При построении сетевого графика необходимо соблюдать ряд правил.

  • 1. В сетевой модели не должно быть «тупиковых» событий, то есть событий, из которых не выходит ни одна работа, за исключением завершающего события. Здесь либо работа не нужна и её необходимо аннулировать, либо не замечена необходимость определённой работы, следующей за событием для свершения какого-либо последующего события. В таких случаях необходимо тщательное изучение взаимосвязей событий и работ для исправления возникшего недоразумения.
  • 2. В сетевом графике не должно быть «хвостовых» событий (кроме исходного), которым не предшествует хотя бы одна работа. Обнаружив в сети такие события, необходимо определить исполнителей предшествующих им работ и включить эти работы в сеть.
  • 3. В сети не должно быть замкнутых контуров и петель, то есть путей, соединяющих некоторые события с ними же самими. При возникновении контура (а в сложных сетях, то есть в сетях с высоким показателем сложности, это встречается довольно часто и обнаруживается лишь при помощи ЭВМ) необходимо вернуться к исходным данным и путём пересмотра состава работ добиться его устранения.
  • 4. Любые два события должны быть непосредственно связаны не более чем одной работой-стрелкой. Нарушение этого условия происходит при изображении параллельно выполняемых работ. Если эти работы так и оставить, то произойдёт путаница из-за того, что две различные работы будут иметь одно и то же обозначение. Однако содержание этих работ, состав привлекаемых исполнителей и количество затрачиваемых на работы ресурсов могут существенно отличаться.

Существуют три основных способа изображения событий и работ на сетевых графиках: вершины-работы, вершины-события и смешанные сети. В сетях типа вершины-работы все процессы или действия представлены в виде следующих один за другим прямоугольников, связанных логическими зависимостями.

В практике сетевого планирования на отечественных предприятиях более широкое распространение получили модели типа вершины-события. Однако в настоящее время на многих американских фирмах стали также применяться сети типа вершины-работы.

Основное их преимущество заключается в следующем.

  • - Работа в таких сетевых моделях выглядит более естественной, так как представляет собой схематично рабочее место исполнителя или специалиста.
  • - Графическое изображение сетевой модели также представляется

более удобным, поскольку имеется возможность нарисовать вначале

все работы, а затем расставлять необходимые логические зависимости.

  • - Написание прикладных программ для данных сетей тоже является более простым и менее трудоемким видом деятельности.
  • - Сетевые графики типа вершины-работы более адаптированы к существующим в управлении проектами стандартам.

Во всех сетевых графиках важным показателем служит путь, определяющий последовательность работ или событий, в которой конечный процесс, или результат, одной стадии совпадает с начальным показателем следующей за ней другой фазы. В любом графике принято различать несколько путей:

  • - полный путь от исходного до завершающего события;
  • - путь, предшествующий данному событию от начального;
  • - путь, следующий за данным событием до завершающего;
  • - путь между несколькими событиями;
  • - критический путь от исходного до конечного события максимальной продолжительности.

Все стрелки модели должны быть направлены в одну сторону развития работ от исходного события к завершающему;

· сетевая модель должна иметь простой и удобный для чтения вид, следует по возможности избегать пересечения

стрелок, изображающих работы (зависимости);

  • · все события нумеруют, при этом каждое событие имеет номер больший, чем предшествующее ему событие;
  • · не допускается повторение номеров событий;
  • · при обозначении двух или более параллельно выполняемых работ необходимо введение дополнительных событий и

зависимостей, так как в противном случае разные строительные процессы будут иметь одинаковые шифры (см. рис. 1);

  • · на сетевом графике не должно быть "тупиков", "хвостов" и "замкнутых контуров" (см. рис. 2). Если для начала работы необходимо лишь частичное выполнение предшествующей работы, то она разделяется на соответствующие части со своими событиями их завершения, т.е. фактически разбивается на несколько работ. Если на объекте организуется поточный процесс производства работ, то на сетевой модели он отражается в соответствии с принятой разбивкой фронта работ на захватки (ярусы). При этом на каждой горизонтальной линии модели могут описываться либо все строительные процессы, происходящие на одной захватке ("горизонталь-захватка"), либо отдельный технологический процесс, выполняемый на всех захватках данного объекта ("горизонталь-процесс"). Если сетевая модель разрабатывается по схеме "горизонталь-захватка", она развивается преимущественно в горизонтальном направлении, что удобно с позиции графической компоновки чертежа. Для многоэтажных зданий, предусматривающих деление фронта работ намногочисленные ярусы, можно рекомендовать схему "горизонталь-процесс". Если при разработке сетевых моделей предусматриваются три или более захваток (ярусов), возникает проблема ложных технологических зависимостей (см. рис. 3). Как видно из рис. 3, топология данной сетевой модели является ошибочной, так как, например, работа по устройству фундаментов на III захватке (работа 5-7) технологически не зависит от монтажа каркаса на I захватке (работа 3-4) с учётом того, что для производства монтажных работ нулевого цикла и надземной части используются разные грузоподъёмные механизмы. Аналогичная ситуация наблюдается и для работы 7-8, которая технологически зависит лишь от наличия фронта работ по захватке (должна быть закончена работа 5-7) и от загруженности бригады монтажников (необходимо завершение работы 5-6). Между тем на модели прослеживается зависимость начала работы 7-8 от окончания работы 4-6 (кровельные работы на I захватке), что технологически ошибочно.
  • 4. Параметры сетевой модели и формулы их расчёта
  • 1. Ранние сроки выполнения работ.

Раннее начало выполнения работы Тр. н i?j ? это самый ранний из всех возможных моментов времени начала работы, обусловливаемый выполнением всех предшествующих работ. Ранее начало исходящей работы (работ0 равно нулю. Ранние начала всех последующих работ равны максимальному значению из всех возможных ранних окончаний предшествующих работ, т.е. Тр. н i?j =max Т 0?i

Раннее окончание выполнения работы Тр. о i?j ? это самый ранний из возможных моментов времени окончания работы, начатой в самое раннее начало её выполнения. Оно равно сумме её раннего начала и продолжительности выполнения, т.е.

Тр. о i?j = Тр. н i?j +Тi?j.

Расчёт ранних начал и ранних окончаний работ ведут последовательно слева на право от исходного события к завершающему.

2. Длина критического пути.

Продолжительность критического пути Ткр? это максимальный по продолжительности путь от исходного до конечного события сетевой модели

3. Поздние сроки выполнения работ.

Позднее начало выполнения работы Тп. н i?j ? самый поздний момент времени начала работы, при котором продолжительность критического пути не изменится. Позднее начало завершающей работы (работ) равно разности продолжительности критического пути и продолжительности этой работы.

Позднее окончание выполнения работы Тп. о i?j ? самый поздний из допустимых моментов времени окончания работы, при котором продолжительность критического пути не изменится. Позднее окончание завершающей работы (работ) равно величине критического пути. Поздние окончания других работ равны минимальному из всех возможных значений позднего начала последующих работ.

