle 8i.

Современная система PDM в наиболее полном объеме реализует функции управления составом изделия, структурой всех его составных частей, деталей, узлов и агрегатов. Кроме того, в управляемую структуру должны входить и управляться системой дополнительные структурированные информационные объекты, состав которых отражает все необходимые данные для организации работ по производству самого изделия - структура оснастки, инструментального парка, операций и переходов, технологических приемов.

Современная система PDM управляет и обеспечивает обмен данными о структуре изделия и вносимых в него изменениях, обеспечивает взаимодействие с любыми корпоративными приложениями в рамках определения и управления действий по внесению изменений в изделие, за счет чего упрощаются процессы совершенствования и модификации. Современная система PDM должна обеспечивать создание и поддержку множества взаимозависимых и взаимоувязанных спецификаций изделия (классические BOM, конструкторские, технологические, заказные спецификации, спецификации на покупные изделия, спецификации поставок и т.д.), благодаря чему пользователь получает согласованное представление об изделии на протяжении всего его жизненного цикла.

Современная система PDM должна иметь многоуровневый механизм управления реквизитами-атрибутами, настраиваемый на конкретный состав задач по управлению тем или иным узлом, агрегатом или даже изделием в целом. Современная система PDM в обязательном порядке должна иметь встроенный механизм управления жизненным циклом изделия. В этот механизм должны входить средства ролевого управления любым пользователем системы PDM, средства отображения текущего состояния любого бизнес-объекта в терминах жизненного цикла, средства протоколирования состояний каждого бизнес-объекта, учет всех его состояний и средства администрирования. Для решения задач оперативного управления в системах PDM четвертого поколения обязательно наличие полнофункционального модуля Workflow.

Управление структурой изделия. Средства управления структурой изделия в системах четвертого поколения позволяют создавать и обрабатывать различные виды спецификаций изделия (BOM). Кроме того, нужно иметь возможность вести управление по деталям и узлам, составляющим изделие, а также по относящимся к ним документам (файлам, наборам файлов, адресам в Internet) и специальным производственным характеристикам - атрибутам. Для управления на уровне групп предприятий используется динамическая, содержащая максимально полную информацию об изделии структура, которая отображает все возможные конфигурации изделия. Сервисные функции должны допускать просмотр структуры изделия с любой степенью детализации, раскрывать сборки и получать представление о входящих в ее состав подсборках и деталях:

  • Ведение спецификаций.

Спецификация - ассоциативная структура изделия, из которой в соответствии с определенными критериями конфигурации выводится представление сборки. Работая как фильтр, критерии конфигурации определяют, какую версию детали надо вывести. Например, часто специалист по планированию производства хотел бы видеть структуру изделия в зависимости от степени готовности всех ее составных частей к конкретным срокам, а специалист-технолог - в зависимости от применяемых материалов или технологических приемов обработки этих материалов.

  • Многоуровневые спецификации.

Для современных PDM систем фактическим стандартом является возможность вывода не менее двух типов спецификаций, а именно иерархической структуры (дерева сборки) и подетального общего списка (список наименований комплектующих). Спецификации первого типа чаще используются в конструкторско-технологических подразделениях, а второго - на сборочных участках и при работе по заказам.

  • Многовариантный генератор спецификаций.

Участникам производственного процесса часто необходимо иметь возможность построения спецификаций в зависимости от рода деятельности и профессиональной принадлежности. Например, инженерам-конструкторам важна спецификация, построенная по принципу «как спроектировано», а специалистам планово-производственного отдела по принципу «как запланировано».

В системах PDM четвертого поколения одна из типичных функций - это отслеживание того, какая деталь и как применяется в каждой из модификаций конкретного изделия. Эта возможность значительно упрощает процесс постепенного формирования полного электронного определения изделия. В процессе внесения и утверждения изменений в проект предприятие должно учитывать, когда и для каких партий эти изменения уже действуют, а для каких - нет, когда и в каких количествах необходимо производить новые детали. Как правило, должно быть реализовано три типа такой функциональности: отслеживание по календарным срокам, отслеживание по идентификационному номеру изделия и отслеживание по номеру партии. Кроме того, часто на предприятиях авиастроения и судостроения может быть задано отслеживание эффективности внесенных изменений для нескольких разных изделий, в которых используется данная деталь.

  • Отслеживание принадлежности к модельному ряду («baseline»).

Такая функциональность позволяет получать на произвольно выбранных этапах жизненного цикла актуальный срез по списку деталей и документов с определением тех из них, которые имеют ключевое значение для структуры изделия. Поскольку с течением времени появляется множество конфигураций структур изделия, данная функция помогает определить те конфигурации, которые представляют для предприятия наибольший интерес.

  • Отслеживание ссылок и многоуровневых ссылок на документы.

