Электромагнитная катапульта относится к военно-морскому флоту и применяется на авианосцах для взлета самолетов с палуб. Взлет самолета при помощи катапульты производится с применением электрического тока, при прохождении его через звенья индуктивных катушек, выполненных по типу соленоидов, внутри которых от электромагнитного поля перемещается железный сердечник, тянущий за собой буксирным тросом самолет по палубе, постепенно приобретая при этом достаточную скорость для взлета самолета с авианосца. 1 ил.

Данное изобретение относится Военно-морскому флоту и применяется на авианосцах для взлета самолета с его палубы.

На современных авианосцах применяются паровые катапульты, на которых ставятся самолеты для взлета, при помощи подачи пара в цилиндры катапульт, при этом они дают снаружи некоторое количество пара, обволакивая им взлетную полосу палубы, что не очень приятно для обслуживающего персонала, кроме этого вот что говорится об основных недостатках паровых катапульт в: В.В.Бешанов, Энциклопедия авианосцев, стр.394, 2002 г.: "Надо сказать, что применение паровых катапульт было куплено дорогой ценой. Масса современной паровой катапульты с обслуживающими устройствами достигает 400-500 т. Их размещение требует значительных площадей и объемов. Кроме того, наряду со своими преимуществами они имеют существенные недостатки: значительный расход пара /до 20% от максимальной паропроизводительности котлов/ и пресной воды /до 80 тонн на одну летную смену/ при непрерывных полетах; интенсивное парение цилиндров при проходе человека, приводящее к усиленной коррозии деталей; сложности технического обслуживания и ремонта. Это побудило специалистов приступить к разработке принципиально новых типов катапульт - инерционной и электромагнитной".

Известна также катапульта /см. патент US 3311329 А/, осуществляющая взлет самолета с палубы корабля или с авианосца при помощи гидромеханического привода, не потребляя при этом электроэнергию.

Основной недостаток этой катапульты в том, что она конструктивно не пригодна для осуществления взлета с ее помощью тяжелых /40 тонн/ реактивных самолетов, имеющих взлетную скорость 800 км/час /см.: С.А.Мусский, Сто великих чудес техники, стр.252, 2001 г./.

Данная катапульта, по патенту US 3311229 А, пригодна только для взлета легковесных самолетов с палубы корабля или с авианосца /см.: Д.А.Соболев, Рождение самолета, стр.198-196, 1988 г./.

Ввиду того, что в настоящее время ведется разработка электромагнитной катапульты, и сколько она будет продолжаться, пока еще неизвестно, поэтому привести ее для сравнения с предложенной в заявке электромагнитной катапультой нет возможности.

Целью настоящего изобретения является устранение указанных недостатков, приведенных катапульт и замена их более совершенными и упрощенными в обслуживании катапультами.

Данная цель достигается тем, что под палубой авианосца помещен многозвенный соленоид, состоящий из индуктивных катушек, надетых на трубу из диамагнитного материала, внутри которой свободно перемещается железный сердечник, за которым закреплен трос, а на другом конце троса имеется кольцо, за которое крюком цепляется самолет для взлета его с палубы авианосца.

На чертеже приведена схема действующей модели электромагнитной катапульты, повторяющая по устройству оригинал, предназначенный для установки на авианосце.

В электромагнитную катапульту входят следующие устройства и элементы: самолет 1; палуба авианосца 2; буксирный трос 3; направляющее колесо 4; лебедка 5; тормозная пружина 6; трос обратного хода 7; диамагнитная труба 8; железный сердечник 9; индуктивные катушки 10; резисторы 11; тиристоры 12; изолированные контакты 13 от диамагнитной трубы 8; кнопки 14; предохранители 15, 16; выключатели 17, 18; блок электропитания 19; провода с зажимами 20, 21 и 22, 23.

Работа электромагнитной катапульты.

Чтобы привести электромагнитную катапульту в действие, предварительно, железный сердечник 9 вставляется внутрь в конце диамагнитной трубы 8; включается выключателями 17, 18 электропитание в катапульту. От подачи электропитания образуется цепь:+, зажим 23, диамагнитная труба 8, железный сердечник 9, изолированный контакт 18 от диамагнитной трубы 8, резистор 11, тиристор 12, предохранитель 16 контакт 18, зажим 22, минус, -; от этого откроется тиристор 12.

