16 ноября 2009 года

Видеокамеры с широким динамическим диапазоном

Видеокамеры с широким динамическим диапазоном (WDR) предназначены для обеспечения качественного изображения при встречной засветке и наличии в кадре как очень ярких, так и очень темных областей и деталей. При этом яркие области не насыщаются, а темные не отображаются слишком темными. Такие камеры обычно рекомендуются для организации наблюдения за объектом, находящимся напротив окон, в освещенном сзади проеме двери или ворот, а также при большом контрасте объектов.

Динамический диапазон видеокамеры обычно определяется как отношение самого яркого фрагмента изображения к самому темному фрагменту того же самого изображения, то есть в пределах одного кадра. Это отношение по-другому называется максимальным контрастом изображения.

Проблема динамического диапазона

К сожалению, реальный динамический диапазон видеокамер строго ограничен. Он существенно у"же динамического диапазона большинства реальных объектов, ландшафтов и даже сцен кино и фотографии. Кроме того, условия применения видеокамер наблюдения в части освещения зачастую далеки от оптимальных. Так, интересующие нас объекты могут быть расположены на фоне ярко освещенных стен и предметов или встречного (контро-вого) света. В этом случае объекты или их детали на изображении будут слишком темными, так как видеокамера автоматически адаптируется к высокой средней яркости кадра. В некоторых ситуациях на наблюдаемой "картинке" могут иметь место яркие пятна со слишком большими градациями яркости, которые трудно передаются стандартными камерами. Например, обычная улица при солнечном освещении и с тенями от домов имеет контраст от 300:1 до 500:1, для темных пролетов арок или ворот с освещенным солнцем фоном контраст достигает 10 000:1, внутренность темной комнаты против окон имеет контраст до 100 000:1.

Ширина результирующего динамического диапазона ограничивается несколькими факторами: диапазонами самого датчика (фотоприемника), обрабатывающего процессора (DSP) и дисплея (видеоконтрольного устройства). Типовые CCD (ПЗС-матрицы) имеют максимальный контраст не более 1000:1 (60 дБ) по интенсивности. Самый темный сигнал ограничен тепловым шумом или "темновым током" датчика. Самый яркий сигнал ограничен суммой заряда, который может быть накоплен в отдельном пикселе. Обычно CCD построены так, что этот заряд составляет приблизительно 1000 темновых зарядов, обусловленных температурой CCD.

Динамический диапазон может быть существенно увеличен для специального применения камер, например для научных или астрономических исследований, путем охлаждения CCD и применения специальных систем считывания и обработки. Однако такие методы, будучи очень дорогими, не могут использоваться широко.

Как указывалось выше, множество задач требует размера динамического диапазона 65-75 дБ (1:1800-1:5600), поэтому при отображении сцены даже с диапазоном в 60 дБ детали в темных областях потеряются в шуме, а детали в ярких областях — из-за насыщения, либо диапазон будет обрезан сразу с двух сторон. Системы считывания, аналоговые усилители и аналого-цифровые преобразователи (АЦП) для видеосигнала в режиме реального времени ограничивают сигнал CCD до динамического диапазона в 8 бит (48 дБ). Такой диапазон может быть расширен до 10-14 бит за счет использования соответствующих АЦП и обработки аналогового сигнала. Однако зачастую это решение оказывается непрактичным.

Другой альтернативный тип схемы использует нелинейное преобразование в виде логарифмической функции или ее аппроксимации для сжатия 60 дБ выходного сигнала CCD до диапазона в 8 бит. Обычно такие методы подавляют детали изображения.

Последний (указанный выше) фактор ограничения — вывод картинки на дисплей. Динамический диапазон для нормального CRT-монитора, работающего в освещенной комнате, составляет около 100 (40 дБ). LCD-монитор еще более "ограничен". Сигнал, сформированный видеотрактом и даже ограниченный до контраста 1:200, будет уменьшен в динамическом диапазоне при показе. Чтобы оптимизировать показ, пользователь часто должен регулировать контраст и яркость монитора. И если он хочет получить изображение с максимальным контрастом, придется пожертвовать частью динамического диапазона.

Типовые решения

Имеются два основных технологических решения, которые используются, чтобы обеспечить видеокамеры расширенным динамическим диапазоном:

  • множественное отображение кадра — видеокамера захватывает несколько полных изображений или его отдельных областей. При этом каждая "картинка" отображает различную область динамического диапазона. После чего камера объединяет эти различные изображения, чтобы воспроизвести единое изображение с расширенным динамическим диапазоном (WDR);
  • использование нелинейных, обычно логарифмических, датчиков — в этом случае степень чувствительности при различных уровнях освещения различна, что позволяет обеспечить широкий динамический диапазон яркости изображения в одном кадре.

Применяются разные комбинации этих двух технологий, но наиболее распространенная — первая.

Для получения одного оптимального изображения из нескольких используется 2 метода:

  • параллельное отображение двумя или более датчиками изображения, сформированного общей оптической системой. В этом случае каждый датчик захватывает различную часть динамического диапазона сцены за счет различного времени экспонирования (накопления), различного оптического ослабления в индивидуальном оптическом тракте или за счет использования датчиков различной чувствительности;
  • последовательное отображение изображения единственным датчиком с различными временами экспонирования (накопления). В крайнем случае производится по крайней мере два отображения: одно с максимальным, а другое — с более коротким временем накопления.

Последовательное отображение, как наиболее простое решение, обычно используется в промышленности. Длительное накопление обеспечивает видимость наиболее темных частей объекта, однако самые яркие фрагменты могут не прорабатываться и даже приводить к насыщению фотоприемника. Картинка, получаемая с малым накоплением, адекватно отображает светлые фрагменты изображения, не прорабатывая темные области, находящиеся на уровне шума. Сигнальный процессор изображения камеры объединяет обе картинки, беря яркие части от "короткой", а темные части от "длительной" картинки. Алгоритм комбинации, позволяющий создавать гладкое изображение без шва, достаточно сложен, и мы не будем здесь его касаться.

Первыми представила концепцию объединения двух цифровых изображений, полученных при разном времени накопления, в единое изображение с широким динамическим диапазоном группа разработчиков во главе с профессором И.И. Зиви из компании "Tech-nion", Израиль. В 1988 г. концепция была запатентована ("Камера широкого динамического диапазона" Y.Y. Zeevi, R. Ginosar и O. Hilsenrath), а в 1993 г. ее применили при создании коммерческой медицинской видеокамеры.


Современные технические решения

В современных камерах для расширения динамического диапазона на основе получения двух изображений в основном применяются матрицы Sony двойного сканирования (Double Scan CCD) ICX 212 (NTSC), ICX213 (PAL) и специальные процессоры для обработки изображения, например SS-2WD или SS-3WD. Примечательно, что такие матрицы невозможно обнаружить в ассортименте SONY и не все производители указывают на их использование. На рис. 1 схематически представлен принцип двойного накопления. Время указано по формату NTSC.