Такая функциональность обеспечивает ассоциирование любых документов, относящихся к детали, агрегату или изделию, позволяя разработчикам присоединять дополнительную информацию в любом удобном для понимания виде. Примерами ссылочной информации (присоединенных документов) могут служить: готовые спецификации, техническая документация, файлы САПР, мультимедийные файлы и даже ссылки на другие Web-сайты в Internet. Такая методика построения и отслеживания ссылок позволяет собирать все накопленные данные об изделии и обеспечивает создание максимально насыщенной информационной структуры изделия.

  • Отслеживание изменений.

Отслеживание изменений позволяет группировать и просматривать в удобном для понимания виде информацию о тех вносимых изменениях, которые приводят к появлению новой версии (модификации) изделия. Пользователь, таким образом, будет знать как о состоянии проведения изменений в смысле структуры изделия и в смысле этапов жизненного цикла, так и о незавершенных изменениях той или иной детали и сможет использовать эту информацию в процессе принятия решений.

  • Динамический просмотр иерархически организованной информации («Навигация по структуре изделия»).

Эффективность применения современных систем PDM во многом определяется тем, какие эти системы предоставляют пользователю возможности поиска информации о нужных деталях, просмотра структуры изделия и выполнения необходимых операций над выбранными элементами этой структуры. Лучше всего «принимаются» промышленностью и легче всего «осваиваются» пользователями такие системы PDM, в которых пользователь работает с хорошо знакомым ему графическим интерфейсом (например, Netscape Communicator), который организует иерархическое представление всей информации об изделии и тем самым упрощает переходы от деталей к сборкам и обратно. Когда пользователь выбирает нужную ему деталь на дереве сборки, система PDM автоматически выводит на экран клиентской машины список ссылочных документов и всю необходимую информацию - например, номер детали, данные о ревизии, дату последней модификации, и т.д.

  • Сравнение структур изделия.

Пользователь может выбрать любые две структуры изделия, любые две версии, любые два релиза, сравнить их и выявить отличия друг от друга, если таковые существуют на множестве отслеживаемых параметров модели изделия (структурный состав, атрибуты и их значения). Отчет о проведенном сравнении формируется в виде, удобном для браузера системы, например, в виде XML. При сравнении двух ревизий одной и той же структуры изделия требуется обнаружить следующие различия (типичная задача): уменьшилось или увеличилось количество определенных комплектующих, добавился ли ссылочный документ и САПР-модель для ссылочного документа. Интерактивный, динамический механизм сравнения структур незаменим для управления различными версиями изделия. Управление изменениями. В большинстве организаций поэтапная многоступенчатая процедура внесения и утверждения изменений достаточно хорошо отработана и успешно применяется в практике промышленного производства, что является важной предпосылкой к автоматизации этой процедуры на всех ее этапах для всех ее участников. Системы PDM четвертого поколения должны предоставлять универсальное решение, которое обеспечивает контроль за информацией о предполагаемых изменениях.

  • Контроль за всей информацией. Средства управления изменениями должны контролировать всю информацию о внесении изменения от момента постановки задачи до полного ее разрешения. Процесс внесения изменения разделяется на этапы: запрос на изменение, изучение причин, повлекших за собой необходимость изменения, предложения альтернативных вариантов, реализация изменения путем формулировки заявки на изменение и выполнение действий по внесению изменения. Решения каждого этапа должны протоколироваться для возможного «отката» и проверки принятых решений.
  • Гибкие процессы по внесению изменения. Разные модификации требуют разной степени детализации и задействуют разные этапы общего процесса внесения изменений. Средства управления изменениями в рамках таких требований должны позволять настраивать процесс внесения изменений таким образом, чтобы он включал необходимое для конкретной модификации число шагов и полностью описывал изменение и его последствия.
  • Автоматизация потоков заданий («Workflow»). Наиболее полная автоматизация процесса внесения изменений достигается благодаря интеграции средств управления изменениями с функциями управления потоком заданий. Каждый этап процесса внесения изменений может быть представлен как задание потока работ и автоматически передан пользователю или системе, которые отвечают за выполнение этого задания. По завершению выполнения задания система управления потоком заданий продолжит процесс внесения изменений до тех пор, пока не будут завершены все его этапы, и документация по изделию получит статус выпущенной. Для четвертого поколения систем PDM характерно следование рекомендациям и стандартам рабочей группы Workflow Management Coalition.