Самолет 1 своим ходом по палубе 2 подкатывается к началу катапульты, к лебедке 5 и цепляется крюком за кольцо /не показаны/ буксирного троса 8, и после подготовки самолета к взлету нажимается кнопка 14; - образуется цепь: зажим 21, контакт 17, предохранитель 15, тиристор 12, индуктивная катушка 10, кнопка 14, зажим 20. /С работой тиристора можно ознакомиться в: В.Р.Ломоносов и др., Электротехника, стр.244-247, 1990 г./

Внутри индуктивной катушки возникает электромагнитное поле, и как только соленоид втянет к себе железный сердечник 9, он по инерции приобретает скорость, сходит с контакта 18, этим индуктивная катушка 10 обесточивается, но таким же образом становится под током индуктивная катушка следующего соленоида, и так дальше процесс будет продолжаться, пока железный сердечник 9 не дойдет до начала катапульты и не упрется в тормозную пружину 6.

Железный сердечник 9, во время движения внутри диамагнитной трубы 8, за собой в противоположную сторону буксирным тросом 3, который перекинут через направляющее колесо 4, будет тянуть по палубе самолет, приобретая при этом достаточную скорость к концу катапульты, чтобы взлететь с авианосца.

Для возвращения железного сердечника 9 в исходное положение лебедка 5 приводится во вращательное движение, и она наматывает на себя трос обратного хода 7, который закреплен на кольцо /не показано/ буксирного троса 3. До этого лебедка 5 вращалась вхолостую, во время взлета самолета.

Основное преимущество электромагнитной катапульты перед другими катапультами в том, что ее можно смонтировать на любом корабле, лишь бы корабль удовлетворял своими размерами для помещения в него данной катапульты.

С катапульты можно запустить любой самолет, лишь бы он был приемлем по своему весу для этого, а также планеры, как с прицепом за самолет, так и без него, т.е. со сцеплением за буксирный трос.

Электромагнитная катапульта, предназначенная для взлета самолета с палубы авианосца, отличающаяся тем, что она размещена под палубой и состоит из индуктивных катушек типа соленоида, надетых на трубу из диамагнитного материала, внутри которой свободно перемещается железный сердечник, за которым закреплен трос, а на другом конце троса закреплено кольцо, надевающееся на крюк самолета для взлета его с палубы авианосца, причем возвращение в исходное положение железного сердечника происходит тросом обратного хода, наматывающимся на лебедку.

В России начаты работы по созданию электромагнитной авиационной пусковой установки . Об этом сообщило информагентство ИТАР-ТАСС со ссылкой на гендиректора Невского проектно-конструкторского бюро Сергея Власова. Информация интересна тем, что командование ВМФ до сих пор не определилось: нужны авианосцы нашему флоту или нет. Но, как следует из сообщения, отдельные элементы авианесущих кораблей уже разрабатываются, причем элементы — важнейшие.

Ускоряющее устройство с архаичным названием — неотъемлемая часть плавучих аэродромов. Лишь оно способно обеспечить ускоренный запуск в небо всей авиационной армады и экономить на каждом взлете значительное количество топлива.

ТАВКР «Адмирал Кузнецов»

Споры о том, нужны или нет авианосцы нашей стране, обусловлены в основном финансами. Такие корабли недешевы. Однако без них никакой военный флот не может считаться по-настоящему океанским. И скорее всего в XXI веке ВМФ России обретет авианосные эскадры. Свидетельство тому — начало реализации катапультного проекта.

В последние годы регулярно поднимается тема строительства нового российского авианосца, но пока дальше разговоров дело не идет. Время от времени появляются различные , хотя в планах военных пока не предусмотрено финансирование строительства корабля с авиационной группой. На днях информационное агентство ИТАР-ТАСС опубликовало интервью с генеральным директором Невского проектно-конструкторского бюро Сергеем Власовым, из которого стало известно о новых работах в направлении создания перспективного авианосца.


Корреспондент ИТАР-ТАСС и руководитель Невского ПКБ говорили о будущем отечественных и зарубежных авианосцев, а также затронули ряд важных тем. Пожалуй, самыми интересным моментом интервью является заявление С. Власова о том, что некая отечественная организация уже занимается исследованиями по тематике электромагнитной катапульты для перспективных авианосцев. Гендиректор Невского ПКБ не уточнил, кто именно занимается перспективным проектом, равно как и не раскрыл никаких подробностей этих работ.

