Со времен возникновения естественных наук ученые мечтали создать механического человека, способного заменить его в ряде областей человеческой деятельности: на тяжелых и малопривлекательных работах, на войне и в зонах повышенного риска. Мечты эти часто опережали реальность, и тогда перед глазами изумленной публики появлялись механические диковины, которым пока было еще очень далеко до настоящего робота. Но время шло, и роботы становились всё совершеннее…очень далеко до настоящего робота. Но время шло, и роботы становились всё совершеннее…


Роботы античности и средневековья

Первые упоминания об искусственных человекоподобных существах, выполняющих различные работы, можно встретить уже в мифологии древних народов. Это и золотые механические помощницы бога Гефеса, описанные в «Илиаде», и искусственные существа из индийских Упанишад, и андроиды карело-финского эпоса «Калевала», и Голем из древнееврейской легенды. Насколько эти фантастические соответствуют действительности, судить не нам. В реальности же самого первого «человекоподобного» робота построили в Древней Греции.
Имя Герона, работавшего в Александрии и потому прозванного Александрийским, упоминается в современных энциклопедиях всего мира, кратко пересказывающих содержание его рукописей.
Две тысячи лет назад он завершил свой труд, в котором систематически изложил основные научные достижения античного мира в области прикладной математики и механики (причем названия отдельных разделов этого труда: «Механика», «Пневматика», «Метрика» – звучат вполне современно).

Читая эти разделы, диву даешься, как много знали и умели его современники. Герон описал устройства («простые машины»), использующие принципы действия рычага, ворота, клина, винта, блока; он собрал многочисленные механизмы, приводимые в движение жидкостью или нагретым паром; изложил правила и формулы для точного и приближенного расчета различных геометрических фигур. Однако в трудах Герона имеются описания не только простых машин, но и автоматов, действующих без непосредственного участия человека на базе принципов, используемых и в наши дни.

Ни одно государство, никакое общество, коллектив, семья, ни один человек никогда не могли существовать без того, чтобы так или иначе не измерять время. И способы таких измерений изобретались в самой глубокой древности. Так, в Китае и Индии появилась клепсидра – водяные часы. Этот прибор получил широкое распространение. В Египте клепсидра применялась еще в XVI веке до нашей эры наряду с солнечными часами. Ею пользовались в Греции и Риме, а в Европе она отсчитывала время до XVIII века нашей эры. Итого – почти три с половиной тысячелетия!
В трудах Герон упоминает древнегреческого механика Ктезибия. Среди изобретений и конструкций последнего есть и клепсидра, которая и сейчас могла бы служить украшением любой выставки технического творчества. Представьте себе вертикальный цилиндр, расположенный на прямоугольной подставке. На этой подставке установлены две фигуры. В одну из этих фигур, изображающую плачущего ребенка, подается вода. Слезы ребенка стекают в сосуд в подставке клепсидры и поднимают помещенный в этот сосуд поплавок, соединенный со второй фигурой – женщиной, держащей указатель. Фигура женщины поднимается, указатель движется вдоль цилиндра, который служит циферблатом этих часов, показывая время. День в клепсидре Ктезибия был разделен на 12 дневных «часов» (от восхода до захода солнца) и 12 ночных «часов». Когда сутки кончались, открывался слив накопившейся воды, и под ее воздействием цилиндрический циферблат поворачивался на 1/365 полного оборота, указывая очередные день и месяц года. Ребенок продолжал плакать, и женщина с указателем вновь начинала свой путь снизу вверх, указывая дневные и ночные «часы», заранее согласованные с временем восхода и захода солнца в этот день.

Автоматы, отсчитывающие время, были первыми автоматами, созданными для практических целей. Поэтому для нас они представляют особый интерес. Однако Герон в своих трудах описывает и другие автоматы, также использовавшиеся в практических целях, но совсем иного характера: в частности первый известный нам торговый аппарат – устройство, за деньги отпускавшее «святую воду» в египетских храмах.

* * *
Нет ничего удивительного в том, что именно среди часовых дел мастеров появились выдающиеся умельцы, поражавшие своими изделиями весь мир. Их механические создания, внешне похожие на животных или людей, были способны выполнять наборы разнообразных движений, подобных движениям животных или человека, а внешние формы и оболочка игрушки еще более усиливали ее сходство с живым существом.