Визуализация трехмерных сборок и сопутствующей информации:

  • Реализация визуального представления любого уровня сложности, вплоть до фотореалистического, а также цифровое макетирование («Mock-Up») сборок любой степени сложности. Для того чтобы визуализация была возможна на любом рабочем месте вне зависимости от технических параметров локального компьютера пользователя, собственно визуализация должна выполняться на специализированном сетевом сервере, а на рабочее место пользователя через сеть будет передаваться только «картинка» результата.
  • Динамическая навигация по трехмерной структуре сборки, вне зависимости от конкретной САПР, с помощью которой были созданы входящие в сборку компоненты.
  • Автоматизация построения «взрывных» видов, сечений, разрезов сборки, автоматизация построения «кинограммы» сборочных процессов, моделирование в трехмерном виде монтажных операций, сборочных и ремонтных работ, учет пространственных и эргономических ограничений функционирования изделия.
  • Реализация методики «виртуального предприятия», при которой трехмерная сборка и производственная инфраструктура анализируются на совместимость для вывода о возможности/целесообразности выпуска именно такого изделия именно этим цехом, именно этого предприятия.
  • Мощное средство агрессивной маркетинговой политики - потребитель может «вписать» себя в трехмерную модель будущего изделия с требуемыми характеристиками, «почувствовать» необходимость покупки именно такого изделия у именно такого производителя.

Средства управления составом предприятий-поставщиков комплектующих. Для выпуска изделия с наименьшими затратами и оптимизации взаимодействия с поставщиками необходимо иметь ранжируемую базу данных по комплектующим. Она может быть выполнена на основе «отфильтрованной» информации из PDM-систем самих поставщиков комплектующих, причем принцип отбора информационных компонент и набор общих технических характеристик («реквизитов») задается в «материнской» PDM. Для анализа применимости, надежности и перспективности поставщиков система PDM четвертого поколения должна иметь некоторый сервис ранжирования поставщиков, позволяющий определить в каждом конкретном случае оптимальный состав соисполнителей, субподрядчиков и поставщиков.

Реализация этих и многих других вспомогательных функций в составе систем PDM четвертого поколения приводит к тому, что PDM становится приложением, в наиболее полной мере реализующим новаторские идеи ведения электронного бизнеса, но только теперь уже не только и не столько в сфере продаж потребительских изделий и услуг, сколько в области решений типа B2B.

На пути к пятому поколению

Делать прогнозы - занятие хотя и увлекательное, но неблагодарное: если прогноз сбывается, то становится скучно от того, что все и так было известно, а если не сбывается - обидно от несбывшихся ожиданий. Однако попробуем все-таки посмотреть лет на пять вперед: что там нас ждет, какие системы PDM выглядывают из-за горизонта?

Тенденция к глобализации и разделению труда в рамках транснациональных промышленных структур потребует перехода от «Distributed Vault» к «Globalized Vault» - своего рода «сетевым банкам промышленных знаний». Тенденция эта в первую очередь затронет не очень крупные фирмы, специализирующиеся на поставках комплектующих и стандартизованных изделий. Уже сейчас для ограниченной номенклатуры изделий, действуют доступные через Internet справочники-прейскуранты на крепеж, монтажные изделия, электротехнические и гидравлические стандартизованные компоненты. Уже сейчас число таких компонентов исчисляется сотнями тысяч и пополняется еженедельно. Получив через Internet доступ к такому справочнику, пользователь уточняет свой запрос, выполняет действия по получению более подробного доступа к информации о каждом из запрошенных изделий и, в конце концов, к составлению и оплате заказа поставки нужной номенклатуры в требуемый срок в указанное место на земном шаре.

Тенденция к стандартизации при описании структур изделий должна иметь результатом, видимо, появление единого промышленного стандарта на описание сборки. Возможно, хотя и небесспорно, что основой такого стандарта станут предложения STEP.

Тенденция к распределенным вычислениям в сети и успехи в области Java-программирования снимут вопрос о языковой среде реализации динамических функций систем PDM. Основной барьер для повсеместного использования Java в качестве языка приложений сетевых реализаций систем PDM сейчас - недостаточная скорость исполнения Java-приложений на стороне пользователя. С выпуском специализированной аппаратуры и программ реализации «быстрой Java» положение должно кардинально измениться.

Тенденция к взаимопроникновению современных технологий приведет к тому, что системы PDM станут базовым инструментальным средством для задач CALS (прежде всего в области эксплуатации сложной военной техники), для задач управления качеством (как определено в документах по ISO 9000), для задач управления ресурсами предприятия, для задач включения заказчика в контур управления изготовлением изделия.

Тенденция к упрощению и оптимизации структуры отношений с поставщиками приведет к тесной интеграции систем PDM базового предприятия и предприятий-участников. Отсюда с неизбежностью следует вывод о возможной в будущем унификации и стандартизации базового набора функций для всех новых систем PDM. Скорее всего, унификация и стандартизация будут выполнены в части описания структуры изделия, в части определения структуры «жизненного цикла», в части стандартизации определения Workflow.

Обязательным должен стать принцип «Collaborative product commerce» («CPC»), что можно перевести как «использование Internet-среды для разработки, выпуска и реализации продукции при условии сохранения конкурентоспособности».

Владимир Краюшкин - ведущий специалист компании PTC (Москва).