Позднее и раннее окончания выполнения одной и той же работы между собой связаны зависимостью:

Тп. н i?j = Тп. о i?j ? Т i?j.

Расчёт поздних окончаний и поздних начал выполнения работ ведут справа на лево от завершающего события к исходному.

4. Резервы времени выполнения работы.

Определив ранние и поздние начала и окончания выполнения работ, можно установить работы критического пути, не имеющие резервов времени на их выполнение, и рассчитать резервы времени выполнения других работ. К работам, лежащим на критическом пути, относятся те из них, у которых совпадают значения раннего и позднего начала их и раннего и позднего окончания

(Тр. н i?j = Тп. н i?j; Тр. о i?j = Тп. о i?j).

Общий резерв времени выполнения работы Ri?j равен максимальному количеству времени, на которое можно перенести начало выполнения данной работы или увеличить её продолжительность без изменения продолжительности критического пути. Общий резерв времени выполнения работы равен разности между поздним и ранним окончанием выполнения и разности между поздним и ранним началом выполнения.

Ri?j =Тп. о i?j ? Тр. о i?j = Тп. н i?j ? Тр. н i?j.

При расчётах общего резерва времени работ можно пользоваться следующей зависимостью:

Ri?j =Тр. о i?j ? Тр. н i?j ? Т i?j.

Частный резерв времени выполнения работы ri?j равен максимальному количеству времени, на которое можно перенести начало выполнения данной работы или увеличить её продолжительность без изменения раннего начала последующих работ. Он равен разности между ранним началом последующей работы и ранним окончанием данной работы

ri?j =Тр. н посл? Тр. о i?j.

Работы критического пути не имеют не общего ни частного резерва времени их выполнения.

5. Сетевые графики

Сетевой график основан на использовании другой математической модели - графа. Графам (устаревшие синонимы: сеть, лабиринт, карта и т.д.) математики называют "множество вершин и набор упорядоченных или неупорядоченных пар вершин". Говоря более привычным для инженера (но менее точным) языком, граф - это набор кружков (прямоугольников, треугольников и проч.), соединенных направленными или ненаправленными отрезками. В этом случае сами кружки (или другие используемые фигуры) по терминологии теории графов будут называться "вершинами", а соединяющие их ненаправленные отрезки - "ребрами", направленные (стрелки) - "дугами". Если все отрезки являются направленными, граф называется ориентированным, если ненаправленными - неориентированным.

Наиболее распространенный тип сетевого графика работ представляет систему кружков и соединяющих их направленных отрезков (стрелок), где стрелки отображают сами работы, а кружки на их концах ("события") - начало или окончание этих работ.


Рисунок показывает упрощенно лишь одну из возможных конфигураций сетевого графика, без данных, характеризующих сами планируемые работы. Фактически на сетевом графике приводится множество сведений о производимых работах. Над каждой стрелкой пишется наименование работы, под стрелкой - продолжительность, этой работы (обычно в днях).

В самих кружках (разделенных на секторы) также содержится информация, смысл которой будет пояснен в дальнейшем. Фрагмент возможного сетевого графика с такими данными представлен на рисунке ниже.

В графике могут использоваться пунктирные стрелки - это так называемые "зависимости" (фиктивные работы), не требующие ни времени, ни ресурсов.

Они указывают на то, что "событие", на которое направлена пунктирная стрелка, может происходить только после свершения события, из которого исходит эта стрелка.

В сетевом графике не должно быть тупиковых участков, каждое событие должно соединяться сплошной или пунктирной стрелкой (или стрелками) с каким-либо предшествующим (одним или несколькими) я последующим (одним или несколькими) событиями.


Нумерация событий производится примерно в той последовательности, в какой они будут происходить. Начальное событие располагается обычно с левой стороны графика, конечное -- с правой.

Последовательность стрелок, в которой начало каждой последующей стрелки совпадает с концом предыдущей, называется путем. Путь обозначается в виде последовательности номеров событий.

В сетевом графике между начальным и конечным событиями может быть несколько путей. Путь, имеющий наибольшую продолжительность, называется критическим. Критический путь определяет общую продолжительность работ. Все остальные пути имеют меньшую продолжительность, и поэтому в них выполняемое работы имеют резервы времени.

Критический путь обозначается на сетевом графике утолщенными или двойными линиями (стрелками).

Особое значение при составлении сетевого графика имеют два понятия:

Раннее начало работы - срок, раньше которого нельзя начать данную работу, не нарушив принятой технологической последовательности. Он определяется наиболее долгим путем от исходного события до начала данной работы

Позднее окончание работы - самый поздний срок окончания работы, при котором не увеличивается общая продолжительность работ. Он определяется самым коротким путем от данного события до завершения всех работ.

При оценке резервов времени удобно использовать еще два вспомогательных понятия:

Раннее окончание - срок, раньше которого нельзя закончить данную работу. Он равен раннему началу плюс продолжительность данной работы

Позднее начало - срок, позже которого нельзя начинать данную работу, не увеличив общую продолжительность строительства. Он равен позднему окончанию минус продолжительность данной работы.

Если событие является окончанием лишь одной работы (т.е. в него направлена только одна стрелка), то раннее окончание этой работы совпадает с ранним началом последующей.

Общий (полный) резерв - это наибольшее время, на которое можно задержать выполнение данной работы, не увеличивая общую продолжительность работ. Он определяется разностью между поздним и ранним началом (или поздним и ранним окончанием - что то же самое).

Частный (свободный) резерв - это наибольшее время, на которое можно задержать выполнение данной работы, не меняя раннего начала последующей. Этот резерв возможен только тогда, когда в событие входят две или более работы (зависимости), т.е. на него направлены две или более стрелки (сплошные или пунктирные). Тогда лишь у одной из этих работ раннее окончание будет совпадать с ранним началом последующей работы, для остальных же это будут разные значения. Эта разница у каждой работы и будет ее частным резервом.

Кроме описанного типа сетевых графиков, в котором вершины графа ("кружки") отображают события, а стрелки - работы, существует другой тип, в котором вершинами являются работы. Различие между этими типами непринципиальное - все основные понятия (раннее начало, позднее окончание, общие и частные резервы, критический путь и т.д.) сохраняются неизменными, отличаются лишь способы их записи.

Построение сетевого графика этого типа основано на том, что раннее начало последующей работы равно раннему окончанию предыдущей. Если данной работе предшествует несколько работ, ее раннее качало должно быть равно максимальному раннему окончанию предыдущих работ. Расчет поздних сроков ведется в обратном порядке - от завершающий к исходной, как и В сетевом графике "вершины - события". У завершающей работы позднее и раннее окончание совпадают и отражают продолжительность критического пути. Позднее начало последующей работы равно позднему окончанию предыдущей. Если за данной работой следует несколько работ, то определяющим является минимальное значение из поздних начал.