Из диаграмм видно, что если типовая камера накапливает поле 1/60 с (PAL-1/50 с), то камера WDR составляет поле из двух изображений, полученных путем накопления, за 1/120 с (PAL-1/100 с) для мало освещенных деталей и за период от 1/120 до 1/4000 с для сильно освещенных деталей. На фото 1 представлены кадры с разным экспонированием и результат суммирования (обработки) режима WDR.

Эта технология позволяет "довести" динамический диапазон до 60-65 дБ. К сожалению, числовые значения WDR, как правило, приводятся только производителями верхней ценовой категории, остальные же ограничиваются информацией о наличии функции. Имеющаяся регулировка градуирована обычно в относительных единицах. На фото 2 представлен пример сравнительной отработки типовой и камерой WDR встречного света от стеклянной витрины и дверей. Встречаются модели телекамер, в документации на которые указано, что они работают в режиме WDR, но нет упоминания о требуемой специальной элементной базе. В этом случае, естественно, может возникать вопрос, является ли заявленный режим WDR таким, каким мы ожидаем? Вопрос справедлив, поскольку даже в сотовых телефонах уже применяется режим авторегулирования яркости изображения встроенного фотоаппарата, называемый WDR. С другой стороны, встречаются модели с заявленным режимом расширения динамического диапазона, названным как Easy Wide-D или EDR, которые работают с типовыми CCD. Если в данном случае указывается величина расширения, то она не превышает 20-26 дБ. Одним из способов расширения динамического диапазона является применяемая сейчас компанией Panasonic технология Super Dinamic III. Она также основана на двойном экспонировании кадра за 1/60 с (1/50С-PAL) и 1/8000 с (с последующим анализом гистограмм, разделением картинки на четыре варианта с различной гамма-коррекцией и их интеллектуальным суммированием в DSP). На рис. 2 представлена обобщенная структура этой технологии. Подобная система расширяет динамический диапазон до 128 раз (на 42 дБ).

Наиболее перспективной технологией расширения динамического диапазона телекамеры на сегодня является технология Digital Pixel System™ (DPS), разработанная в Стен-фордском университете в 1990-х гг. и запатентованная компанией PIXIM Inc. Основным нововведением для DPS является использование AЦП для переведения величины фотозаряда в ее цифровое значение непосредственно в каждом пикселе сенсора. CMOS(КМОП)-матрицы сенсора препятствуют ухудшению качества сигнала, что увеличивает общее отношение сигнал/шум. Технология DPS позволяет вести обработку сигнала в режиме реального времени.

Технология PIXIM использует метод, известный как мультисемплинг (многократная выборка), что позволяет сформировать изображение высочайшего качества и обеспечить широкий динамический диапазон преобразователя (свет/сигнал). В технологии PIXIM DPS используется пятиуровневый мультисемплинг, это позволяет получать сигнал от сенсора с одним из пяти значений экспозиции. Во время экспонирования производится измерение величины освещенности каждого пикселя кадра (для стандартного видеосигнала — 50 раз в секунду). Система обработки изображения определяет оптимальное время экспонирования и сохраняет полученное значение до того, как произойдет перенасыщение пикселя и прекратится дальнейшее накопление заряда. Рис. 3 поясняет принцип адаптивного накопления. Значение светлого пикселя сохранено при времени экспонирования Т3 (перед насыщением пикселя на 100%). Темный пиксель накапливал заряд более медленно, что требовало дополнительного времени, его значение сохранено при времени Т6. Сохраненные значения (интенсивность, время, уровень шума), измеренные в каждом пикселе, одновременно обрабатываются и преобразуются в высококачественное изображение. Поскольку у каждого пикселя есть свой встроенный АЦП и параметры освещенности измерены и обработаны независимо, то каждый пиксель в действительности действует как отдельная камера.


Системы формирования изображения PIXIM, основанные на технологии DPS, состоят из цифрового сенсора изображения и процессора обработки изображения. В современных цифровых сенсорах используется квантование в 14 и даже в 17 бит. Относительно невысокая чувствительность, как основной недостаток CMOS-технологии, характерна и для DPS. Типовая чувствительность камер этой технологии ~1 лк. Типовое значение отношения сигнал/шум для формата 1/3" составляет 48-50 дБ. Заявляемый максимальный динамический диапазон — до 120 дБ с типовым значением 90-95 дБ. Возможность регулирования времени накопления для каждого пикселя матрицы сенсора позволяет при формировании изображения использовать такой уникальный метод обработки сигнала, как метод выравнивания локальных гистограмм, позволяющий резко повысить информативность изображения. Технология позволяет полностью компенсировать засветку фона, выделить детали, оценить пространственное положение объектов и деталей, находящихся не только на переднем, но и на заднем плане изображения. На фото 3, 4 и 5 приведены кадры, полученные типовой CCD-камерой и камерой PIXIM.

Практика

Итак, можно сделать вывод о том, что сегодня при необходимости вести видеонаблюдение в сложных условиях высококонтрастного освещения можно подобрать телекамеру, достаточно адекватно передающую весь диапазон яркости объектов. Для этого наиболее предпочтительно использование видеокамер с технологией PIXIM. Довольно хорошие результаты обеспечивают системы на основе двойного сканирования. Как компромисс можно рассматривать дешевые телекамеры на основе типовых матриц и электронных систем EWD и многозонной BLC. Естественно, желательно использовать оборудование с оговоренными величинами характеристик, а не только с упоминанием наличия того или иного режима. К сожалению, на практике результаты работы конкретных моделей не всегда соответствуют ожиданиям и рекламным заявлениям. Но это тема для отдельного разговора.

Последнее время в интернете появляется все больше и больше оригинальных изображений, визуально весьма нетипичных - красочных, предельно детализированных, напоминающих то ли картины художников-реалистов, то ли качественные иллюстрации к рисованным мультфильмам. Аббревиатура HDR с момента появления на свет прочно вошла в обиход виртуальных завсегдатаев, получив в их жаргоне транслитерацию ХДР. Кто не знал ее смысла, вторил знатокам, старательно выписывая заглавные буквы, дабы не спутать ХДР с ГДР или, чего доброго, с КГБ. Ну а сами знатоки тем временем раскручивали это новое направление в фотографии вовсю, создавая блоги, дискутирую в форумах, а главное - размещаясь в интернет - галереях. Собственно то, что скрывалось за данной аббревиатурой, лучше всего делало рекламу само по себе. Одни называли гиперреальные изображения заразной болезнью, другие - свидетельством вырождения классической фотографии, третьи - прогрессивным выражением передовых тенденций в современном цифровом исскустве.

Споры продолжаются и по сей день, принимая еще более крайние формы. Правда, скептики успеха и аутентичности нового направления постепенно начинают принимать вещи такими, как есть. А HDR-апологеты называют в качестве гипотетических пропагандистов новой техники исполнения векиких экспериментаторов Мэна Рэя и Ласло Моголи-Надя, которые, будь они живы в наше время, обязательно пришли бы к чему-то подобному. Интересна точка зрения одного из известных HDR-фотографов, Джеспера Кристенсена: «Новые технические возможности современных визуальных медиасредств, в том числе и фотографии, неизменно влекут за собой попытки и поиски авторов в соответствующих их духу направлениях новых обликов художественного выражения. Более того, переплетения на техническом уровне порождают и смешения на уровне сюжетном, эстетическом. Гибридные образы, подобные HDR, - это уже даже не феномен нашего времени, а однозначно - доминирующая тенденция будущего». Но к морально-эстетическим аспектам темы мы, вероятно, еще вернемся в будущих
публикациях. А пока мы коснемся, прежде всего, теоретических основ и практической стороны получения HDR-изображений.