Литература

1. Н. Дубова. . «Открытые системы», 1996, №3
2. Н. Дубова, И. Островская. . «Открытые системы», 1997, №3
3. В. Абакумов. . «Открытые системы», 1996, № 5
4 В. Краюшкин. Система Optegra - управление производственными данными. «Открытые системы», 1997, №1
5. Н. Пирогова. ? «Открытые системы», 1998, №1
6. http://www.cimdata.com/cPDm_Main.htm
7. В. Клишин, В. Климов, М. Пирогова. . «Открытые системы», 1997, №2, стр.42

Кто есть кто на рынке PDM

За последние два года на рынке PDM произошли существенные изменения структурного характера: слияния нескольких компаний, уход с «поле боя», диверсификация, переквалификация.

Рис.1 Рынок систем PDM (млн. долл.)

С развитием информационных технологий предприятия стараются все больше автоматизировать процесс производства и управления. Это требует комплексного подхода, поэтому задействованы CALS (ИПИ)-способы. Рассмотрим их подробнее на примере PDM (ПДМ)-системы – что это такое и когда они применяются.

Continuous Acquisition and Lifecycle Support – непрерывная информподдержка поставок изделия, его жизненного цикла и процессов. Это методы, использующиеся для повышения эффективности регулирования данных об изделии. При постановке и выполнении производственной задачи важную роль играет Product Data Management, являющийся в этом ключевым объектом. С его помощью повышают доступность всех необходимых данных, что предполагает объединение сведений о продукции в единую, логически выстроенную модель. Одновременно он является рабочей средой для пользователя, где главная задача – предоставление определенному сотруднику нужной информации вовремя и в удобной форме.

Проще говоря ПДМ – это использование компьютерных программ для руководства информацией о производимых деталях и процессе их изготовления через единый центр.

Product Data Management: история создания технологии

Еще в середине ХХ века схемы и планы продукции делали вручную на бумаге. Из такого вида проектирования возникли технологии для автоматизации работы, предполагающие использование САПР, чтобы создавать перечни производимых продуктов. Первые примеры PDM-систем – бумажные схемы. С их помощью планировали ресурсы компании, чтобы координировать все транзакционные операции:

  • приход/расход;
  • учет затрат;
  • управление клиентскими заказами;
  • логистику.

Но такое хранение информации и передача данных затрудняли процесс производства, согласования проектов, общения с государственными органами и партнерами. Каждый шаг требовал времени и затрат на проект. Несовершенство таких методов привело к популяризации CALS. Для специалистов разных отраслей существуют курсы, где их изучают. Назначение PDM-системы Search, одного из направлений обучения, организация навыков и методология менеджмента групповой работы.

Цели внедрения, как работает, взаимодействует с другими системами и на какие этапы влияет Product Data Management

Руководство сведениями о производимых изделиях предполагает использование соответствующего программного обеспечения для руководства информацией, которая связана с определенной деталью. Она содержит:

Цели внедрения:

  • Минимизация допуска ошибки в проектировании.
  • Всецелое понимание задачи со всех сторон процесса.
  • Выполнение норм и требований качества, контроль.

Это позволяет производителю отслеживать все возможные затраты на разработку нового продукта.

Схема взаимодействия и связи с PDM-системы управления данными об изделии:


Этапы внедрения в производство:


Безопасность координации данных

Фиксация и управление информацией об изделиях обеспечивается системами PDM. Они гарантируют правильную доставку сведений пользователям в процессе всего жизненного цикла (ЖЦ) продукта.

Благодаря наличию прав доступа и возможности координации ролей юзеров, защищенность и функциональные возможности надежно сохраняют права интеллектуальной собственности предприятия.

Автоматизация контроля используется для оптимизации:

  • уменьшения ошибок и неточностей во время проектирования;
  • затрат на разработки;
  • быстрого поиска верных сведений;
  • соблюдения нормативов и деловых требований;
  • повышения производительности;
  • сокращения времени цикла;
  • задач операционных ресурсов.

Применение этих систем также совершенствует расчет стоимости и содействует сотрудничеству основных команд. Это обеспечивает прозрачность, нужную для определения верных решений.

Управление конфигурацией

ПДМ предоставляет полную картину с целью коррекции, контроля и презентации спецификации данных, синхронизации и уравнивания источников ЖЦ объекта.

Многие из PDM-систем поддерживают особенные надобности менеджмента и открыты для нескольких команд сразу. Грамотно выбранный софт – прочная основа организации в любой сфере с перспективой расширения до полноценной платформы PLM – жизненным циклом изделия.


Особенности и преимущества

Ключевая роль в ПДМ отдана отслеживанию, преобразованию, архивации любых сведений о детали, которые сохраняются на одном или нескольких серверах.

Сюда входят:

  • САПР;
  • чертежи;
  • дополнительная документация.