Сетевые графики "вершины - работы" появились позже графиков "вершины - события", поэтому они несколько менее известны и сравнительно реже описываются в учебной и справочной литературе. Тем не менее, они имеют свои преимущества, в частности их легче строить и легче корректировать. При корректировка графиков ""вершены -- работы" их конфигурация не меняется, у графиков же "вершины - события" такие изменения исключить не

удается. Однако в настоящее время составление и корректировка сетевых графиков автоматизированы, и для пользователя, которому важно знать лишь последовательность работ и их резервы времени, не имеет особого значения, каким способом сделан график, т.е. какого он типа. В современных специализированных пакетах компьютерных программ планирования и оперативного управления в основном используется тип "вершины - работы".

Корректировка сетевых графиков производится как на этапе их составления, так и использования. Она состоит в оптимизации строительных работ по времени и по ресурсам (в частности по движению рабочей силы). Если, например, сетевой график не обеспечивает выполнения работ в необходимые сроки (нормативные или установленные контрактом) производится его корректировка по времени, т.е. сокращается продолжительность критического пути. Обычно это делается

за счет резервов времени некритических работ и соответствующего перераспределения ресурсов за счет привлечения дополнительных ресурсов за счет изменения организационно-технологической последовательности и взаимосвязи работ.

В последнем случае у графиков "вершины - события" приходится менять их конфигурацию (топологию).

Корректировка по ресурсам производится путем построения линейных календарных графиков по ранним началам, соответствующих тому или иному варианту сетевого графика, и корректировки этого варианта.

Автоматизированные системы управления строительством обычно включают компьютерные программы, в той или иной мере автоматизирующие практически все этапы составления и корректировки сетевых графиков.

Техника построения сетевой модели заключается в следующем:

Сеть или ориентированный конечный граф без контуров состоят из множе­ства узлов (вершин, точек) и дуг (ребер, звеньев), соединяющих раз­личные пары узлов. На каждой дуге задана ее ориентация (определено направление), поэтому говорят, что сеть является ориентированной.

В описании ориентированной сети используют числа натурального ряда для обозначения узла (E i . ) и пару чисел, определяющих исходя­щий (i ) и входящий (j ) узлы для ориентирования дуги (i, j ).

Последова­тельность дуг, соединяющих узлы, называется путем между этими узлами.

Сеть называют связной при условии, что существует, по крайней мере, один путь между любой парой узлов.

Построение сетевой модели должно следовать определенным пра­вилам:

Каждая операция в сети представляется только одной дугой (i, j ) ;

Ни одна пара операций не должна определяться одинаковыми начальными и конечными событиями;

При включении каждой операции в сетевую модель для обеспечения правильного упорядочения необходимо дать ответы на сле­дующие вопросы: какие операции необходимо завершить непос­редственно перед началом рассматриваемой операции; какие операции должны следовать после завершения данной операции; какие операции могут выполняться одновременно?

В сети не должно быть событий (кроме исходного), в которые не входит ни одна дуга, и событий (кроме завершающего), из которых не выходит ни одна дуга.

В построении модели используют три вида операций (рис. 6.8):

1) действительная операция - работа, требующая затрат времени и ресурсов (сплошная линия);

2) операция-ожидание, т.е. работа, требующая только затраты вре­мени (штрих-пунктирная линия);

3) фиктивная операция - логическая связь, которая отражает технологическую или ресурсную зависимость с отсутствием связывающих их операций (пунктирная линия).

Построение сетевой модели начинается с составления (1) списка операций (работ), подлежащих выполнению . Последовательность опера­ций в списке может быть произвольной, так как построение сетевой модели проходит несколько итераций. Перечень операций тщательно продумывается и детализируется. Операции, включенные в список, характеризуются определенной продолжительностью, которая уста­навливается на основе действующих нормативов или по аналогии. Та­кие временные оценки называются детерминированными.

Список операций представляется в виде таблицы, в которой указы­ваются индекс мероприятия, его содержание, очередность и продол­жительность. После составления списка операций приступают к (2) про­цедуре построения сети , фрагмент которой приведен на рис. 6.8.

Особенность сети на рис. 6.8 заключается в вводе фиктивных опе­раций е 2 _ 3 и е 5 __ 6 . В частности, фиктивная операция е 2 _ 3 указывает, что в качестве опорной для операции е 3 _ 4 наряду с операцией е 1 _ 3 вы­ступает и операция e 1 _ 2 . Подобную роль выполняет и фиктивная опе­рация е 5 _ 6 для действительной операции е 6 _ 8 . На построенной сетевой модели выполняются расчеты с использованием специальных правил для определения критического пути и резервов времени для отдельных операций, которые несложно преобразовать в реальную шкалу време­ни, удобную для разработки программы или проекта работ.

Дополнением к планированию работ по проекту служит построе­ние графика Ганта и диаграммы распределения потребностей в чело­веческих и материальных ресурсах . График Ганта дает возможность пользователю определить, какие действия имеют место в любой отре­зок времени. Диаграмма потребностей позволяет проанализировать варианты распределения ресурсов, особенно при возникновении про­блем с выполнением запланированных мероприятий. Если существу­ют ограничения на расход ресурсов и по диаграмме выяснено их превышение, то необходимо изыскать возможности «выровнять» (равномеризировать) потребности на протяжении проекта, особенно ког­да речь идет о рабочей силе. Такие действия потребуют корректирова­ния первоначального варианта диаграммы Ганта.

Рис. 6.8. Фрагмент сетевой модели календарного плана-графика

Для детального изучения различных классов сетевых моделей сле­дует обратиться к специальной литературе по исследованию операций, в частности работам , по управлению проектами .

Сетевая модель «дерево»

Частным случаем сети выступает связная сеть , или «дерево (целей, проблем, задач)», - дедуктивно-логическая модель . Граф называется связным, если он не со­держит циклов и для любых двух его вершин существует соединяющий их путь. Идея построения дедуктивно-логической модели в виде «дерева» выглядит следующим образом. Имеется исходный элемент Х 0 , представляющий собой сформулированную общую цель, проблему или задачу. Ему придается статус «корня дерева ». Выведенные из «корня дерева» дуги образуют концевые узлы которые затем при последующей декомпозиции могут стать корневыми, например х 2ав, и таким образом до элементарных операций. Граф «дере­во» графически отображается подобно иерархической модели, приве­денной на рис. 6.1.

Отметим основные свойства модели «дерево» :

а) вершины графа фиксируют определенный иерархический уровень
«дерева» и представляют аналог иерархической системы управления с прямыми связями, т.е. когда имеются «сигналы» управления, идущие с верхнего уровня к ближайшему нижнему уровню, представляющему частичное разложение его цели на подцели или функции на подфункции и т.д.;

б) ребра графа ориентированы таким образом, что все операции (или цели), начинающиеся в вершине Х 0 и составленные из последователь­ности ребер, являются элементами общей совокупности (технологии, комплекса) или цели;

в) если соединить корень или другую вершину графа с некоторым выходом, то будет реализована булева функция - конъюнкция или структурная функция системы, определяющая один из возможных пу­тей или функционирования системы, или решения проблемы, или до­стижения цели.