С. Власов отметил, что перспективные отечественные авианосцы, вероятно, будут нуждаться в катапульте для запуска самолетов. Кроме того, понадобятся соответствующие самолеты. Точный облик авианосца и самолетов для него пока не определен, но уже ведутся работы в области электромагнитных катапульт. Сколько времени займет реализация этого проекта – пока не вполне ясно. Как показывает зарубежный опыт, создание электромагнитной катапульты является достаточно сложной задачей. К примеру, американские инженеры создавали и доводили такую систему больше десяти лет.

Гендиректор Невского ПКБ также отметил пока невысокую надежность перспективных систем. При всех своих преимуществах, как следует из открытых источников, электромагнитные катапульты пока проигрывают паровым в надежности чуть ли не на два порядка. Электромагнитные системы пока не слишком надежны, из-за чего число критических отказов на определенное количество циклов работы пока слишком велико.

Из слов С. Власова также следует, что в настоящее время в нашей стране разрабатывается только электромагнитная катапульта для авианосцев. Паровые системы аналогичного назначения сейчас не интересуют отечественных ученых и конструкторов. Глава Невского ПКБ пояснил это некоторыми особенностями работы паровых катапульт. Подобные системы нуждаются в ядерной энергетической установке корабля, которая производит для них пар. Что касается электромагнитной системы, то она легче, компактнее и плавней разгоняет самолет, а ее характеристики можно регулировать в зависимости от веса самолета.

По мнению С. Власова, использование катапульт может не оказать серьезного влияния на облик перспективного авианосца. В качестве примера он привел американские корабли, каждый из которых несет по четыре катапульты: две на носу и две на угловой палубе. Перспективный отечественный авианосец может сохранить трамплин в носовой части полетной палубы, а также получить две катапульты на угловой.

Руководитель Невского ПКБ полагает, что пока рано говорить о стоимости готовой электромагнитной катапульты российской разработки. Такая система состоит из нескольких компонентов (собственно катапульта, высоковольтное оборудование, генераторы и т.д.), из-за чего трудно оценивать ее итоговую стоимость. Кроме того, на цене системы может сказаться количество кораблей. Чем большие объемы будет иметь серия, тем меньше окажется стоимость каждой катапульты.

Если тема электромагнитной катапульты получит дальнейшее развитие, то площадкой для испытаний такой техники, по мнению С. Власова, может стать один из российских наземных тренажеров. Соответствующее оборудование может быть установлено и испытано на комплексе НИТКА в Крыму или в Ейске.

Несмотря на то, что строительство нового отечественного авианосца пока является делом достаточно далекого будущего, сообщения о работах над электромагнитной катапультой для подобных кораблей выглядит очень любопытно. Это означает, что оборонные предприятия уже занимаются различными исследованиями, которые в будущем помогут создать проект корабля с авиационной группой на борту.

Следует отметить, что работы по созданию катапульты являются в некотором смысле продолжением проектов, которые создавались еще в восьмидесятых годах. Авианосец «Ульяновск», который так и не был достроен, предполагалось оснастить паровыми катапультами. Благодаря этим системам корабль мог бы обеспечивать работу самолетов нескольких типов. Дело в том, что применявшийся ранее взлетный трамплин может использоваться только самолетами с высокой тяговооруженностью, а это накладывает ограничение на состав авиационной группы корабля. Авианосцы с катапультами менее требовательны с такой точки зрения.

Зарубежный опыт, прежде всего американский, наглядно показывает преимущества, которые дает использование катапульт. Паровые системы этого класса в течение последних десятилетий активно используются на кораблях ВМС США и обеспечивают им большую гибкость применения.

Новейшим американским проектом в области катапульт для авианосцев является электромагнитная система EMALS, созданная для корабля USS Gerald R. Ford (CVN-78). Утверждается, что катапульты этой системы позволят самолетам корабля осуществлять не менее 160 вылетов в день вместо 120 вылетов для авианосцев с паровой катапультой. Это должно соответствующим образом сказаться на эффективности боевой работы как самого авианосца, так и авианосной ударной группы, в которую он входит.