Чтобы не допустить ошибки, для проектирования необходимо произвести правильные расчеты. Моделирование проводят с помощью специальных компьютерных программ:

  • AutoCAD;
  • BricsCAD;
  • ArchiCAD;

Метаданные – создатель файла, статус производства компонентов – также координирует центральная база. Она выполняет и другие функции:

  • управляет инженерными изменениями;
  • проверяет данные изделия для разных специалистов;
  • контролирует выход продукции и устраняет проблемные компоненты на всех стадиях;
  • создает и манипулирует спецификациями материалов перед сборкой;
  • помогает в конфигурации контроля продуктов.

Это повышает скорость получения отчетов системы о расходах на производство, позволяя организациям со сложным видом изделий эффективно распределять и учитывать полученные сведения на весь процесс PDM.

Управление данными

ПДМ – своеобразное хранилище информации для истории ЖЦ, способствующее внедрению, обмену материалами между всеми, кто пользуется им. Права на доступ могут быть открыты менеджерам проектов, партнерам, инженерам, клиентам и продавцам, группам контроля качества.


Все действия, производимые с помощью программного обеспечения, ориентированы на сбор показателей об услугах за счет развития производственного цикла, сроков полезного применения продукции.

Типичные данные, управляемые модулем PDM, хранят:

  • описание и характеристики;
  • паспорт модели;
  • номера частей;
  • информацию о производителе;
  • единицы мерки;
  • вычисление стоимости;
  • САПР схемы или чертежи.

Системы имеют всю информацию, отслеживают любые изменения, что сокращает временные затраты на организационные вопросы. Это повышает производительность, позволяет расширить сотрудничество с использованием виртуальной автоматизации.

Сравнение PDM-систем: спецификация и особенности

Популярными среди специалистов-конструкторов считаются решения:

  • NX – продукт от компании Siemens PLM Software. Иногда встречается название 3D PLM. ПО используется на всех ступенях разработки изделия – от определения концепции, его анализа до выпуска. Следуя параллельному инженерному процессу действий, координации данных, с помощью инструментов проектировки, используемых во всех рабочих областях, софт объединяет все этапы ЖЦ.
  • CATIA – интерактивное приложение, созданное с помощью языка программирования С++. Это программный пакет для бизнеса, имеющий много платформ, созданный при плодотворном сотрудничестве ТМ Dassault Systemes и IBM. Его используют в машиностроении, особенно часто в аэрокосмической сфере и автомобилестроении.

Программное обеспечение для профессионального 3D-моделирования

Каждое предприятие выбирает удобный для реализации своих целей и задач способ автоматизации информуправления. Ассортимент инструментов для этого разнообразен:



Выбираем доступные системы CAD в России

Правильно выбранная платформа для моделирования – это основной этап для PDM планирования, так как именно с помощью автоматизированного проектировщика создается конструкция будущего объекта, а также производятся расчеты, анализ.

ZWSOFT предлагает клиентам САПР . Это ПО – аналог ACAD, столь же функциональный и удобный. При этом стоимость ниже. Он используется всё большим количеством пользователей и востребован по ряду причин:

  • поддержка чертежей формата DWG;
  • большой арсенал инструментов;
  • понятный интерфейс;
  • доступная цена, сопоставимая с количеством опций.

В ZWCAD 2017, 2018 есть несколько версий. В качестве удобной программы CAD подойдет и . Набор функций каждой из них отличается, поэтому можно выбрать нужный вариант для заданных целей производства. Главное преимущество – возможность 2D и 3D редактирования и моделирования изображений, поддержка VBA /.Net; / ZRX, отображение элементов CAD и множество других полезных функций.

В версии 2018 есть несколько обновлений:

  • улучшен стиль интерфейса;
  • включено больше возможностей для настройки панели инструментов;
  • расположенный в боковой панели калькулятор позволяет быстрее создавать и корректировать дополнения в чертеже, что облегчает задачи и их реализации.

Они экономят время пользователей. ZWCAD грамотно построенной лицензионной политикой дает клиентам самостоятельный выбор нужных для работы функций, подходящего варианта для реализации задач разных уровней сложности, при этом не нужно переплачивать за опции, которыми не будут пользоваться сотрудники.


Также на сайте представлены модули и надстройки для ZWCAD и ZWCAD+, увеличивающие возможности, которые предлагает базовый софт. Некоторые из них можно интегрировать в ACAD, что делает их популярными среди инженеров, конструкторов, дизайнеров, проектировщиков и специалистов других областей, занимающихся 3Д-моделированием.

Еще одной разработкой ZWSOFT является . Он имеет следующие преимущества:

  • Чертежи поддерживаются в двух- и трехмерном пространстве.
  • Есть опции гибридного моделирования для работы с твердотельным или каркасным объектом.
  • Многоуровневая система вкладок – в одном файле будут расположены элементы разных уровней.
  • Библиотека деталей содержит большое количество образцов.
  • Быстрое создание пресс-форм и штампов.
  • Обратная инженерия модели.
  • Автоматическая проверка работы конструкции и анализ ее эффективности.