«Дерево» как инструмент исследования используют для построения абстрактно-дедуктивной модели определенного назначения :

«дерево целей» для анализа системы в терминах целей;

«дерево задач» для анализа системы в терминах функций;

«смешанное дерево», где цель одновременно будет считаться и
функцией, тогда это будет функционально-целевой анализ;

«дерево решений» содержит проблемы, формулировки которых в неявном виде определяют и цели (разрешение проблем), и за­дачи (что надо сделать для разрешения проблем).

Эскизные модели

Принципы построения

Под эскизной моделью будем понимать структурную модель, построенную на логической согласованности функций, действий, потоков и т.д., не ограниченную строго соответствующим графическим языком и пра­вилами.

1. Ясность. Простейшие модели используются для того, чтобы сделать более ясными ситуации, процессы и следствия, поэтому графическое отображение должно быть точным и аккуратным и в то же время по­нятным и простым.

2. Простота. Следует избегать слишком сложных конструкций моде­лей, несущих излишнюю информацию. Если анализируется сложная ситуация, то следует построить несколько различных схем, представ­ляющих конкретные аспекты этой ситуации.

3. Логичность. Язык простейших структурных моделей в наибольшей степени приближен к созданию рисунка «портрета» реальных объек­тов (ситуации, явления, процесса, действия и т.д.), поэтому они долж­ны тестироваться на правильность отображения.

4. Информированность. Каждая модель должна иметь имя и название, например «системная карта функционирования банка» и т.д. Должен быть обозначен и каждый элемент как носитель или цели, или функ­ции, или устройства, или процесса, а связи определенным образом ориентированы.

5. Четкость. Все поясняющие надписи и предположения должны быть кратко и четко сформулированы, чтобы не осталось недопонимания на содержательном уровне.

6. Согласованность. При построении схем необходимо тщательно от­слеживать функциональную, логическую, конструктивную и другие зависимости между элементами, чтобы получить неискаженную ин­формацию.

7. Творчество. Для того чтобы модель была эффективна, ее построе­ние не должно испытывать ограничения со стороны инструменталь­ных возможностей. Наглядная схема, нарисованная от руки, всегда воспринимается лучше и над ней проще работать, но язык ее должен соответствовать определенным правилам.

В целях популяризации простого инструментария, удобного для использования на первых шагах исследования систем управления, пе­рейдем к краткому рассмотрению основных групп эскизных моделей.

Типы эскизных моделей

6.6.2.1. Системная карта. Исследование системы целесообразно начинать с построения системной карты, представляющей собой ее простейший графический образ, формируемый исходя из основных понятий теории систем - система как некоторая целостность, ее граница как замкну­тый контур, структурообразующие элементы - подсистемы. Для пост­роения системной карты целесообразно использовать индуктивный ме­тод познания: вначале следует определить, что будет рассматриваться в качестве структурообразующих элементов (подсистем), которые долж­ны быть прежде всего однородны, т.е. это могут быть функциональные подсистемы, а также группы или команды, ресурсы, оборудование и т.д. Выбранные структурообразующие элементы объединяют согласно по­зиции некоторого субъекта-исследователя в систему.

Рассмотрим композицию, состоящую из системной карты системы управления и отдельно ее подсистемы, приведенную на рис. 6.9.

Пер­вый этап познания системы управления - это ее общесистемное представление в виде совокупности подсистем, которыми выступают виды управленческой деятельности (рис. 6.9 а). Каждой подсистеме дается имя, отражающее без дополнительного пояснения ее функциональное назначение. Отметим, что сущность подсистем с формальной точки зрения двойственна: с одной стороны, она сама является системой, как показано на рис. 6.9 б, а с другой - представляет собой элемент сложной системы. В качестве структурообразующих элементов каждой под­системы могут рассматриваться операционные функции и объекты уп­равления, результат деятельности которых - некоторая продукция (ин­формация, расчет, подготовленный документ, разработанное решение).

Рис. 6.9. Системная карта системы управления (а)

и подсистемы управления снабжением (б)

6.6.2.2. Схема влияния . Если системную карту дополнить стрелками, обозначающими взаимовлияние подсистем и структурообразующих элементов другого уровня посредством поглощения или генерирования информа­ционных, материальных и денежных потоков, то получим модель, назы­ваемую схемой влияния. Интенсивность влияния обычно выражается тол­щиной стрелок. При изучении любой подсистемы управления, чтобы не усложнять картину, следует построить три схемы влияния:

1) потоки, поступающие в подсистемы от структурообразующих элементов внутренней среды системы;

2) потоки, поступающие из исследуемой подсистемы в структурообразующие элементы системы управления;

3) потоки, поступающие от структурообразующих элементов внешней среды. В целом они отображают композицию схем или структурную модель взаимодействия подсистемы управления с внутренней и
внешней средой.

6.6.2.3. Поле сил. Как вариант представления взаимодействия среды и структурообразующего элемента может рассматриваться и модель поля сил (рис. 6.10), предложенная К. Левиным. Модель «поле сил» ос­нована на идее, что любая ситуация в любой момент времени не ста­тична, а находится в динамическом равновесии под влиянием двух групп факторов, определяемых как движущие и сдерживающие силы. Первая группа факторов действует таким образом, чтобы вывести си­туацию из состояния равновесия, вторая группа направлена на под­держание устойчивого состояния или равновесия.

Рис. 6.10. Модель поля сил

Построение и анализ поля сил выполняются на предварительной ста­дии исследования проблемы, когда целесообразно сгруппировать суще­ствующее множество факторов, оказывающих влияние на текущее состояние, и разобраться в характере этого влияния. Благодаря этому происходят систематизация и разделение факторов на движущие к изме­нениям и сдерживающие их.

Графически факторы-силы представляются стрелками, отображающими их направленность, а толщина и длина стрел­ки характеризует силу и продолжительность влияния.

6.6.2.4. Причинно-следственная связь. Эскизные модели, именуемые при­чинно-следственной связью, выстраиваются на основе интеграции идей, используемых при построении моделей «схема влияния» и «поле сил».

Модели этого типа представляются в виде двух следующих ком­позиций: связного графа с «кроной», развивающейся вверх, и дугами, ориентированными вниз, к «корню» графа, и диаграммы Ишикавы (или диаграммы «рыбий скелет»). Их основные атрибуты - слова или фразы, связанные стрелками.

При построении эскизной модели причинно-следственной связи следует соблюдать некоторые правила :

а) указанные в основании стрелки факторы служат «причиной» или
приводят «к результату», находящемуся на острие стрелки;

б) изображаемую графически причинную связь следует всегда проверять таким тестом: «Действительно ли А приводит (или является причиной) к В ?»; если удается по всем связям ответить «да», то схема со­ставлена корректно.