Именно тогда появился термин «автомат», под которым вплоть до начала XX века понимались, как это указывается в старинных энциклопедических словарях,
«такие машины, которые подражают произвольным движениям и действиям одушевленных существ. В частности, называют андроидом машину, производящую движения, похожие на человеческие» . (Заметим, что «андроид» – греческое слово, означающее человекоподобный.)

Постройка такого автомата могла длиться годы и десятилетия, и даже сейчас непросто понять, каким образом удавалось, действуя кустарными приемами, создавать целую уйму механических передач, размещать их в малом объеме, увязывать воедино движения многих механизмов, подбирать нужные соотношения их размеров. Все детали и звенья автоматов были выполнены с ювелирной точностью; при этом они были скрыты внутри фигур, приводя их в движение по довольно сложной программе.

Мы не будем сейчас судить о том, насколько совершенными «человекоподобными» казались тогда движения этих автоматов и андроидов. Лучше просто передадим слово автору статьи «Автомат», опубликованной в 1878 году в Санкт-Петербургском энциклопедическом словаре:
«Гораздо удивительней были автоматы, устроенные в прошлом веке французским механиком Вокансоном. Один из его андроидов, известный под именем “флейтиста”, имевший в сидячем положении, вместе со своим пьедесталом, 2 арш. 51/2 вершка вышины (то есть около 170 см), играл 12 разных пьес, производя звуки обыкновенным вдуванием воздуха изо рта в главное отверстие флейты и заменяя ее тоны действием пальцев на прочие отверстия инструмента.

Другой андроид Вокансона играл левой рукой на провансальской свирели, правой рукой играл на бубне и прищелкивал языком по обычаю провансальских свирельщиков. Наконец, бронзированная жестяная утка того же механика – едва ли не самый совершенный из всех поныне известных автоматов – не только подражала с необычайной точностью всем движениям, крику и ухваткам своего оригинала: плавала, ныряла, плескалась в воде и пр., но даже клевала пищу с жадностью живой утки и выполняла до конца (разумеется, при помощи сокрытых внутри ее химических веществ) обычный процесс пищеварения.
Все эти автоматы были публично показаны Вокансоном в Париже в 1738 году.

Не менее удивительны были автоматы современников Вокансона, швейцарцев Дро. Один из изготовленных ими автоматов, девица-андроид, играл на фортепьяно, другой – в виде 12-летнего мальчика, сидящего на табуретке у пульта, – писал с прописи несколько фраз по-французски, обмакивал перо в чернильницу, стряхивал с него лишние чернила, соблюдал совершенную правильность в размещении строк и слов и вообще выполнял все движения переписчиков…
Лучшим произведением Дро считаются часы, поднесенные Фердинанду VI Испанскому, с которыми была соединена целая группа разных автоматов: сидящая на балконе дама читала книгу, нюхая временами табак и, видимо, вслушиваясь в музыкальную пьесу, разыгрываемую часами; крохотная канарейка вспархивала и пела; собака охраняла корзину с фруктами и, если кто-нибудь брал один из плодов, лаяла до тех пор, пока взятое не было положено обратно на место…»
Что можно добавить к свидетельству старинного словаря?

«Писца» построил Пьер Жаке-Дро – выдающийся швейцарский мастер-часовщик. Вслед за этим его сын Анри построил еще одного андроида – «рисовальщика». Потом оба механика – отец и сын вместе – изобрели и построили еще и «музыкантшу», которая играла на фисгармонии, ударяя пальцами по клавишам, а играя, поворачивала голову и следила глазами за положением рук; грудь ее поднималась и опускалась, как будто «музыкантша» дышала.

В 1774 году на выставке в Париже эти механические люди пользовались шумным успехом. Затем Анри Жаке-Дро повез их в Испанию, где толпы зрителей выражали восторг и восхищение. Но здесь вмешалась святейшая инквизиция, обвинила Дро в колдовстве и посадила в тюрьму, отобрав созданные им уникумы…

Сложный путь прошли создания отца и сына Жаке-Дро, переходя из рук в руки, и много квалифицированных часовщиков и механиков приложили к ним свой труд и талант, восстанавливая и ремонтируя поврежденное людьми и временем, пока андроиды не заняли положенное им почетное место в Швейцарии – в Музее изящных искусств города Невшателя.