CAD имеет три комплектации – Lite, Standard и Professional. Вы можете выбрать наиболее оптимальный для вас вариант с дополнительными опциями.

Используйте новейшие разработки для роста собственного профессионализма и улучшения продукции вашего предприятия!

PDM-системы - это использование программного обеспечения для управления данными о продуктах и ​​связанной с процессом информацией в единой центральной системе. Эта информация включает в себя данные автоматизированного проектирования (CAD), модели, информацию о деталях, инструкции по изготовлению, требования, примечания и документы. Система PDM обеспечивает решения для безопасного управления данными, процессами и конфигурацией.

PDM-системы: история создания технологии

PDM-системы возникли из традиционной деятельности по проектированию, когда чертежи и схемы продукта создавались на бумаге с использованием инструментов САПР для создания списков деталей. Первые PDM системы, примерами которых были бумажные носители, использовали данные PDM и BOM в системах планирования ресурсов предприятия (ERP) для координации всех транзакционных операций компании (управление заказами клиентов, покупка, учет затрат, логистика).

Цели внедрения PDM-систем

Управление данными о продуктах - это использование программного обеспечения или других инструментов для отслеживания и контроля данных, связанных с конкретным продуктом. Отслеживаемые данные обычно включают технические характеристики продукта, спецификации для производства и разработки, а также типы материалов, которые будут необходимы для производства товаров.

Цели управления данными продукта:

  • общее понимание задачи всеми сторонами процесса;
  • сведение к минимуму ошибок при выполнении проекта;
  • соблюдение высоких стандартов контроля качества.

Управление данными о продуктах позволяет компании отслеживать различные затраты, связанные с созданием и запуском, и в основном используется инженерами.

Безопасное управление данными

Системы PDM фиксируют и управляют информацией о продуктах, гарантируя, что информация будет доставляться пользователям на протяжении всего жизненного цикла продукта в правильном контексте. Безопасность и административная функциональность защищают права интеллектуальной собственности посредством управления ролями, защитой на основе проектов и соответствующими правами доступа.

Системы PDM позволяют компаниям оптимизировать следующие бизнес-процессы:

  • быстрый поиск правильных данных;
  • повышение производительности и сокращение времени цикла;
  • сокращение ошибок и затрат на разработку;
  • улучшение процесса создания стоимости;
  • соблюдение деловых и нормативных требований;
  • оптимизация операционных ресурсов;
  • содействие сотрудничеству между глобальными командами;
  • обеспечение видимости, необходимой для лучшего принятия бизнес-решений.

Управление конфигурацией

Система PDM обеспечивает видимость, необходимую для управления и представления полного материала (спецификации). Это облегчает выравнивание и синхронизацию всех источников данных и этапов жизненного цикла.

Лучшие PDM-системы доступны для нескольких приложений и нескольких команд в организации и поддерживают специфические для бизнеса потребности. Выбор правильного программного обеспечения PDM может обеспечить компанию в любой отрасли с прочной основой, которая может быть легко расширена до полной платформы управления жизненным циклом продукта (PLM).

Особенности и преимущества

В рамках PDM основное внимание уделяется управлению и отслеживанию создания, изменения и архивирования всей информации, связанной с продуктом. Информация, хранящаяся и управляемая (на одном или нескольких файловых серверах), включает инженерные данные, такие как система автоматизированного проектирования (САПР), чертежи и связанные с ними документы.

Центральная база данных также управляет метаданными, такими как владелец файла и статус выпуска компонентов, и выполняет следующие функции:

  • проверка данных продукта для нескольких пользователей;
  • управление инженерными изменениями, контроль выпуска и устранение проблем компонентов на всех версиях;
  • создание и манипуляция спецификацией материалов (BOM) для сборки;
  • помощь в конфигурации управления вариантами продукта.

PDM позволяет автоматически получать отчеты о расходах на продукт и позволяет компаниям, производящим сложные продукты, распространять данные о продукте на весь процесс запуска PLM. Это значительно повышает эффективность процесса запуска.

Управление данными

PDM используется в качестве центрального хранилища данных для истории процессов и продуктов и способствует интеграции и обмену данными между всеми бизнес-пользователями, включая менеджеров проектов, инженеров, продавцов, покупателей и групп обеспечения качества.

Управление данными о продукции ориентировано на сбор и поддержание информации о продуктах и ​ услугах за счет ее развития и срока полезного использования. Типичная информация, управляемая в модуле PDM, включает:

  • номер части;
  • описание детали;
  • поставщик/производитель;
  • номер и описание поставщика;
  • единица измерения;
  • себестоимость;
  • схема или чертеж САПР;
  • паспорта материалов.