Проблема динамического диапазона

Без теории - никуда. Но мы постараемся изложить ее доступными формулировками. Итак, английский термин HDR содержит в себе качественное определение одного давно знакомого нам понятия - динамический диапазон (дословный перевод HDR - «высокий динамический диапазон»). Разложим его по частям, начав с ключевого определения - «высокий». Что же такое динамический диапазон? Наверняка наши постоянные читатели представляют его себе хотя бы в общих чертах. Сейчас пришло время углубиться в детали. Верно, ДД в фотографии характеризует соотношение между максимально и минимально измеримой интенсивностью света. Но в реальном мире не существует чисто белого или чисто черного цвета, а есть лишь различные уровни интенсивности источников света, варьирующиеся вплоть до бесконечно малых величин. Из-за этого теория ДД усложняется, а сам термин, помимо характеристики реального соотношения интенсивности освещения фотографируемого сюжета, может быть применен к описанию цветовых градаций, воспроизводимых устройствами фиксации визуальной информации - камерами, сканерами, или устройствами ее вывода - мониторами, принтерами.

Человек пришел в этот мир полностью самодостаточным, он - идеальный «продукт» эволюционного природного развития. Применительно к фотографии это выражается в следующем: глаз человека способен различать диапазон интенсивности света, находящийся в пределах от 10-6 до 108 кд/м2 (кандел на кв. метр; кандела - единица измерения световой интенсивности, равная силе света, испускаемого в заданном направлении источником монохроматического излучения частотой 540х1012 Гц, которая в свою очередь соответствует частоте зеленого цвета).

Интересно взглянуть на следующие величины: интенсивность чистого звездного сияния равна лишь 10-3 кд/м2, закатного/рассветного света - 10 кд/м2, а освещенной прямым дневным светом сцены - 105 кд/м2. Яркость солнца приближается к миллиарду кандел на кв. метр. Таким образом, очевидно, что способности нашего зрения попросту феноменальны, особенно если противопоставить им возможности придуманных нами устройств вывода информации, например ЭЛТ-мониторов. Ведь они могут корректно передавать изображения с интенсивностью всего от 20 до 40 кд/м2. Но это так, для общей информации - для разминки и сравнения. Однако вернемся к динамическому диапазону, который касается нас, цифровых фотографов, в наибольшей мере. Его широта напрямую зависит от размеров ячеек сенсоров камер.

Чем они больше, тем шире ДД. В цифровой фотографии для описания его величины придуманы f-стопы (часто обозначаются как EV), каждый из которых соответствует изменению интенсивности света в два раза. Тогда, например, сюжет с разбросом уровня контрастности 1:1024 будет содержать 10 f-стопов динамического диапазона (210-1024). Зеркальная цифровая камера воспроизводит ДД, равный 8-9 f-стопов, плазменные ТВ-панели - до 11, а фотоотпечатки вмещают не больше 7 f-стопов. Тогда как соотношение максимальной и минимальной контрастности для вполне типичной сцены - яркий дневной свет за окном, плотная полутень в комнате - может достигать 1:100 000. Нетрудно подсчитать, что это будет соответствовать 16-17 f-стопам. Кстати, глаз человека одновременно воспринимает диапазон контрастности 1:10 000. Так как наше зрение фиксирует отдельно интенсивность освещения и его цвет, то одновременно доступная глазу гамма светов составляет 108 (10 000 оттенков яркости умножить на 10 000 оттенков цвета).

Проблемы битовой глубины

Обратите внимание - в нашу беседу закралось слово «цвет», присоединяясь к понятиям «интенсивность» и «контрастность». Посмотрим, чем оно является в контексте динамического диапазона. Переместимся на пиксельный уровень. Вообще-то говоря, каждый пиксель изображения имеет две основные световые характеристики - интенсивность и цвет. Это понятно. Как измерить количество уникальных цветов, составляющих колористическую гамму снимка? С помощью битовой глубины - числа нулей и единиц, битов, используемых для обозначения каждого из цветов. Применительно к ч/б изображению битовая глубина определяет количество оттенков серого. Картинки с большей битовой глубиной могут охватывать более значительное количество оттенков и цветов, поскольку содержат больше комбинаций нулей и единиц. Каждый цветной пиксель в цифровом изображении представляет собой определенную комбинацию трех цветов - красного, зеленого и синего, которые часто именуются цветовыми каналами. Диапазон их цветовой интенсивности указывается в битах на канал.

В то же время биты на пиксель (англ. сокращение - bpp) подразумевают общую сумму битов, имеющуюся в трех каналах и фактически представляют количество цветов в одном пикселе. Например, при записи цветовой информации в 8-битовых JPEG’ах (24 бита на пиксель) используется по восемь нулей и единиц для характеристики каждого из трех каналов. Интенсивность синего, зеленого и красного цветов обозначается 256 оттенками (градациями интенсивности). Число 256 удачно кодируется в двоичной системе и равняется 2:8. Если скомбинировать все три цвета, то один пиксель 8-битового изображения можно будет описывать 16 777 216 оттенками (256?256?256, или 224). Исследователи выяснили, что 16,7 млн оттенков вполне достаточно для передачи изображений фотографического качества. Отсюда и знакомый нам «true color». Будет ли изображение считаться имеющим более широкий ДД или нет, по большому счету зависит от его количества битов на цветовой канал. 8-битовые снимки считаются изображениями LDR (low dynamic range - узкий динамический диапазон). 16-битовые картинки, получаемые после конвертации RAW, также относят к категории LDR. Хотя их теоретический ДД мог бы равняться 1:65 000 (216). На самом деле, производимые большинством камер RAW-изображения имеют ДД не больше, чем 1:1000. К тому же при конвертации RAW используется одна стандартная тональная кривая, независимо от того, конвертируем мы файлы в 8- или 16-битные изображения. А поэтому, работая с 16 битами, вы получите больше четкости в определении оттенков/градаций и интенсивности, однако не получите ни «грамма» дополнительного ДД. Для этого вам понадобятся уже 32-битные изображения - 96 бит на пиксель! Их мы и будем называть High Dynamic Range Images - HDR(I).