В начале этого года появились сообщения о похожей разработке за авторством китайских специалистов. В зарубежных СМИ сообщалось, что Китай построил наземный испытательный комплекс, оснащенный прототипом перспективной электромагнитной катапульты. Подробности китайского проекта неизвестны. Длина опытной катапульты оценивается в 120-150 метров при длине электромагнитных направляющих около 100 метров.

Таким образом, ведущие страны мира, намеревающиеся развивать свой авианосный флот, собираются отказываться от устаревающих паровых катапульт, переходя на использование электромагнитных. Преимущества новых систем перед старыми очевидны и уже не вызывают сомнений. Тем не менее, создание электромагнитной катапульты является достаточно сложной задачей, поскольку этот агрегат потребляет огромное количество электроэнергии и поэтому требует особого подхода к созданию энергосистем корабля.

Теоретически авианосец с паровой или электромагнитной катапультой может быть оснащен паротурбинной силовой установкой, однако она не позволит вывести характеристики систем на требуемый уровень. Ожидаемый эффект может быть достигнут только при использовании ядерной энергетической установки, что наглядно показывает американский опыт. Пока рано рассуждать на тему облика перспективного российского авианосца, но уже сейчас можно предположить, что разрабатываемая электромагнитная катапульта – если она дойдет до практического применения – будет использоваться на корабле с ядерной энергоустановкой.

Тем не менее, все это лишь предположения. Разработка нового российского авианосца еще не началась, и пока нет точной информации, какие системы будут применяться на нем. При этом следует признать, что сведения о создании электромагнитной катапульты могут быть свидетельством того, что сейчас ведутся некоторые предварительные работы по авианосной тематике. Подобные предварительные исследования и разработки помогут сформировать технические требования и облик перспективного авианесущего корабля, строительство которого начнется в будущем.

По материалам сайтов:
http://itar-tass.com/
http://lenta.ru/
http://ria.ru/

Стоимость нового авианосца «Джеральд Форд» (Gerald Ford) - около 13 миллиардов долларов.

Многоцелевые авианосцы типа «Джеральд Р. Форд» строятся как улучшенная версия авианосцев типа «Нимиц» и отличаются от них, при сопоставимых размерах, меньшим, за счёт высокой степени автоматизации, экипажем и, как предполагается, меньшими эксплуатационными расходами. Помимо головного корабля запланировано строительство как минимум еще двух кораблей, по мере принятия на вооружение авианосцы типа «Джеральд Р. Форд» будут заменять авианосцы типов «Энтерпрайз» и «Нимиц».

При одинаковом с авианосцами типа «Нимиц» водоизмещении (около 100 000 т), «Джеральд Форд» имеет на несколько сот человек меньший экипаж. Это достигнуто за счёт внедрения автоматизации и более ремонтопригодных схем техобслуживания.

Увеличено число самолёто-вылетов - со 140 до 160 в день, на четверть увеличена мощность атомного реактора, есть и другие новшества. Улучшающие мореходные качества корабля и его взаимодействие с другими судами флота.

«Джеральд Форд» впервые в истории ВМФ США полностью спроектирован с помощью 3D-дизайна, разработанного компанией «Нортроп Грумман» с автоматизированной системой моделирования технологических процессов.

Конструкция корпуса практически одинакова с авианосцами типа «Нимиц». Более компактная надстройка сдвинута в корму и вынесена за линию борта. Надстройка оборудована мачтой из композитных материалов. Здесь расположены неподвижные радары с фазированными антенными решётками и система автоматического подлёта и посадки (JPALS), использующая глобальную систему позиционирования GPS. Расширена полётная палуба, на ней оборудованы 18 пунктов для заправки и вооружения самолётов.

Флагманские апартаменты на 70 мест для уменьшения размеров надстройки перенесены на нижнюю палубу.

Основой радиоэлектронного оборудования авианосца является двухдиапазонная радиолокационная система DBR , которая интегрирует в себе многофункциональный радар AN/SPY-3 X-диапазона фирмы Raytheon и радар объёмного обзора VSR S-диапазона фирмы Lockheed. AN/SPY-3 осуществляет обзор и сопровождение целей, управление ракетами и подсветку цели на конечном участке траектории ракеты. VSR выполняет роль дальнего обзора и целеуказания для других радаров и систем оружия. Система разрабатывалась для эсминцев нового поколения DDG-1000 «Замволт».