PDM-системы помогают управлять и отслеживать все изменения в данных, связанные с продуктом, тратить меньше времени на организацию и отслеживание, повысить производительность за счет повторного использования данных дизайна, расширить сотрудничество и использовать визуальное управление.

Сравнение PDM-систем: спецификация и особенности

PDM-системы: обзор популярных и востребованных решений:

NX - коммерческий программный пакет CAD CAM CAE PDM-системы, разработанный Siemens PLM Software. NX широко используется в машиностроении, особенно в автомобильном и аэрокосмическом секторах. NX обычно называют программным приложением 3D PLM. Продукт поддерживает все этапы разработки продукта от концептуализации (CAID), проектирования (CAD) до анализа (CAE) и производства (CAM). NX объединяет этапы жизненного цикла продукта, используя параллельный инженерный рабочий процесс, инструменты проектирования и управления данными, которые применяются во всех функциональных областях.

CATIA (компьютерное трехмерное интерактивное приложение) представляет собой многоплатформенный коммерческий программный пакет CAD/CAM/CAE, разработанный французской компанией Dassault Systemes и продаваемый во всем мире компанией IBM. Написан на языке программирования C ++. Поддерживает несколько этапов разработки продукта (CAX): от концептуализации, проектирования (CAD) до производства (CAM) и анализа (CAE). Широко используется в машиностроении, особенно в автомобильной и аэрокосмической отраслях.

Программное обеспечение для 3D-моделирования

Solid Edge - для моделирования параметрической 3D-модели. Работает в Microsoft Windows и обеспечивает надежное моделирование, сборку и разработку для инженеров-механиков. Благодаря сторонним приложениям он имеет ссылки на многие другие технологии управления жизненным циклом продукта (PLM).

Rhinoceros (Rhino) - это автономное коммерческое программное обеспечение для моделирования 3D-модели NURBS, разработанное Robert McNeel & Associates. Программное обеспечение обычно используется для промышленного дизайна, архитектуры, морского дизайна, дизайна ювелирных изделий, автомобильного дизайна, CAD/CAM, быстрого прототипирования, обратной инженерии, проектирования изделий, а также индустрии мультимедиа и графического дизайна.

Creo Elements/Pro (ранее Pro/ENGINEER) является стандартом в дизайне 3D-продуктов, в котором представлены самые современные инструменты для повышения производительности, которые способствуют передовым обеспечивая при этом соответствие стандартам отрасли и компании. Интегрированные, параметрические, 3D CAD/CAM/CAE-решения позволяют ускорить процесс разработки при одновременной максимизации инноваций и качества.

PDM/PLM-системы: что это?

Системы управления данными о продукции (PDM) и системы управления жизненным циклом продукта (PLM) широко используются в современных организациях по разработке продуктов. Система PDM является одним из компонентов системы PLM.

Общие функции как PDM/PLM-системы:

  • Управление документами: модели САПР, чертежи и метаданные продукта хранятся либо в центральном, либо в распределенном хранилище. Как только данные о продуктах и другая информация перейдут в хранилище, они могут быть доступны авторизованным пользователям в предопределенном формате.
  • Управление процессами и рабочими потоками: PDM/PLM-системы предоставляют требуемые разрешения для пользователя и эффективно сообщают о действиях среди всех заинтересованных сторон.
  • Управление структурой продукта: пользователи могут легко увидеть альтернативные части и свои бизнес-воздействия через эти системы.
  • Управление деталями: системы PDM и PLM подчеркивают необходимость повторного использования и стандартизации компонентов.

Отличия систем:

  • PLM имеет более широкий уровень интеграции в разных отделах, использует множество инструментов САПР и работает с большим спектром продуктов. PDM работает только с данными о продуктах, относящихся к САПР.
  • PLM разработана на веб-платформе, тогда как система PDM не использует веб.
  • Стоимость PLM-системы очень высока в сравнении с системой PDM. Реализация PLM оправдана только для крупных многопозиционных организаций.

Система управления данными о продуктах (PDM) является подмножеством системы управления жизненным циклом продукта (PLM). Системы PDM в основном обрабатывают данные о продуктах, связанных с CAD. Дизайнерские отделы являются поставщиками входных данных для системы PDM. Система PLM требует участия на уровне организации и интеграции других информационных систем организации.

Управление инженерными и проектными данными. PDM - системы.

PDM технология - это технология управления всеми данными об изделии и информационными процессами жизненного цикла изделия. Для реализации PDM технологии существуют специализированные программные средства, называемые PDM системами, то есть системами управления данными об изделии.

В отличии от АСУП, которой управляют информацией о всех ресурсах предприятия, PDM системы направлены на управление на предприятии информацией о продукте. Таким образом, система управление производственной информацией то инструментальное средство, которое помогает администраторам, конструкторам, технологам, инженерам и другим специалистам управлять как данными об изделии, так и процессами разработки изделия на современном производственном предприятии либо на группе предприятий-смежников.