Решение всех проблем

Снимки с расширенным динамическим диапазоном… Давайте еще раз нырнем в теорию битов. Всем знакомая модель RGB до сих пор является универсальной моделью описания изображений. Цветовая информация по индивидуальным пикселям кодируется в виде комбинации трех цифр, соответствующих уровням интенсивности оттенков. Для 8-битных изображений она будет находиться в пределах от 0 до 255, для 16-битных - от 0 до 65 535. Согласно модели RGB, черный цвет представляется как «0,0,0», то есть полное отсутствие интенсивности, а белый - как «255, 255, 255», то есть цвет с максимальной интенсивностью трех основных цветов. В кодировке допускается использование только целых чисел. Тогда как применение вещественных чисел - 5,6 или 7,4, да и любых дробных чисел с плавающей запятой, в рамках RGB-модели попросту недопустимо. Вот на таком противоречии и зиждется изобретение одного из американских компьютерных гениев Пола Дебевеца. В 1997 г. на ежегодной конференции специалистов в области компьютерной графики SIGGRAPH Пол изложил ключевые моменты своей новой научной работы, касающейся способов извлечения карт расширенного динамического диапазона из фотоснимков и их интеграции в визуализированные сцены с помощью нового графического пакета Radiance. Тогда-то впервые Пол и предложил съемку одного сюжета множество раз с изменяющимися значениями экспозиции и последующим объединением снимков в одно HDR-изображение. Грубо говоря, информация, которую содержат такие изображения, соответствует физическим величинам интенсивности и цвета. В отличие от традиционных цифровых изображений, состоящих из цветов, понимаемых устройствами вывода - мониторами, принтерами.

Указание величин освещенности вещественными числами теоретически снимает любые ограничения на вывод динамического диапазона. Скептики могут спросить, например, почему бы просто не добавлять все больше битов, охватывая ими самый экстремальный разброс световой и тональной контрастности? Дело в том, что в снимках с узким ДД для представления светлых тонов используется значительно большее количество битов, чем для темных. Поэтому по мере добавления битов пропорционально будет увеличиваться и часть тех из них, которые идут на более точное описание вышеуказанных тонов. А эффективный ДД практически останется неизменным. И напротив, числа с плавающей запятой, являясь линейными величинами, всегда пропорциональны фактическим уровням яркости. За счет этого биты равномерно распределяются по всему ДД, а не только концентрируются в области светлых тонов. Вдобавок такие числа фиксируют значения тонов с постоянной относительной точностью, ведь мантисса (цифровая часть), скажем, у 3,589?103 и 7,655?109, представлена четырьмя цифрами, хотя второе и больше первого в два миллиона раз.

Экстрабиты HDR-изображений позволяют передавать бесконечно широкий диапазон яркостей. Все могли бы испортить мониторы и принтеры, не признающие нового языка HDR, - у них своя фиксированная шкала яркостей. Но умные люди придумали такой процесс, как «tone mapping» - тональное сопоставление или отображение (дословно - создание карты), когда происходит перевод 32-битного HDR-файла в 8- или 16-битный, подогнанный под более ограниченный ДД устройств отображения. По сути, идея tone mapping базируется на решении проблемы потери деталей и тональностей в областях максимальной контрастности, их расширении с целью передачи всеобъемлющей цветовой информации, заложенной в 32-битном цифровом изображении.

С чего начинается удачный HDR

О тональных сопоставлениях очень хорошо знает один из наших четырех сегодняшних героев - итальянец Джанлука Несполи. Он, пожалуй, наиболее технически подкован. Помимо Photoshop, он с энтузиазмом экспериментирует с другими профессиональными графическими пакетами, в том числе и такими, которые были специально созданы для оптимизации HDR-результатов. Прежде всего, это Photomatix. Программа, соединяя несколько снимков с различной экспозицией, создает 32-битный файл с расширенным ДД, а затем подвергает его «тоун маппингу», применяя один из двух алгоритмов, называемых также операторами: глобальным или локальным. Процесс сопоставления по схеме глобального оператора сводится к обобщению интенсивностей пикселей вместе с тональными и прочими характеристиками изображения. В работе локального оператора, помимо этого, учитывается также и расположение каждого пикселя по отношению к остальным. В принципе, функция генерирования HDR-изображений вместе с сопутствующим «тоун маппингом» реализована и в Photoshop CS2. Ее вполне достаточно для заданий, которые реализуют датчанин Кристенсен и молодая фотохудожница из Санкт-Петербурга Микаэлла Райнрис. Наш четвертый герой - Густаво Оренштайн - по-прежнему не решил, какому из рабочих инструментов отдать предпочтение, а потому склонен к экспериментам с новыми программными HDR-ресурсами.

Чуть ниже мы рассмотрим практические нюансы работы с каждой из двух основных программ, обобщив рекомендации, полученные от этих фотоиллюстраторов новой волны. А пока прикинем, какой исходный материал необходим для получения изображений с расширенным ДД. Очевидно, что без нескольких снимков с различными значениями экспозиции не обойтись. Достаточно ли будет одного «сырого» RAW? Не совсем. Общий ДД, полученный после конвертации одного даже самого большого RAW-изображения с различными значениями уровня экспозиции, не может быть шире того динамического диапазона, который воспроизвела ваша камера. Это все равно, что разрезать ДД снимка в режиме RAW на несколько частей.

«Сырые» файлы кодируются 12 битами на канал, соответствующими разбросу контрастностей 1:4096. И только из-за неудобства 12-битной кодировки получаемым из RAW изображениям в формате TIFF присуждается 16 бит на канал. Одним RAW еще можно как-то обойтись, если речь не идет о высококонтрастной сцене. Съемка же нескольких кадров, предназначенных для дальнейшего объединения в одно целое, требует соблюдения определенных процедур настройки параметров отработки экспозиции, да и физического монтажа самой камеры. В принципе, и Photoshop, и Photomatix корректируют незначительные нестыковки при накладывании пиксельных массивов друг на друга, возникающие на снимках из экспозиционной серии вследствие отсутствия должной фиксации камеры. К тому же зачастую очень короткие выдержки и хорошая скорость съемки аппарата в режиме автоматического брекетинга (что особенно важно, если объект в кадре перемещается) позволяют компенсировать возможные перспективные искажения. Но все же крайне желательно свести их на нет, а для этого камере потребуется надежная опора в виде хорошего штатива.

Джеспер Кристенсен повсюду носит сверхлегкий карбоновый штатив Gitzo. Иногда для большей устойчивости подвешивает к его центральной колонне сумку, не прикасается к кнопке спуска затвора, используя пульт ДУ или таймер автоспуска, и блокирует зеркало своей Canon 20D. В настройках камеры главным, помимо сохранения постоянной диафрагмы для всех снимков, которые составят будущее HDR-изображение, является определение их количества и диапазона отработки экспозиции. Сначала, с помощью точечного замера камеры, если, конечно, таковой имеется, произведите считывание уровня освещенности самой темной и самой светлой областей сцены. Вот этот спектр ДД вам и необходимо записать с помощью нескольких экспозиций. Задайте минимальное значение светочувствительности ISO. Любые шумы в процессе «тоун маппинга» будут подчеркнуты еще больше. Про диафрагму мы уже сказали. Чем контрастнее сюжет, тем меньше должен быть экспозиционный интервал между снимками. Иногда может понадобиться до 10 кадров с интервалом 1 EV (каждая экспозиционная единица соответствует изменению уровня освещения в два раза). Но, как правило, достаточно 3-5 кадров RAW, отличающихся между собой двумя стопами освещенности. Большинство камер среднего уровня позволяют проводить съемку в режиме брекетинга экспозиции, вмещая в диапазон +/-2 EV три кадра. Функцию автоматического брекетинга легко обмануть, заставив снимать в диапазоне, который в два раза шире. Делается это так: выбираете подходящую центральную экспозицию, и прежде чем выстрелить три положенных кадра, задаете значение компенсации экспозиции -2 EV. После их отработки быстренько перемещаете ползунок компенсации к отметке +2 EV и выстреливаете еще одну очередь из трех кадров. Таким образом, после удаления продублированной центральной экспозиции у вас на руках останется пять кадров, покрывающих участок от +4 EV до -4 EV. ДД такой сцены будет приближаться к отметке 1:100 000.