Значительно изменена внутренняя компоновка корабля и конфигурация полётной палубы. Обеспечено быстрое реконфигурирование внутренних объёмов при установке новой аппаратуры. Для уменьшения веса количество секций ангара сокращено с трёх до двух, а количество самолётоподъёмников — с четырёх до трёх.

В качестве средства ПВО самообороны корабль вооружён ракетами ESSM фирмы Raytheon с двумя 8-контейнерными пусковыми установками на 32 ракеты каждая. Ракеты предназначены для борьбы со скоростными высокоманёвренными противокорабельными ракетами. Системы ближнего радиуса действия включают зенитные ракеты RAM производства Raytheon и Ramsy s GmbH.

Авианосцы смогут нести до 90 самолётов и вертолётов различного назначения: палубные самолёты 5-го поколения F-35, истребители-штурмовики F/A-18E/F Super Hornet, самолёты ДРЛО E-2D Advance Hawkeye, самолёты электронного противодействия EA-18G, многоцелевые вертолёты MH-60R/S, а также боевые беспилотные летательные аппараты.

Самое существенное, и даже революционное техническое новшество - электромагнитная катапульта (EMALS) фирмы General Atomics на основе линейных электродвигателей. Замена паровых катапульт электромагнитными призвана обеспечить большую управляемость запусков самолётов, меньшие нагрузки на них, возможность взлёта при более широком диапазоне скоростей и направлений ветра, а также запуск беспилотников.

Стоимость контракта на создание EMALS - 676,2 миллиона долларов. Одновременно с катапультой созданы новые аэрофинишеры, обеспечивающие быструю остановку самолетов после касания палубы. Длина пусковой полосы 91 метр. EMALS способна разогнать самолет массой 45 тонн до 240 километров в час. Во время тестовых испытаний было произведено 22 «холостых старта» и старты с так называемым «мертвым грузом», тяжелыми тележками, масса которых составляет около 36 тонн.


EMALS это огромный линейный индукционный двигатель, то есть двигатель, ротор которого не круглый, а вытянутый вдоль стартовой полосы. Сегменты двигателя поочередно отключатся и подключаются, разгоняя самолет. В пусковом устройстве есть специальная тележка, к которой самолет цепляется передней стойкой шасси и движется между двумя направляющими с электромагнитами, как по рельсам. Электромагнитные секции после прохождения мимо них тележки отключаются, а те, к которым она приближается, включаются. Это существенно экономит электроэнергию.

В советском флоте авианосца с паровой катапультой не появилось, хотя попытки ее создать предпринимались. Этой разработкой занимался Пролетарский завод в Ленинграде, но с задачей не справился. Удалось собрать лишь один опытный образец установки «Светлана-1» на наземном испытательно-тренировочном комплексе авиации (НИТКА) в Крыму. Строительство его началось в 1977 году. Ход работ куртровал лично главком ВМФ. Тем не менее, ни один самолет с этого устройства так и не взлетел. Увидев, как она работает, главный конструктор ОКБ Сухого Симонов наотрез отказался переделывать под нее Су-27К.

Было принято решения отказаться от создания паровой катапульты, а использовать взлет с трамплина, который и был создан для авианосца «Адмирал Кузнецов».

Трамплин, конечно, более дешев и прост.

Однако его недостатки более чем очевидны. Во-первых, катапульта менее чувствительна к условиям взлета. Авианосец с катапультой может продолжать поднимать в воздух самолеты при более жестких параметрах качки, ветра и волнения, чем корабль с трамплином.

Второе преимущество катапульты - более высокий темп работы. Американский авианосец может запускать самолеты в воздух со своих четырех паровых катапульт каждые 15 секунд. У "Кузнецова" всего три стартовые позиции, причем с двух носовых самолеты могут взлетать не с полной взлетной массой. С полной боевой нагрузкой истребители могут стартовать лишь с единственной позиции, расположенной ближе к корме - самолет должен разгоняться чуть ли не по всей полетной палубе! Темп запуска при трамплинном взлете замедляется более чем в два раза по сравнению с катапультным.