В основу построения модели причинно-следственной связи может быть положен как дедуктивный метод (исходная позиция - конечное событие, действие или проблема), так и индуктивный (единичные фак­торы, которые последовательно интегрируют до конечного события). В первом случае построение модели происходит продвижением назад - вверх по стратам причин до элементарных действий или событий или исходных параметров, во втором - по ходу образования новых и при­влечения дополнительных факторов.

Диаграмма Ишикавы - инструмент, позволяющий выявить отноше­ние между конечным результатом (следствием) и воздействующими на него факторами (причинами) путем их упорядочения и демонстрации свя­зи между ними и факторами и конечным результатом. Факторы разделя­ются на обобщенные, комплексные (как отражение набора единичных факторов) и единичные (первичные, мелкие «кости», капилляры и т.д.). Общий вид диаграммы, по мнению ее разработчика, напоминает рыбий скелет (рис. 6.11). На рис. 6.11 представлены обобщенные и комплексные факторы, оказывающие влияние на улучшение качества продукции.

Особенности построения диаграммы состоят в следующем: пробле­ма - это горизонтальная, центральная линия, обобщенные факторы - наклонные линии, горизонтальные линии к наклонным - это комплексные факторы, определяющие состояние каждого обобщенного фактора. Количество обобщенных факторов, как правило, ограниче­но цифрами 4-6. Модель на рис. 6.11 называется моделью « » -

­ m an (персонал и условия его труда),

­ m achine (оборудование, установки и т.д.),

­ m aterial (предметы труда),

­ m ethod (метод, способ, технология и организация работ и другой инструментарий управления).

Рис. 6.11. Модель причинно-следственной связи (диаграмма Ишикавы)

6.6.2.5. Модель «вход-выход» . Отображение функционирования процесса и системы с использованием модели «вход-выход», реализующей прин­цип «черного ящика», осуществляется простейшим способом.

Графи­ческие элементы - геометрическая фигура для обозначения «процес­са преобразования» и стрелки, указывающие «вход» и «выход» (рис. 6.12).

В качестве процесса преобразования может выступать система любой природы и сложности, так как внутренняя ее структура и меха­низм преобразования входных ресурсов не являются предметом изу­чения на определенном этапе исследования.

На рис. 6.12 в модели «вход» - это используемые ресурсы, «выход» - это продукция или ус­луги, прибыль, налоги и другие результаты деятельности.

Рис. 6.12. Простейшая модель «вход-выход»

Описанный способ изучения систем получил отражение в разви­тии «процессного подхода», когда любой вид деятельности представ­ляется как процесс преобразования, характеризующийся некоторым «входом» и «выходом».

6.6.2.6. Модель функциональных потоков . Эта модель отображает передачу некоторого действия, как правило, посредством перемещения материаль­ных, финансовых и информационных потоков между функционально зависимыми элементами.

Имя элемента дается в форме существительно­го. Такие модели широко используются для отображения движения во времени (t ) товарных (T ), денежных (D ) и информационных потоков (I ). Последние несут функциональным элементам информацию о движении товарных и денежных потоков и по времени опережают их.

Рис. 6.13. Модель функциональных потоков

6.6.2.7. Модель последовательности действий. Эта модель представляет со­бой графическое отображение структуры совершаемых функций или

процессов. К элементам модели относятся функции и операции, со­вершаемые для получения определенного результата, а к связям - упо­рядоченная последовательность действий. Имя элемента дается в форме глагола. Данную модель можно рассматривать как один из первых эта­пов построения SADT-модели, который следует после составления списка функций (рис. 6.14).

Рис. 6.14. Модель последовательности действий оперативного управления

В заключение отметим, что графическая интерпретация объектов и процессов исследований не ограничивается приведенными структур­ными моделями. Широкое распространение получили гибридные мо­дели, синтезирующие несколько подходов и графических языков. На­пример, наиболее информативной получается модель, использующая язык SADT-моделей и математические модели функций.

Развитие системного мышления как концепции современного менеджмента неотделимо от развития графического осмысления ситуа­ций, проблем и управляющих действий, поэтому необходимо изучить, почувствовать эффективность формирования графических образов систем, используя рассмотренные подходы, приемы и правила.


Сетевой график состоит из двух элементов: работ и событий. Работами называют любые процессы, приводящие к достижению определенных результатов (событий). Кроме работ действительных, требующих затрат времени, существуют так называемые фиктивные работы. Это связь между двумя событиями, не требующая затрат времени.

Работа на графике изображается стрелкой, над которой указывается затрачиваемое на нее время. Длина стрелки и ее ориентация на графике не имеют значения. Желательно только выдерживать направление стрелок так, чтобы начальное событие для работы (обозначается i) располагалось слева в сетевом графике, а конечное (обозначается j) - справа. Для отображения фиктивных работ используют пунктирные стрелки, над которыми время не указывается или проставляется ноль.

Таким образом, событие - это результат выполненной работы, поэтому его формулировка записывается всегда в совершенной форме, не допускающей различного толкования. Например, формулировка работы - "разработка технических условий на печь", формулировка ее конечного события - "технические условия на печь разработаны". Следовательно, событие не имеет продолжительности во времени. Изображается оно кружком или прямоугольником, внутри которого указывается порядковый номер или шифр события.

Правила построения сетевой модели

Правило 1 . Каждая операция в сети представляется одной и только одной дугой (стрелкой). Ни одна из операций не должна появляться в модели дважды. При этом следует различать случай, когда какая-либо операция разбивается на части; тогда каждая часть изображается отдельной дугой.

Правило 2 . Ни одна пара операций не должна определяться одинаковыми начальным и конечным событиями. Возможность неоднозначного определения операций через события появляется в случае, когда две или большее число операций допустимо выполнять одновременно.

Правило 3 . При включении каждой операции в сетевую модель для обеспечения правильного упорядочения необходимо дать ответы на следующие вопросы:
а) Какие операции необходимо завершить непосредственно перед началом рассматриваемой операции?
б) Какие операции должны непосредственно следовать после завершения данной операции?
в) Какие операции могут выполняться одновременно с рассматриваемой?

При построении сетевого графика следует соблюдать следующие правила:

  • в сети не должно быть "тупиков", т.е., событий, от которых не начинается ни одна работа, исключая завершающее событие графика;
  • в сети не должно быть событий, не имеющих предшествующего события, кроме исходного события графика;
  • в сети не должно быть замкнутых контуров (рис.1);
  • в сети не должно быть работ, имеющих одинаковые начальное и конечное события. Для двух работ, выполняемых параллельно, можно ввести дополнительное событие, например i 3 и фиктивную работу (рис. 2).