с Photoshop в мир HDR

Доступный всем Photoshop делает доступными и изображения с расширенным динамическим диапазоном. В меню «Инструменты» находится команда Merge to HDR. Именно с нее и начинается путь к презентабельному HDR-изображению. Сначала все ваши объединенные экспозиции предстанут в виде одного снимка в окошке превью - это уже 32-битная картинка, однако монитор пока не в состоянии отобразить всех ее преимуществ. Помните, «глупый» монитор является всего лишь 8-битным устройством вывода. Ему, как нерадивому школьнику, нужно все разложить по полочкам. Но гистограмма в правом углу окошка уже многообещающе растянулась, став похожей на горную вершину, что говорит обо всем потенциале ДД, содержащемся в только что созданном изображении. Ползунок в нижней части гистограммы позволяет увидеть детали в том или ином тональном диапазоне. На данной стадии ни в коем случае не следует задавать битовую глубину меньше 32. Иначе программа сразу же обрежет тени и света, ради которых, собственно, весь этот сыр-бор.

Получив от вас добро на создание очередного HDR-чуда, Photoshop сгенерирует изображение, открыв его в основном рабочем окне программы. Скорость реагирования ее алгоритмов будет зависеть от мощности вашего процессора и объема оперативной памяти компьютера. Однако при всех ужасающих перспективах получить на выходе что-то очень массивное, многомегабайтное 32-битный HDR (при условии, что он собран, например, из трех снимков) будет «весить» только около 18 Мб, в противоположность одному 30-Мб стандартному TIFF’у.

Фактически, до этого момента наши действия были лишь частью подготовительного этапа. Теперь пришло время инициировать процесс соотнесения динамических диапазонов полученного HDR-изображения и монитора. 16 бит на канал в меню Mode - наш следующий шаг. Photoshop осуществляет «тоун маппинг», используя четыре различных метода. Три из них - экспозиция и гамма, сжатие светов и выравнивание гистограммы - утилизируют менее изощренные глобальные операторы и позволяют настраивать вручную только яркость и контрастность снимка с расширенным ДД, сужают ДД, пытаясь сохранить контраст, или же урезают света так, чтобы они вошли в диапазон яркостей 16-битного изображения.

Наибольший интерес представляет четвертый способ - локальная адаптация. Микаэлла Райнрис и Джеспер Кристенсен работают именно с ним. Поэтому о нем немного подробнее. Основной инструмент здесь - тональная кривая и гистограмма яркостей. Смещая кривую, разбитую якорными точками, вы сможете перераспределить уровни контрастности по всему ДД. Вероятно, понадобится обозначить несколько тональных областей вместо традиционного разделения на тени, средние тона, света. Принцип настройки данной кривой абсолютно идентичен тому, на котором зиждется фотошоповский инструмент Curves. А вот функции ползунков Radius и Threshold в данном контексте весьма специфические. Они контролируют уровень изменения локального контраста - то есть улучшают детализацию в масштабе небольших областей снимка. Тогда как кривая, напротив, корректирует параметры ДД на уровне всего изображения. Радиус указывает количество пикселей, которые оператор «тоун маппинга» будет считать локальными. Например, радиус в 16 пикселей означает, что области подгонки контрастности будут очень плотными. Тональные сдвиги примут явно заметный, слишком обработанный характер, HDR-изображение хотя и расцветет богатством деталей, но предстанет абсолютно неестественным, лишенным и намека на фотографию. Большой радиус тоже не выход - картинка получится более натуральной, но скучноватой в плане деталей, лишенной жизни. Второй параметр - порог - устанавливает предел разницы яркостей соседних пикселей, который позволит включить их в одну и ту же локальную область регулировки контрастности. Оптимальный диапазон значения порога - 0,5-1. После освоения вышеуказанных компонентов процесс «тоун маппинга» можно считать благополучно завершенным.

С Photomatix в мир HDR

Специально для всех нуждающихся в фотоснимках с очень широким ДД в 2003 г. французы придумали программку Photomatix, последняя версия которой сегодня доступна для бесплатного скачивания (полностью функциональна, только оставляет на снимке свой «водяной знак»). Многие любители HDR-затравки считают ее более расторопной, когда дело касается подгонки тональностей и интенсивностей 32-битного изображения с урезанными параметрами битовой глубины устройств вывода. К ним принадлежит и итальянец Джанлука Несполи. Приведем его слова: «HDR-картинки, генерированные этой программой, отличает лучшая проработка деталей неба и деревьев, они не выглядят слишком “пластмассовыми”, демонстрируют более высокий уровень контрастности и цветовой тональности. Единственный минус Photomatix - усиление вместе со всеми достоинствами и некоторых недостатков изображения, таких как шумы и артефакты JPEG-компрессии». Правда, компания-разработчик MultimediaPhoto SARL обещает устранить и эти нюансы, а кроме того, c теми же шумами, например,
неплохо справляются программы вроде Neat Image.

Помимо возможности осуществлять «тоун маппинг», Photomatix располагает несколькими дополнительными настройками уровня экспозиции, а ее алгоритм соотнесения тональностей можно применять даже к 16-битным TIFF’ам. Так же, как и в Photoshop, сначала на основе отдельных снимков с варьирующей экспозицией необходимо создать 32-битное HDR-соединение. Для этого у программы есть опция Generate HDR. Подтвердите значения экспозиционного интервала, выберите стандартную тональную кривую (рекомендовано) - и Photomatix готов будет представить вам свою версию HDR-изображения. Файл будет «весить» примерно столько же, сколько и фотошоповская версия, и иметь то же расширение - .hdr или.exr, - под которым его можно сохранить до начала процесса «тоун маппинга». Последний инициируется путем выбора соответствующей команды в главном меню HDRI программы. В его рабочем окошке вмещается много различных настроек, способных привести в замешательство. На самом деле, ничего сложного здесь нет. Гистограмма показывает распределение яркостей пропущенного через «тоун маппинг» снимка. Ползунок Strength определяет уровень локального контраста; параметры Luminosity и Color Saturation отвечают соответственно за яркость и цветовую насыщенность. Точки отсечения светлой и темной областей гистограммы вполне можно оставить по умолчанию. Photomatix предлагает всего четыре установки функции сглаживания контрастности в противоположность более точным настройкам Photoshop в пределах от 1 до 250. По правде говоря, такой уровень контроля не всегда желателен. Вряд ли непрофессионалу важна та разница, которая будет присутствовать между значениями радиуса сглаживания, скажем, 70, 71 и 72. Настройка микроконтраста обращается к локальному уровню, однако в случае использования изначально шумных или насыщенных всякого рода артефактами снимков, ею не следует злоупотреблять.