У старта с трамплина более высокие требования к тяговооруженности самолета: двигатели выводятся на режим "полный форсаж" до начала разбега, что преждевременно вырабатывает их ресурс и повышает расход топлива. Меньший темп взлета авиагруппы приводит к более длительному ожиданию в точке сбора, то есть к перерасходу топлива и уменьшению боевого радиуса.


Кстати сказать, работы по созданию электромагнитной катапульты для авианосцев начались в СССР даже раньше, чем в США. В 80-е годы в Институте высоких температур Академии наук совместно с ЦАГИ им. профессора Н.Е. Жуковского и ОКБ А.И. Микояна в рамках НИР «Шампунь» велась разработка системы электромагнитного взлета и посадки самолетов для авианосцев и мобильных аэродромов наземного базирования. И продолжались в течение почти 15 лет. Но опять же не увенчались успехом. +

Наличие электромагнитной катапульты позволит новому американскому авианосцу в течение короткого времени «выстреливать» в воздух десятки беспилотников, что вписывает этот корабль в самые современные концепции сетецетрических войн с использований автономных систем вооружений.

Битва за звезды-2. Космическое противостояние (часть II) Первушин Антон Иванович

Электромагнитные пушки-катапульты

Впервые идею электромагнитной пушки (или электромагнитной катапульты) предложили в 1915 году российские инженеры Подольский и Ямпольский, использовав принцип линейного электродвигателя, изобретенного еще в XIX столетии русским физиком Борисом Якоби. Они создали проект магнитно-фугальной пушки с 50-метровым стволом, обвитым катушками индуктивности. Предполагалось, что разгоняемый электротоком снаряд достигнет начальной скорости 915 м/с и улетит на 300 километров. Проект отвергли как несвоевременный.

Однако уже в следующем году французы Фашон и Виллепле предложили аналогичную артсистему, причем на испытаниях ее модели 50-граммовый снаряд разгонялся до 200 м/с. Изобретатели утверждали, что электромагнитные пушки окажутся дальнобойнее обычных; кроме того, их стволы не будут перегреваться при длительной стрельбе. Но скептики подметили, что для такой установки потребуется ствол длиной не менее 200 метров, который придется удерживать несколькими стационарными фермами, лишь незначительно меняя угол его наклона, а о наводке по горизонтали говорить не придется. Да и для обеспечения энергией даже простейшей электромагнитной пушки потребуется соорудить рядом с ней целую электростанцию…

Эксперименты с электромагнитными метательными системами были вновь продолжены только после Второй мировой войны. Наиболее серьезный проект электромагнитной пушки-катапульты, предназначенной для запуска небольших снарядов на околоземную орбиту, разрабатывался в середине 80-х годов Национальной лабораторией в Альбукерке (США) под руководством Уильяма Корна. Была даже построена модель стартового комплекса, представляющего собой шестиступенчатый электромагнитный ускоритель. Он рассчитан на разгон снаряда массой 4 килограмма и диаметром 139 миллиметров. Позже появился проект десятиступенчатого ускорителя, предназначенного для запуска 400-килограммовых снарядов калибром 750 миллиметров.

Интересен также проект стартового комплекса, разрабатываемый в американском Научно-исследовательском центре Льюиса. Он предназначен для отправки в космос контейнеров с радиоактивными отходами и включает несколько технических и пусковых площадок, помещений для подготовки снарядов-контейнеров, подземных хранилищ, центра управления «стрельбами», станций радиолокационного слежения.

Согласно расчетам сотрудников центра Льюиса затраты на сооружение подобного объекта могут составить 6,4 миллиарда долларов, а ежегодные эксплуатационные расходы - 58 миллионов. С другой стороны, та экономия, которую получит атомная энергетика, если радиоактивные отходы с долгоживущими изотопами будут удаляться за пределы Солнечной системы, покроет любые расходы.

Процесс запуска контейнера с радиоактивными отходами будет выглядеть следующим образом. Отработавшие на АЭС стержни привезут на стартовый комплекс и направят в пункт переработки. Там отходы перегрузят из транспортных контейнеров в экранированные капсулы, представляющие собой части орбитального снаряда. Устройство такого снаряда, изготовленного из тугоплавкого вольфрама, зависит от назначения и вида полезной нагрузки, но в любом случае корпус должен обладать минимальным аэродинамическим сопротивлением, для движения по направляющему рельсу ствола потребуются сбрасываемые после выстрела башмаки, а для стабилизации при полете в атмосфере - стабилизаторы.