Правила построения сетевых графиков

При построении сетевого графика необходимо соблюдать ряд правил.
  1. В сетевой модели не должно быть «тупиковых» событий, то есть событий, из которых не выходит ни одна работа, за исключением завершающего события.
  2. В сетевом графике не должно быть «хвостовых» событий, то есть событий, которым не предшествует хотя бы одна работа, за исключением исходного.
  3. В сети не должно быть замкнутых контуров и петель, то есть путей, соединяющих некоторые события с ними же самими.
  4. Любые два события должны быть непосредственно связаны не более чем одной работой.
  5. В сети рекомендуется иметь одно исходное и одно завершающее событие.
  6. Сетевой график должен быть упорядочен. То есть события и работы должны располагаться так, чтобы для любой работы предшествующее ей событие было расположено левее и имело меньший номер по сравнению с завершающим эту работу событием.
Построение сетевого графика начинается с изображения начального события, которое обозначается цифрой 1 и обводится кружком. Из начального события выпускают стрелки, соответствующие работам, которым не предшествуют какие-либо другие работы. По определению, момент завершения работы является событием. Поэтому каждая стрелка
завершается кружком – событием, в котором проставляется номер этого события. Нумерация событий произвольная. На следующем этапе построения изображаем работы, которым предшествуют уже нарисованные работы (то есть которые опираются на уже построенные работы) и т. д. На следующем этапе отражаем логические взаимосвязи между работами и определяем конечное событие сетевого графика, на которое не опираются никакие работы. Построение закончено, далее необходимо провести упорядочение сетевого графика.
Простой метод упорядочения сетевого графика основан на понятии ранга события:
  • все события сетевого графика подразделяются на ранги,
  • к одному рангу может относиться несколько событий,
  • нумерация событий производится в соответствии с принадлежностью к тому или иному рангу,
  • чем выше ранг, тем больший номер имеет событие,
  • внутри одного ранга нумерация событий произвольная.
Начальное событие относим к нулевому рангу и перечеркиваем одной чертой все работы, выходящие из этого события. К первому рангу относим те события, которые не имеют входящих неперечеркнутых стрелок. Далее перечеркиваем двумя чертами работы, выходящие из событий первого ранга. Ко второму рангу относим те события, которые не имеют входящих неперечеркнутых стрелок и т.д.

Страница
9

Правило запрещения необеспеченных событий. В сетевой модели не должно быть событий, в которые не входит ни одной работы, конечно, если это событие не является начальным. Например, событие 3 (рис.4) - необеспеченное.

Работа 3-5 не будет выполнена, так как событию 3 не предшествует ни одной работы (не заданы исходные условия для начала этой работы).

Правило изображения „поставки". „Поставка" - это результат, который получен за пределами системы, т.е. не является результатом работы данного коллектива. „Поставка" изображается кружком, внутри которого поставлен крестик. Рядом с кружком указывается номер спецификации, раскрывающей содержание поставки (рис.5). Из модели видно, что „поставка" необходима для выполнения работы 2-3. Номер 3, стоящий у кружка "поставка", - это третья строка в спецификации.

Рисунок 6.

Работе „г" предшествует только работа „в". Но если необходимо, например, показать, что работе „г" непосредственно предшествует не только работа „в", но и „а", то модель должна быть изображена по-другому (рис.7).

Построение сетевых моделей. Для построения сетевого графика необходимо в технологической последовательности установить: какие работы должны быть завершены до начала данной работы, начаты после ее завершения, какие работы необходимо выполнять одновременно с выполнением данной работы.


Рисунок 7.

Например, необходимо выполнить следующие работы „а", „б", „в", „г", „д". Технологическую последовательность выполнения этих работ запишем в таблицу 1.

Таблица 1 – Исходные данные

Начнем построение модели.

Работам "а" и "б" никакие работы не предшествуют. Это показано графически на Рис.9. Работа "в" выполняется после работы "а" (Рис.9). Работа „г" выполняется после работы "б" (рис.10)


Рисунок 10.

Только после точного определения всех взаимосвязей и последовательности работ можно приступить к построению сетевой модели. При кодировании сетевых моделей необходимо учитывать следующее:

· все события имеют самостоятельные номера;

· кодируются события числами натурального ряда;

· номер последующему событию присваивается после присвоения номеров предшествующим ему событиям;

· стрелка (работа) должна быть всегда направлена от события с меньшим номером к событию с большим номером.

Построение сетевых матриц. Принадлежность работы (стрелки) к тому или иному горизонтальному "коридору" определяется ее горизонтальным участком в данном „коридоре". Принадлежность работы (стрелки) к вертикальному „коридору" определяется вертикальными границами „коридора", этапа или операции, т.е. вертикальными линиями, определяющими масштаб времени матрицы.

Из рис.11 видно, что работы 1-2 и 2-4 выполняются директором, работы 1-3 и 3-4 - заместителем директора, работа 1-4 - главным экономистом. Работы 1-2 и 1-3 выполняются на I этапе решения; работы 2-4 и 3-4 - на II, работа 1-4 - в течение I и II этапов.

Продолжительность каждой работы на сетевой матрице определяется расстоянием по сплошной линии между центрами двух событий, заключающих эту работу (стрелку) в проекции на горизонтальную ось времени. На рис.11 работы 1-2 и 1-3 имеют продолжительность, равную четырем единицам времени.

Местонахождение каждого события на сетевой матрице определяется окончанием наиболее удаленной вправо (на сетке времени) входящей в него стрелки.

I этап решения

II этап решения

Директор

Единой последовательности построения сетевой модели (сетевого графика) нет. Поэтому строить модели можно по-разному - двигаясь от начала проекта (исходного события) к его окончанию (завершающему событию), и наоборот - от окончания к началу. Более логичным и правильным сле­дует признать метод построения графиков от исходного события к завершающему, т.е. слева направо, так как при таком построении четко просле­живается технология выполнения моделируемых работ.

В качестве первого правила сетевого моделирования следует указать правило последовательности изображения работ: сетевые модели следует строить от начала к окончанию, т.е. слева направо.

Правило изображения стрелок. В сетевом графике стрелки, обозначаю­щие работы, ожидания или зависимости, могут иметь различный наклон и длину, но должны идти слева направо, не отклоняясь влево от оси орди­нат, и всегда направляться от предшествующего события к последующе­му, т.е. от события с меньшим порядковым номером к событию с большим порядковым номером.

Правило пересечения стрелок. При построении сетевого графика следует избегать пересечения стрелок: чем меньше пересечений, тем нагляднее график.

Правило обозначения работ. В сетевом графике между обозначениями двух смежных событий может проходить только одна стрелка.

В практике зачастую встречаются случаи, когда две и более работы начи­наются одним и тем же событием, выполняются параллельно и заканчива­ются одним и тем же событием. Например, одновременно начинается про­ектирование двух вариантов конструкции новой машины (работы а и б), после чего проводится сопоставление и выбор лучшего варианта (рабо­та в ). Изображение этих работ на сетевом графике не должно выводить две работы из одного события и завершать их одним и тем же событием (рисунок 16а), так как в этом случае две работы получат одно и то же обозна­чение - 1-2. Это недопустимо, потому что при расчете сетевого графика невозможно будет определить параметры этих работ и параметры всего сетевого графика.