Когда "тоун маппинг" примирит монитор с HDR-изображением...

…можно подключать предыдущие навыки по обращению с Photoshop и редактировать HDR-изображение на свой вкус, страх и риск. Помните, пока что отношение фотопублики к продуктам искусственно созданной широкодиапазонной природы неоднозначное. «Если хотите иметь успех на этой ниве, постарайтесь выработать свой оригинальный стиль, а не упражняйтесь в повторении, - напутствует Микаэлла Райнрис. - В таком тонком и повсеместно копируемом на любительском уровне деле, как HDR, это особенно важно».

В постобработке, следующей за процессом «тоун маппинга», фотохудожница отдает предпочтение маскам слоев и размытиям на них (инструменты группы Blur, в частности - размытие по Гауссу). Из режимов наложения слоев Микаэлла любит Overlay и Color, позволяющие достигать требуемого уровня контрастности. Густаво Оренштайн и Джеспер Кристенсен добавляют сюда еще и Soft Overlay. Джеспер работает на таком слое кисточками инструментов «осветлитель» и «затемнитель». Первый помогает четче прорисовать детали в тенях, второй - создать драматическую контрастность. Без них в своей работе не обходится и Микаэлла, и Густаво. Тогда как Джанлука предпочитает затемнителю и осветлителю обычную рисовальную кисточку в режиме наложения слоев Overlay с минимальным уровнем прозрачности (opacity). Для придания изображениям должной цветовой насыщенности он работает с настройками hue/saturation и selective color. Джанлука создает дубликат слоя; к нему он применяет фильтр «размытие по Гауссу» (радиус 4 пикселя, показатель прозрачности - 13 %) и накладывает в режиме multiply или overlay. Затем он вызывает еще один дубликат и занимается уровнями насыщенности отдельных цветов в нем, особенно - белого, черного и нейтрального серого, которые и создают дополнительное ощущение широкого динамического диапазона. Из четверых наших экспертов только Джеспер Кристенсен активно использует цифровые графические планшеты Wacom, но мог бы прекрасно обходиться и без них - устройства нужны ему для других проектов.

Вообще говоря, постобработка HDR-изображений - вопрос, конечно, сугубо личный, зависящий не столько от технических возможностей программы, сколько от субъективного творческого видения художника. И было бы бессмысленно рассказывать о сотнях индивидуальных предпочтений каждого из сегодняшних авторов. Кто-то, как Микаэлла, стремится к простоте в выборе инструментов реализации визуальных задач. Для нее, например, фотошоповский shadow/highlight дороже всех самых дорогих и изощренных плагинов. А кто-то, вроде маэстро Оренштайна, продолжает экспериментировать с Photomatix, HDR Shop, Light Gen и тому подобными расширителями ДД. Бывалым пользователям графических редакторов, вероятно, важнее сконцентрироваться не на освоении новых программных продуктов, а на выработке собственного стиля и воспитании в себе целостного творческого начала. Тогда как новичкам хотелось бы посоветовать не потеряться в технических моментах, а постараться начать с формирования высокого художественного видения и места работ этого изумительного и перспективного жанра фотоиллюстрации.

Гидропоника. Непонятное для многих слово. С этим термином я столкнулся в детстве, в одном из фантастических рассказов, которые я так любил читать. В каком именно - не помню. Но припоминаю, что сама идея гидропонных ферм показалась мне чем-то необыкновенным и далеким.

Воочию увидеть эту частичку будущего мне удалось в одной из компьютерных игр. Не сказать, что это зрелище меня впечатлило, я «тебя себе другим представлял», но помогло сформировать общий целостный образ.

И с тех пор слово «Гидропоника» у меня ассоциируется именно с космическими кораблями и длительными межпланетными путешествиями.

Будущее оказалось куда ближе. Гидропонные фермы успешно работают по всему миру. Пора и вам познакомиться с ними поближе.

Как работают «Водные сады Дорна»

Гидропоника - это метод выращивания растений в искусственно созданных средах без использования почвы. В таких условиях сельскохозяйственные культуры получают все необходимые химические вещества и элементы из особого питательного раствора.

Причем данный метод придумали не фантасты прошлого века, древние активно его использовали еще до Р.Х. Висячие сады Семирамиды - это первый образец такого «огородничества», упоминания о которых остались в истории человечества.

Позже изобретением воспользовались ацтеки, создав плавающие сады на озере Тескоко.

Принцип работы всех гидропонных ферм един, различаются лишь его формы. Растениям для роста необходим лишь свет, кислород и питательный раствор, содержащий в себе несколько различных микроэлементов: калий, сера, железо, магний, кальций, азот и фосфор. Поэтому корни культур погружаются в соответствующую среду, которая позволяет растению развиваться и плодоносить еще лучше, чем в земле.

Это может быть водная или воздушная среда, а также специальный субстрат. В качестве последнего выступают пористые, влаго-, воздухоемкие или же инертные материалы. Например, песок, щебень, керамзит, гравий, мох, опилки, верховой торф, кокосовое волокно и т.д.

Виды гидропонных ферм

Теперь разберемся непосредственно с формами гидропонного сельского хозяйства. Фермы такого рода бывают «Активными» и «Пассивными». В первых питательный раствор подается к корням под механическим воздействием (например, насосами), ко вторым - естественным путем за счет капиллярных сил.

По пространственному расположению их можно разделить на «Вертикальные» и «Горизонтальные». Несмотря на многочисленные модификации и комбинации сразу нескольких гидропонных систем, их можно поделить на 6 основных типов:

Фитильные. Относятся к системам пассивной гидропоники. В емкость с растением, заполненную субстратом, помещают фитиль. Другой его конец опущен в бак с питательным раствором. Под воздействием капиллярных сил растение снабжается всем необходимым. Это самый простой и малоэффективный метод. Подходит для выращивания маленьких растений, например, декоративных цветков в горшке.

Система глубоководных культур (метод плавающей платформы, DWC) . При таком подходе корни растения всегда находятся в воде. Последнюю непрерывно обогащают кислородом и добавляют питательные вещества. Лук, растущий в баночке с водой у бабушки на подоконнике, - это как раз пример такой системы. Правда, слегка примитивной.

Система периодического затопления. Известна также под названием «прилив-отлив». Корни растений погружены в субстрат, который периодически с помощью насосов затапливается питательным раствором. Под действием гравитации жидкость стекает на дно бака. В это время корни растения или пассивно, или под действием компрессора «дышат» кислородом. И так до следующего «прилива».

Техника питательного слоя (NFT). Корни растения помещают в трубу, в которую тонким слоем насос непрерывно подает питательный раствор. Обогащение жидкости кислородом происходит естественным путем, к тому же, большая часть корня и так висит в воздухе. По этой причине компрессор в такой установке становится не нужен.

Система капельного полива. К каждому растению в горшке с субстратом индивидуально подается питание через трубочку. Насос качает питательный раствор, а кислород растение получает естественным путем.