Незадолго перед пуском смонтированный снаряд переместят в магазин, а оттуда - в зарядное устройство. За ним расположен газодинамический участок доускорения, переходящий в ствол-рельсотрон, изготовленный из меди. Сначала предлагали ствол квадратного сечения, однако после опытов, проведенных в Ливерморской лаборатории, предпочли круглый в сечении, «пушечный», окруженный множеством соленоидных катушек, объединенных в блоки.

Перед запуском катушки возбуждаются переменным током с возрастающей частотой. Так, на одном из опытных образцов метательной установки на первый блок подавали напряжение с частотой 4,4 кГц, на второй - до 8,8 кГц, на третьем она возрастала до 13,2 кГц и так далее.

Каждый блок катушек, взаимодействуя с несущимся по рельсотрону снарядом, будет как бы подхватывать и разгонять его до тех пор, пока скорость не достигнет расчетной.

При этом блоки оснащаются собственными генераторами с фотоэлектрическими переключателями, срабатывавшими при приближении снаряда к фиксированным точкам в стволе. Кроме того, генераторы связаны с мультиплексором, под ключенным к усилителям мощности соленоидов.

Такие электромагнитные пушки предпочтительнее размещать в шахтах; при этом для снижения энергозатрат их предлагают устраивать в горах, на высотах 2,5–3 километров.

Для придачи снаряду дополнительного ускорения при выходе за пределы действия земного притяжения его оснастят силовой установкой. В качестве топлива пока намечена комбинация гидрозина-трифторида хлора, обладающая большой плотностью и достаточным удельным импульсом.

В Советском Союзе также неоднократно выдвигались проекты электромагнитных пушек-катапульт. Например, в начале 70-х годов на страницах научно-популярных журналов всерьез обсуждался проект гигантской станции-катапульты, находящейся на околоземной орбите и служащей промежуточным пунктом на пути космических кораблей к другим планетам.

В качестве источника энергии на борту станции-катапульты планировалось использовать ядерную энергетическую установку - реактор и преобразователь тепловой энергии в электрическую. Энергия должна была аккумулироваться в накопителях на основе сверхпроводящих электромагнитов - криогенных систем с электромагнитными катушками, охлаждаемыми до условий сверхпроводимости. Ускорительная система «пушки» состояла из цепочки соленоидов. Катушки подключались таким образом, что секции, через которые уже прошел снаряд (или космический корабль), выталкивают его, а секции, расположенные впереди, втягивают аппарат. Для подключения катушек в такой последовательности необходима специальная сильноточная коммутационная аппаратура, создание которой - отдельная и серьезная проблема.

К сожалению, все эти проекты так и остались на бумаге.

Главная причина столь прохладного отношения к мощным электромагнитным пушкам-катапультам состоит в том, что перед человечеством пока не стоит задачи, требующей резкого увеличения грузопотока между Землей и космосом. Если такая задача завтра появится, можно не сомневаться, что все эти «бумажные» разработки будут немедленно востребованы…

Из книги Артиллерия автора Внуков Владимир Павлович

Специальные зенитные пушки Новейшие зенитные пушки до последнего времени не были испытаны на войне: из них стреляли лишь на полигонах по воздушным мишеням. Но теперь эти пушки нашли боевое применение в борьбе испанского народа против фашистских интервентов и успели уже

Из книги Тайны русской артиллерии. Последний довод царей и комиссаров [с иллюстрациями] автора

Противотанковые пушки Курчевского Естественно, что Курчевский не мог обойти своим вниманием танки и бронеавтомобили. При этом Леонид Васильевич никаких специальных танковых орудий не проектировал, а просто приспосабливал к бронеобъектам свои уже существующие

Из книги Чудо-оружие Российской империи [с иллюстрациями] автора Широкорад Александр Борисович

Авиационные пушки Курчевского Начну с того, что если в армии и на флоте Курчевскому хоть как-то приходилось доказывать преимущества своих пушек перед классическими орудиями, состоявшими на вооружении, то в авиации конкурентов у его пушек попросту не было. В 1931–1935 гг.