Для правильного изображения работ можно ввести дополнительное собы­тие и зависимость (рисунок 16б). Теперь работы а и б имеют уникальные числовые обозначения - 1-3 и 1-2 соответственно, и никаких трудно­стей при расчете параметров сетевого графика не возникнет.

в а в
б б

Рисунок 16 - Неверное изображение параллельно выполняемых работ (а), распараллеливание работ в сетевой модели (б)

Правило расчленения и запараллеливания работ. При построении сете­вого графика можно начинать последующую работу, не ожидая полного завершения предшествующей. В этом случае нужно «расчленить» предшествующую работу на две, введя дополнительное событие в том месте предшествующей работы, где может начаться новая.

Например, необходимо корректировать рабочие чертежи (работа а, про­должительность 30 дней) и изготовить испытательный стенд (работа б, продолжительность 25 дней). Если эти работы изобразить последователь­но, то их общая продолжительность составит 55 дней (рисунок 17а) . Соста­вив сетевой график и еще раз проанализировав взаимосвязи между рабо­тами, приходим к выводу, что работу б можно начать уже после того, как будет выполнена половина работы а, т.е. через 15 дней. Закончить же работу б можно только после полного завершения работы а . Исходя из этого можно построить новый сетевой график (рисунок 17б). Как видно из рисунка, общая продолжительность работ теперь составляет 42 дня, т.е. получается выигрыш во времени продолжительностью в 13 дней.

а) а - 15 б - 25 а
б) а 1 - 15 а 2 - 15
б 1 - 13 б 2 - 12

Рисунок 17 - Последовательное изображение работ (а),

расчленение и запаралле­ливание работ (б)

Правило запрещения замкнутых контуров (циклов, петель). В сетевой модели недопустимо строить замкнутые контуры - пути, соединяющие некоторые события с ними же самими, т.е. недопустимо, чтобы один и тот жепуть возвращался в то же событие, из которого он вышел.

На рисунке 18а продемонстрирован сетевой график, в котором можно обнаружить замкнутый контур: работы 1-3, 3-2 и 2-1 образуют петлю. Начиная движение от события 1 и двигаясь по направлению стрелок, можно попасть снова к событию 1. Это недопустимо.

Рисунок 18б показывает, что при наличии пересечений обнаружить кон­туры труднее. Но, тем не менее, двигаясь по стрелкам, видим, что в данном случае замкнутый контур принял форму «восьмерки», объединяющей со­бытия 1, 3, 2 и 4: путь вернулся к исходному событию. Такое изображение также недопустимо.


а) б)

Рисунок 18 - Неправильное построение сетевой модели: а) замкнутый контур в виде петли; б) замкнутый контур

Если в модели образовался замкнутый контур, это значит, что имеются ошибки в технологии выполнения работ или в составлении графика (вспомните правило изображения стрелок).

Правило запрещения тупиков. В сетевом графике не должно быть тупи­ков, т.е. событий, из которых не выходит ни одна работа, за исключением завершающего события (в многоцелевых графиках завершающих собы­тий несколько, но это особый случай) (рисунок 19а).

Правило запрещения хвостовых событий. В сетевом графике не должно быть хвостовых событий, т.е. событий, в которые не входит ни одна работа, за исключением начального события (рисунок 19б).

а) б)

Рисунок 19 - Неправильное построение сетевой модели; а) наличие тупика; б) наличие хвостового события

Правило изображения дифференцированно-зависимых работ. Если одна группа работ зависит от другой группы, но при этом одна или несколько работ имеют дополнительные зависимости или ограничения, при построении сетевого графика вводят дополнительные события.

Допустим, есть две группы работ - а, б, в и г, д, е (рисунок 20а). Представим, что существует следующая зависимость между этими группами: работа г зависит от работ б и в , а работа д зависит только от работы б. Сетевая модель, объединяющая обе группы работ, которая приведена на рисунке 20б, не верна, так как сетевой график показывает, что работа д зависит как от работы б, так и от работы в , а это противоречит исходной моделируемой технологии.


а в г е

б д

а в г е

б д
в)
в г
бд

Рисунок 20 - Две группы зависимых работ (а). Неправильное (б) и правильное (в) изображение зависимых работ в одной сетевой модели

Чтобы построить правильную сетевую модель, необходимо ввести допол­нительное событие. Правильный сетевой график показан на рисунке 20в. В нем работы г и д являются дифференцированно-зависимыми и каждая имеет свою зависимость от предшествующих работ.

Правило изображения поставки. В сетевом графике поставки (под постав­кой понимается любой результат, который предоставляется «со стороны», т. е. не является результатом работы непосредственного участника проек­та) изображаются двойным кружком либо другим знаком, отличающимся от знака обычного события данного графика. Рядом с кружком поставки дается ссылка на документ (контракт или спецификацию), раскрывающий содержание и условия поставки.

Пример изображения поставки приведен на рисунок 21а. Но бывают и более сложные случаи.

Например, на рисунке 21б показана поставка, входящая в событие 2. Судя по графику, поставка необходима сразу для двух работ - 2-3 и 2-4. Но если нужно изобразить, что поставка требуется для работы 2-4, сле­дует применить правило изображения дифференцированно-зависимых работ, т.е. ввести дополнительное событие (2") и зависимость (2-2") (рисунок 21в). Поставка теперь необходима только для работы 2"-4, что со­ответствует производственной технологии.

а)

а б в г

Рисунок 22 - Изображение непосредственных зависимостей работ

Технологическое правило построения сетевых графиков. Для построения сетевого графика необходимо в технологической последовательности ус­тановить:

· какие работы должны быть завершены до начала данной работы;

· какие работы должны быть начаты после завершения данной работы;

· какие работы необходимо выполнять одновременно с выполне­нием данной работы.

Как было уже сказано, работа обозначается номерами начального и ко­нечного событий - события, из которого работа выходит (i ), и события, в которое работа входит (j ), т.е. работа ограничена событиями i и j. Рабо­та, предшествующая данной, обозначается как h-i , а последующая - как j-k. Время выполнения данной работы обозначается как ,предшеству­ющей работы - , последующей работы - .

Это правило изображено на рисунке 23.

Например, необходимо выполнить работы а, б, в, г, д и е . Работы а и б начинаются одновременно. Работа г должна выполняться после работ б и в, работа в - после работы а, работа д - после работы а, работа е - после работ г и д.

Эту технологическую последовательность выполнения работ запишем в табличной форме (рисунок 23а).


Предшествующие работы (h-i ) Данные работы (i-j )
- - а б, в а г, д а б в г д е

б г е

Рисунок 23 - Сетевой график (б), построенный на основе данных таблицы (а)

Начнем построение сетевого графика.