Аэропоника. Самый высокотехнологичный метод, не требующий использования субстратов. Корни растений висят в воздухе, а под ними расположены устройства, распыляющие питательный аэрозоль. Водяная пыль, туман или пар оседают на корнях и питают сельхозкультуру. Этакая своеобразная «парилка» для салата или укропа.

Примеры действующих ферм

Но это теория, а теперь пришла пора увидеть все на практике. Гидропонные фермы популярны в жарких странах (ОАЭ, Кувейт) с пустынями, где нет плодородных земель. Но впереди планеты всей, конечно же, Израиль, где свыше 80% всей зелени и овощей выращивается именно таким способом.

Израильская компания OrganiTech разработала необычную «конвейерную» систему, которая объединила в себе гидропонную и рыбоводческую фермы. Это так называемая аквапонная ферма (об аквапонике в отдельном материале), которая позволяет совместно выращивать растительную и рыбную продукцию. Тут, что называется, и рыбы сыты, и растения целы.

Компания Sundrop построила в Австралии несколько гидропонных ферм. Их уникальностью является то, что вся инфраструктура сооружения работает полностью на солнечной энергии. С помощью последней даже опресняют морскую соленую воду для создания питательного раствора.

Гидропонная ферма MightyVine в штате Иллинойс обеспечивает местное население высококачественными томатами. Почти 55 т помидоров каждую неделю покидают теплицу, оказываясь на полках магазинов и кухнях ресторанов.

FreshBox Farms -вертикальная ферма в США, которая выращивает свыше 10 видов различной зелени в специальных контейнерах-модулях. Ее «коллега» находится в Калифорнии. Там подобным бизнесом занимается компания Local Roots .

Редкие, плохо переносящие переезды виды зелени, в Сан-Франциско выращиваются компанией-стартапом Plenty . В Нью-Джерси тем же самым занимаются сотрудники гидропонной фермы AeroFarms . В Нью-Йорке данная ниша занята компанией BrightFarms .

Основатель проекта Growing Underground Стивен Дринг пошел еще дальше и создал гидропонную ферму в Лондоне в бомбоубежище. В 30 м под землей растет и «колосится» салат, руккола и другая зеленая продукция. Плюс такой фермы в том, что ее легче обогревать: в любое время года на такой глубине стоит постоянная температура.

В Японии, в префектуре Мияги, построена ферма Mirai , которая тоже использует принципы гидропоники для выращивания зелени. А в городе Камеока (префектура Киото) подобной деятельностью занимается компания Spread .

Одним из самых крупных гидропонных сооружений мира станет ферма, которую планируют возвести в Дубаи компании Crop One и Emirates Flight Catering.

У берегов Генуи на морском дне установлены первые в мире подводные гидропонные «огороды». Их стоимость велика, обслуживание - тоже. Но факт остается фактом: эксперимент существует и показывает возможность выращивания овощей и зелени под водой.

Существуют даже мини-гидропонные фермы, которые вы можете разместить даже у себя дома. Например, вертикальный минисад GrowWall позволяет обеспечить целую семью свежей зеленью в течение всего года.

Преимущества гидропоники

  • Повышенная урожайность. Создание идеальных условий для роста позволяет растениям стать крепкими и сильными, причем в разы быстрее, чем это происходит в почве. Это приводит к тому, что появляется возможность снимать урожай по несколько раз за год.
  • Независимость от внешних условий. Выращивать биомассу можно на борту космического корабля или даже в пустыне на Марсе.
  • Экологичность. Растения получают только полезную подкормку, что исключает попадание в плод или зелень вредных нитратов, тяжелых металлов и прочих ядовитых органических соединений. Также на гидропонных фермах не используются пестициды и гербициды.
  • Автоматизация процесса. Выращивание зелени практически полностью автоматизировано: никакой копки земли, прополки, рыхления или ежедневного полива от вас не требуется. Человеку остается лишь «пожинать плоды».
  • Рациональное использование пространства. Гидропонная ферма даст больше урожая, занимая при этом площадь, в несколько раз меньшую, чем при обычном выращивании растений.
  • Экономия «расходников». Вода и питательные вещества подаются лишь в том количестве, в котором они требуются. Излишки возвращаются в систему, а не уходят в землю, как при традиционных методах выращивания.
  • Отсутствие сорняков и насекомых вредителей. Им просто неоткуда взяться в закрытой автономной системе.
  • Отсутствие болезней растений. Большинство заболеваний сельхозкультур вызваны грибками и бактериями, находящимися в почве. Нет почвы - нет проблем.
  • Простой процесс пересадки растений. Многолетние растения с мощной корневой системой невозможно без повреждения пересадить в другое место, если речь идет о традиционном земледелии. Гидропонный метод такую проблему исключает по умолчанию.
  • Эстетика. Выращивание зелени и овощей на гидропонной ферме выглядит очень красиво и эстетично. Никакой грязи, только ровные горизонтально-вертикальные ряды растений или плавающие в бассейне платформы с салатом.

Недостатки гидропоники

  • Высокая стоимость. Первоначальные затраты на постройку и обслуживание гидропонной фермы гораздо выше, чем выращивание культур традиционным способом.
  • Зависимость от безукоризненной работы автоматики. Кратковременный сбой в работе системы, подачи питательного раствора, может привести к засыханию корня растения и гибели урожая всего за несколько часов. Засуху в обычной почве тот же самый салат выдержит гораздо дольше. Ошибка в составе раствора (например, отсутствие калия или переизбыток фосфора) тоже приведут к плачевному результату.
  • Подходит не для всех растений. Зерновые, корнеплодные, клубневые растения, например, картофель или морковь слабо приспособлены к условиям гидропонного выращивания. На данный момент экономически целесообразнее выращивать их в обычной почве.

Заключение

Гидропонные фермы (наряду с морскими) - это реально действующий способ избежать проблемы голода на Земле и уменьшить загрязнение огромных площадей пестицидами. Кроме того, их повсеместное применение позволит увеличить качество выращенной продукции и снизить ее стоимость.

Когда-то ведь придет пора,

К далеким звездам мы проложим версты.

И может скоро наш корабль

Умчится к звездам.

На этом корабле и всех последующих будут находиться отсеки гидропоники. Уж поверьте мне на слово!

Все более популярным становится бизнес на гидропонике - выращивание сельхозкультур в специальных жидких субстратах, содержащих все необходимые питательные элементы.

  • Сколько можно заработать на гидропонике?
  • С чего начать бизнес?
  • 1. Что выращивать
  • 2. Куда сбывать продукцию
  • 3. Где и как выращивать
  • 4. Управление производством
  • 5. Финансовый анализ производства
  • Какое оборудование для гидропоники выбрать?
  • Сколько нужно денег для старта бизнеса
  • Какой ОКВЭД для бизнеса нужно указать в регистрационных документах
  • Какие документы нужны
  • Какую систему налогообложения выбрать
  • Нужно ли разрешение

Сколько можно заработать на гидропонике?

Гидропонное выращивание отличается от тем, что не требует больших материальных и трудовых затрат в процессе, но при этом имеет высокую прибыль . За счет чего происходит экономия?