Из книги О станках и калибрах автора Перля Зигмунд Наумович

Корабельные пушки Курчевского Первой была создана и испытана на кораблях 76-мм КПК (катерная пушка Курчевского). Качающаяся часть для нее была взята Курчевским от 76-мм БПК (батальонной пушки Курчевского) с небольшими изменениями. Заряжание КПК производилось с казенной

Из книги Мир Авиации 1994 01 автора Автор неизвестен

Глава 1. Крепости и пушки О крепостях России в годы советской власти у нас писали крайне мало. И лишь в последние годы к ним наблюдается повышенный интерес общественности. Пишутся отдельные книги, снимаются документальные фильмы. Но все это относится к древним русским

Из книги Мир Авиации 1994 02 автора Автор неизвестен

Пушки и снаряды Когда шестьсот лет назад, в начале XIV века, появилось огнестрельное оружие, первые пушки стреляли шаровидными снарядами - ядрами. Вначале их обтесывали из камня, а затем, уже в конце XV века, отливали из чугуна. Заводов и фабрик тогда еще не было. Пушки и ядра

Из книги Эра адмирала Фишера. Политическая биография реформатора британского флота автора Лихарев Дмитрий Витальевич

Штрихи к истории парашюта и катапульты Часть первая. Парашют Американская пресса освещала визит русского экспертаАвтор статьи – кинорежиссер, кандидат технических наук. В 40-50-е годы произвел с самолетов более 1500 воздушных киносъемок испытаний различных парашютов и

Из книги Баллистическая теория Ритца и картина мироздания автора Семиков Сергей Александрович

Штрихи к истории парашюта и катапульты. Часть вторая – катапультаВладимир ЛАВРЕНТЬЕВ МоскваОкончание. Начало см. «Мир Авиации» № 1,1994 г.Только после войны технический прогресс в авиации, связанный с появлением первых отечественных реактивных самолетов, заставил нас

Из книги Боевые корабли автора Перля Зигмунд Наумович

ПУШКИ И ТОРПЕДЫ С момента, когда Фишер покинул «Фыориес», в конце августа 1861 г. и до середины января 1862 г., он находился на берегу, продолжая числиться лейтенантом действующего флота и получая полное жалование. За это время он успешно сдал квалификационный экзамен на чин

Из книги Электронные самоделки автора Кашкаров А. П.

Из книги Новые источники энергии автора Фролов Александр Владимирович

Глава II Паруса и Пушки Первые русские корабли Город Стамбул, расположенный на берегах пролива Босфор, у выхода его в Мраморное море, в средние века назывался Константинополем и был столицей очень сильного и богатого государства – Византийской империи.Черное море еще

Из книги История электротехники автора Коллектив авторов

Приложение 8 Слаботочные электромагнитные реле фирмы Omron Реле фирмы Omron широко используются в бытовой технике, системах автоматизации, мобильных устройствах, информационном оборудовании. Приведенная в табл. П8.1-П8.9 справочная информация поможет при определении реле по

Из книги ЛаГГ-3 автора

Глава 11 Электромагнитные генераторы высокой эффективности Создание автономного режима требует понимания и конструктивного выполнения законов причинности. Мы не можем получать некую мощность в нагрузке, не оказывая влияние на первичную цепь трансформатора, если не

Из книги Посвящение в радиоэлектронику автора Поляков Владимир Тимофеевич

4.11. ЭЛЕКТРОМАГНИТНЫЕ ПРОЦЕССЫ В ВЕЩЕСТВЕННЫХ СРЕДАХ Расчеты ЭМП потребовали более точного описания свойств среды. Потребовалось привлечение и освоение разделов физики диэлектриков, металлов, полупроводящих материалов и ферромагнетизма. Проблема промышленного

Из книги автора

Пушки большого калибра Идея установить на ЛаГГ-3 пушку большого калибра и превратить самолет в истребитель танков появилась еще в 1940 году. Работа по установке на самолет пушки Таубина или Шпитального шла с весны 1941 года. Авиационная пушка Таубина калибра 37 мм не

Из книги автора

4. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ Начав с самых обыденных предметов: кристаллов поваренной соли, котлов и зеркал, в этой главе мы расскажем о явлениях таинственных и необыкновенных: электромагнитной индукции, звездной аберрации, опытах по возбуждению и приему невидимых и