1. Работам а и б другие работы не предшествуют.

2. Работа в а .

3. Окончание работы в б , так как следующая работаг должна выполняться после работы б , а работа г – после окончания работ б и в .

4. Работа д выполняется после работы а.

5. Окончание работы д объединяем с окончанием работы г , так как следующая работа – е должна выполняться после окончания работ г и д .

График построен.

Важнейшим вопросом построения сетевых графиков, безусловно, является четкое определение всех взаимосвязей между работами в их технологической последовательности. В сетевом графике нельзя допускать никаких отклонений от моделируемой технологии, так как малейшее нарушение может привести к неадекватности создаваемой модели.

Только после точного определения всех взаимосвязей и последовательности работ можно приступить к построению сетевого графика.

Правила кодирования событий сетевого графика. Для кодирования сете­вых графиков необходимо пользоваться следующими правилами.

1. Все события графика должны иметь свои собственные номера.

2. Кодировать события необходимо числами натурального ряда без пропусков.

3. Номер последующему событию следует присваивать после присвоения номеров предшествующим событиям.

4. Стрелка (работа) должна быть всегда направлена из события с меньшим номером в событие с большим номером.

Последовательность проставления цифр в кружки событий определяется нумерацией событий и направленностью стрелок (рисунок 24а).

Четкая система кодирования позволяет выявить имеющиеся в сети замк­нутые контуры.

Например, при кодировке сети, изображенной на рисунке 24б, обнаружива­ется замкнутый контур.

а) б)

Рисунок 24 - Нумерация событий в сети (а) и выявление замкнутого контура (б)


Укрупнение работ

Сетевые модели строятся на самых разных уровнях планирования и управления. В связи с этим возникает необходимость различного представления одного и того же проекта - в укрупненном и в детализированном. При переходе от сетей более низкого уровня (детальных сетевых графиков) к сетям более высокого уровня (укрупненным сетевым графи­кам) необходимо решать задачу укрупнения работ, что влечет за собой упрощение сложного (детализированного) графика.

Например, на рисунке 25а представлен исходный детализированный график. Если вместо работ 2-4, 2-7, 4-6, 4-7, 6-9, 6-7, 7-9, 9-11 указать только одну работу, получим укрупненный график (рисунок 25б).

а)
10 00


Рисунок 25 - Сетевой график: а) детализированный; 6) укрупненный

Сложность сетевого графика зависит от количества входящих в него работ и событий и характеризуется так называемым коэффициентом сложности, который определяется отношением количества работ сетевого графика к количеству событий. При коэффициенте, равном 1, графики считаются простыми, при коэффициенте 1,5 - средней сложности и при коэффициенте 2 - сложными.

Сетевые графики с одинаковым количеством событий могут иметь разный коэффициент сложности.

Так, на рисунке 26а показан простой сетевой график. Он содержит шесть событий и шесть работ. Соответственно коэффициент сложности равен 1.

На рисунке 26б представлен сетевой график средней сложности. Событий ни убавилось, ни прибавилось, их осталось шесть. Работ стало на три больше, т.е. девять. Соответственно коэффициент сложности стал равен 1,5 (9: 6).

На рисунке 26в изображен сложный сетевой график. Количество собы­тий также осталось неизменным, а количество работ увеличилось еще на три. Таким образом, на графике изображено шесть событий и двенад­цать работ. Соответственно коэффициент сложности равен 2 (12: 6).



в)

Рисунок 26 - Сетевой график; а) простой; б) средней сложности; в) сложный

Количество работ в детализированном графике определяется технологией изготовления продукции проекта, т.е. детализация работ ведется до техно­логически нерасчленяемого процесса.

В рамках системы сетевого моделирования, применяемой при управлении проектом, сетевые графики обычно имеют три степени детализации.

1-я степень детализации. Укрупненные сетевые графики. В них отражает­ся лишь общая структура работ по проекту. Эти графики, получившие название сводных, предназначены в первую очередь для руководителя проекта и руководства компании, осуществляющей проект: с их помощью можно осуществлять общее руководство работами по проекту. На базе сводных сетевых моделей формируются календарные планы по вехам (ключевым, особо важным событиям проекта).

2-я степень детализации. Сетевые графики по комплексам (пакетам) работ, по технологическим (конструктивным) узлам продукции проекта или же по крупным этапам жизненного цикла проекта. Разрабатываются на основе сводных графиков. Получили название частных, или локальных. Эти графики предназначены для руководства среднего уровня, отвечающего за выполнение отдельных комплексов работ по проекту.

3-я степень детализации. Детализированные сетевые графики. Используются для оперативного управления на низшем уровне. Эти графики обычно создаются не на стадии разработки, а на стадии реализации, ближе к непосредственному выполнению работ.

Существуют также и комбинированные сетевые графики, в которых одни работы показаны укрупненно, а другие детально. Так, в проекте с участием субподрядчика исполнитель свои работы представляет детально, а работы субподрядчика - укрупненно. При выполнении комплекса работ сложные и ответственные работы показывают детально, а простые, не требующие особого контроля работы, - укрупненно.


Сшивание» сетевых моделей

В сложных проектах построить комплексный сетевой график одному спе­циалисту в сжатые сроки не под силу. Поэтому в таких случаях проекты разрабатываются по частям несколькими специалистами. Все эти части имеют единую конечную цель и определенные технологические связи между работами. После разработки возникает необходимость объединить несколько отдельных (первичных) сетевых графиков в один общий. В практике этот процесс получил название «сшивание» сетевых графиков.

В процессе «сшивания» графиков нужно устранить все случаи несогласованности между отдельными частями. Для «сшивания» графиков устанав­ливаются так называемые граничные события, т.е. события, общие для «сшиваемых» сетей. Если те или иные работы одной части зависят от тех или иных работ другой части, могут появиться дополнительные условия «сшивания».

При «сшивании» частных графиков в общий ни одна работа, предусмотренная частным графиком, не должна исчезнуть, так же как ни одна работа, не предусмотренная частным графиком, не должна появиться. «Сшива­ние» сетевых графиков осуществляется на основе совмещения граничных событий. Для удобства объединения в каждом граничном событии целесо­образно указывать все предшествующие работы, необходимые для его свершения, а не только входящие в состав первичного графика. Как пра­вило, граничные события в различных частных графиках обозначают од­ним и тем же номером или дополнительным графическим символом (можно, например, кружок граничного события вписать в квадрат). Приведем простой пример. На рисунке 27а,б изображены два первичных сетевых графика, имеющих два граничных события - 0 и 9. На основе совмеще­ния событий 0 и 9 строим третий, объединенный график (рис. 27в). Каждое событие объединенного графика делится пополам: в числителе записывается старый номер события, в знаменателе - новый номер.



б)
1 1

0 0
5 2
2 3
6 4
9 6
7 5

Рисунок 27 - Первичные сетевые графики (а, б) и объединенный сетевой график (в)


Похожая информация.