  • отпадает необходимость возделывания, удабривания, полива земли;
  • отсутствуют затраты на борьбу с вредителями и сорняками, растения меньше болеют;
  • растения растут быстрее и лучше плодоносят, потому что все питательные вещества поступают в полном объеме в корневую систему;
  • отсутствует фактор влияния погодных условий;
  • предполагается использование малых площадей;
  • не требуется севооборот;
  • расходы воды на полив в разы ниже, чем при выращивании в открытом грунте.

Гидропоника имеет свои специфические риски. Во-первых, гидропонный бизнес требует . Во-вторых, велика зависимость от электроснабжения: при отключении света прекращается подача питательной среды. Это грозит гибелью растений. В-третьих, большое значение имеет техническая сторона: крайне важно поддерживать оборудование в рабочем состоянии. Для работы на таких предприятиях требуются высококвалифицированные работники. В-четвертых, необходимо иметь бесперебойное снабжение водой. Гидропонное выращивание как бизнес будет успешным, если продумать все детали производства, решить логистические вопросы.

Сколько можно заработать? Однозначно ответить на этот вопрос трудно. Можно делать выводы, зная, что при невысоких затратах урожайность в гидропонном производстве в разы выше, чем при культивировании традиционными способами.

С чего начать бизнес?

Для организации бизнеса требуется планирование. Бизнес план должен предусмотреть следующие аспекты.

7 октября 2016 в 18:05

Первая в мире гидропонная солнечная ферма: морская вода + солнечный свет = помидоры

  • Энергия и элементы питания

Теплицы с томатами, зеркала и солнечный концентратор на ферме Sundrop. Фото: Sundrop

Что нужно для озеленения пустыни? Как собрать богатый урожай на высохшей почве, где почти ничего не растёт? Возможно ли ведение сельского хозяйства, если пресная вода заканчивается, почва засоляется, а вокруг - только солёное море, как в Крыму? Оказывается, такое возможно, если использовать интеллект и науку.

Австралийская ферма Sundrop - первая в мире ферма, которая выращивает овощи в пустыне, не используя никакого ископаемого топлива. Только солнечный свет и морская вода (и удобрения).

Футуристическая ферма в Южной Австралии производит 17 000 тонн томатов в год, что приносит доход около $16,9 млн, учитывая среднюю стоимость томатов на оптовом рынке Австралии . В отличие от обычных ферм, здесь не используются ни подземные водные источники, ни ископаемое топливо типа бензина. Ничего. Даже местный песчаный грунт не используется - растения помещаются в сосуды, как в гидропонике. Вместе с водой в сосуды подаются необходимые питательные вещества, удобрения.

Из природных ресурсов берётся только солнечный свет и морская вода. Такая модель фермерского хозяйства может найти широкое распространение в будущем, пишет журнал New Scientist . Запасы пресной воды на Земле постепенно иссякают, население в Азии и Африке быстро растёт, а температура на поверхности Земли увеличивается из-за парникового эффекта. Таким образом, складываются практически идеальные условия для фермерского тепличного хозяйства.

Даже пестициды здесь не нужны, потому что в пустыне вредители практически не выживают. А те, кто выживают, - не могут проникнуть в изолированную теплицу.

К 2050 году из-за роста населения людям понадобится на 50% больше еды, чем сейчас. А ведь все сельскохозяйственные земли уже заняты. Так что остаётся два варианта - или повышать урожайность на существующих площадях, используя более урожайные культуры, или осваивать новые территории - те же пустыни - по ходу решая проблему пресной воды.

Получается, что переход на инновационные технологии в сельском хозяйстве с получением солнечной энергии и опреснением морской воды - это не только наиболее предпочтительный вариант развития человечества. Это единственный возможный вариант. «Обычное» сельское хозяйство больше не работает, пришло время для серьёзных изменений.

Конструкцию уникальной фермы Sundrop разрабатывала и доводила до ума международная группа учёных в течение шести лет. Первая экспериментальная теплица была построена в 2010 году. Спустя четыре года начали возведение полномасштабного сооружения с теплицами на площади в 20 гектаров. В теплицах высажены 180 000 кустов томатов. Официальное открытие фермы состоялось в 2016 году.

Центральным элементом конструкции фермы является 127-метровая башня солнечного концентратора, на которую отражают лучи света 23 000 зеркал, расположенных на земле. Концентратор даёт пар, электричество и пресную воду для фермы.

Вода закачивается из залива Спенсер, который является частью открытого Большого Австралийского залива, омывающего южное побережье Австралии. Как и весь остальной Индийский океан, этот залив содержит солёную морскую воду.

На ферме осуществляется термическое опреснение солёной воды (дистилляция). Вода нагревается, а пар собирают и конденсируют. Образуется дистиллят - это совершенно чистая пресная вода. Таким же способом воду опресняют на морских судах, например. Ничего необычного.

В хороший день солнечная электростанция генерирует 39 МВт электроэнергии. Это достаточно для опреснения примерно цистерны воды. Дистилляция обычно требует около 700 ккал на 1 литр воды. Но это из опыта обычных дистилляторов. Нам неизвестен КПД энергоустановки Sundrop. Возможно, инженеры как-то повысили КПД, поигравшись с осмотическим давлением, например.


Пруд с морской водой на ферме Sundrop

Для упрощения общей конструкции во время предварительных испытаний решено отказаться от прямого нагрева воды солнечным светом. Сейчас установка вырабатывает электроэнергию, а та используется для нагрева и дистилляции воды в отдельной ёмкости.

В любом случае, тепла в концентраторе хватает для опреснения необходимого объёма воды и получения остального электричества, необходимого ферме.

Сухой и жаркий климат Южной Австралии делает землю непригодной для обычного сельского хозяйства. Но используя современные технологии и альтернативную энергетику люди вполне могут разворачивать фермы даже на пустынных территориях, где климат ненамного лучше марсианского.

Компания Sundrop считает, что модель солнечных ферм с концентраторами можно применять во многих тёплых странах, где почва не слишком пригодна для сельского хозяйства, зато много солнечных дней в году. Сейчас фирма открывает ещё одну такую ферму в районе Одемира (Португалия), а также в штате Теннесси (США). Планируется открыть и вторую австралийскую ферму. Сооружение инфраструктуры для солнечной фермы подобного масштаба обошлось в $200 млн. С ежегодным урожаем на $16,9 млн ROI доходит до 8,45%. Получается, что в идеале ферма должна вернуть вложенные инвестиции примерно через 12 лет. Отличный результат.

Руководство компании Sundrop считает, что это очень выгодная долгосрочная инвестиция, а правительства могут поддерживать частные инициативы по созданию экологически чистых ферм, озеленению пустынь, опреснению морской воды. Например, освобождать такие предприятия от налогов. Хотя бы на территории Крыма подобная инициатива могла бы спасти сельское хозяйство, которое грозит исчезнуть из-за нехватки пресной воды.

Томаты, собранные на ферме Sundrop, уже поступили в продажу в супермаркеты Австралии.


Упаковка урожая на ферме Sundrop