Системы PDM обобщают такие широко известные технологии, как управление инженерными данными EDM, управление документами, управление информаций об изделии PIM, управление техническими данными TDM, управление технологической информацией TIM, управление изображениями и все другие системы, которые так или иначе позволяют манипулировать данными и изображениями.

PDM системы интегрируют информацию любых форматов и типов, поступающую от различных источников, предоставляя её пользователям уже в структурированном виде. Структуризация привязана к особенностям конкретного предприятия.

В системах PDM разнообразие проектных данных поддерживается их классификацией и соответствующим выделением групп с характерным множеством атрибутов. Часто структура изделия представляется в виде дерева. Step suite - элементы дерева могут соответствовать отдельным сборочным узлам или изделия. В PDM системах существуют модули CDO - для подготовки, хранения и сопровождения необходимых документов в системах PDM как правило имеются специализированные системы управления документами и документооборотом. Причем некоторые системы делопроизводства либо интегрированы в САПР, либо имеют средства для управления проектной, в том числе чертежно-конструкторской документацией. Для создания систем управления документооборота - Lotus Notes, Lotus Domino.

Возможности управления чертежно-конструкторской документацией, которая подготовлена в системе AutoCAD, Microstation в Docs Open, CADlink (Documentum Search).

Наряду с информацией PDM системы управляют процессом изготовления изделия. Наряду с данными система PDM управляет и проектом, то есть процессом разработки изделия, при этом контролируя информацию об изделии-продукте, о состоянии объекта, о утверждении вносимых изменений, осуществляя авторизацию и другие операции, которые влияют на данные об изделии и режим доступа к ним конкретного пользователя. Управление процессом проектирования включает в себя большое число действий и условий, поддерживающих параллельную работу многих пользователей над общим проектом, то есть необходимо управление потоком работ, которое выполняется на основе моделей вычислительных процессов. Используются спецификации моделей, принятые в CASE системах, workflow

Часто управление крупными проектами, включающее распределение большого числа работ по времени и между исполнителями, выполняются программами, относящимися к специальной группе систем управления проектами. В эту группу входят:

  • программы верхнего уровня - Artemis Project, Primavera Project Planner, Open Plan;
  • программы среднего уровня - Time Line, Microsoft Project, Spider Project.
  • Можно выделить несколько уровней интеграции PDM системы и других компьютерных приложений, используемых на предприятии:
  • Наиболее продвинутым уровнем интеграции является использование на предприятии единой модели данных. Это означает, что все компьютерные системы работают с единой, совместно используемой базой данных.
  • Следующий уровень интеграции - прямой доступ к БД, то есть все компьютерные системы имеют свои базы данных, но каждая из них имеет возможность читать и писать данные в базе данных другой системы. Этот способ интеграции встречается на практике - iMan обладает способностью читать и писать данные во внешние базы данных, а также синхронизировать свою БД с внешними в режиме реального времени - T-Flex Docs.
  • Наиболее распространенным уровнем интеграции является использование для организации взаимодействия систем прикладных программных интерфейсов.
  • Самый простой уровень интеграции - использование файлов для обмена данными между системами. При осуществлении передачи данных от одной системы к другой, первая система будет генерировать файл, содержащий передаваемые данные, а вторая система читать этот файл и получать эти данные. В рамках STEP (ISO-10303).

Существует множество ПП, реализующих функции PDM системы. Большинство из них выполнены по схожим принципам:

· В основе хранилища данных лежит какая-либо коммерческая СУБД;

· Поддержка основных стандартных форматов для обмена данными между системами (STEP \ IGES \ CDM \ DXF);

· Использование различных платформ;

· Поддержка графического интерфейса с пользователем;

· Предоставление доступа к PDM системе через интернет.

В настоящее время существует огромное количество ПП, реализующих функции PDM систем, и ещё больше программных средств, претендующих на название PDM-систем. Тем не менее, можно выделить три основные категории производителей:

  • 1 группа - фирмы, перешедшие из области САПР - PTC (Pro/Engineer \ Windhill), IBM (CATIA \ ENOVIA), Unigraphics (Unigraphics \ iMan), SDRC (I-DEAS \ Metaphase), Топ-системы (T-Flex CAD \ T-Flex Docs).
  • 2 группа - независимые разработчики PDM систем, которые изначально начали свою работы над PDM (их преимущество в том, что системы этих фирм изначально ориентированы на интеграцию с широким спектром прикладных систем, в том числе и на основе международных стандартов) - CADIM \ EDM, Agile Software \ Agile, Лоцесофт \ PartY, НИЦ CALS логиcтика - STEP Suite,
  • 3 группа - фирмы, пришедшие в PDM из других предметных областей - SAPE AG - SAPR R3, BAAN.