Механические солдаты

В XIX веке – веке паровых машин и фундаментальных открытий – уже никто в Европе не воспринимал механических существ как «дьявольское отродье». Наоборот, от благообразных ученых ждали технических новинок, которые вскорости изменят жизнь всякого человека, сделав ее легкой и беззаботной. Особого расцвета технические науки и изобретательство достигли в Великобритании, в Викторианскую эпоху.

Викторианской эпохой принято называть более чем шестидесятилетний период правления Англией королевы Виктории: с 1838 по 1901 годы. Устойчивый экономический рост Британской империи тот период сопровождался расцветом наук и искусств. Именно тогда страна добилась гегемонии в индустриальном развитии, торговле, финансах, морском транспорте.

Англия стала «промышленной мастерской мира», и нет ничего удивительного в том, что от ее изобретателей ждали создания механического человека. И некоторые авантюристы, пользуясь случаем, научились выдавать желаемое за действительное.

Например, еще в 1865 году некто Эдвард Эллис в своем историческом (?!) труде «Громадный охотник, или Паровой Человек в прериях» поведал миру об одаренном конструкторе – Джонни Брейнерде, который якобы первым построил «человека, движущегося на пару».
Согласно этому труду, Брейнерд был маленьким горбатым карликом. Он непрерывно изобретал разные вещи: игрушки, миниатюрные пароходы и локомотивы, беспроводной телеграф. В один прекрасный день Брейнерду надоели его крошечные поделки, он сообщил об этом матери, и та вдруг предложила ему попробовать сделать Парового Человека. Несколько недель захваченный новой идеей Джонни не мог найти себе места и после нескольких неудачных попыток всё-таки построил то, чего хотел.

Паровой Человек (Steam Man) – скорее, паровоз в форме человека:
«Этот могучий исполин был приблизительно трехметрового роста, ни одна лошадь не могла сравниться с ним: гигант с легкостью тянул фургон с пятерыми пассажирами. Там, где обычные люди носят шляпу, у Парового Человека была труба дымохода, откуда валил густой черный дым.
У механического человека всё, даже лицо, было сделано из железа, а тело его было окрашено в черный цвет. Экстраординарный механизм имел пару как бы испуганных глаз и огромный усмехающийся рот.

В носу у него было приспособление, подобное свистку паровоза, через которое выходил пар. Там, где у человека находится грудь, у него был паровой котел с дверцей для подбрасывания в поленьев.

Две его руки держали поршни, а подошвы массивных длинных ног были покрыты острыми шипами, чтобы предотвратить скольжение.

В ранце на спине у него были клапаны, а на шее – вожжи, с помощью которых водитель управлял Паровым Человеком, в то время как слева шёл шнур, для контроля над свистком в носу. При благоприятных обстоятельствах Паровой Человек был способен развивать очень высокую скорость».

По свидетельствам «очевидцев», первый Паровой Человек мог двигаться со скоростью до 30 миль в час (около 50 км/ч), а фургон, запряженный этим механизмом, шел почти так же стабильно, как железнодорожный вагон. Единственным серьезным недостатком была необходимость постоянно возить с собой огромное количество дров, ведь «подкармливать» топку Парового Человека приходилось непрерывно.

Разбогатев и получив образование, Джонни Брейнерд хотел усовершенствовать свою разработку, но вместо этого в 1875 году продал патент Фрэнку Риду-старшему. Спустя год Рид построил улучшенную версию Парового Человека – Steam Man Mark II. Второй «паровозочеловек» стал на полметра выше (3,65 метра), получил фары вместо глаз, а пепел от сгоревших дров высыпался на землю через специальные каналы в ногах. Скорость Mark II также была существенно выше, чем у предшественника – до 50 миль в час (более 80 км/ч).

Несмотря на очевидный успех второго по счету Парового Человека, Фрэнк Рид-старший, разочаровавшись в паровых двигателях в целом, оставил эту затею и переключился на электрические модели.

Однако в феврале 1876 года началась работа над Steam Man Mark III: Фрэнк Рид-старший заключил пари с сыном, Фрэнком Ридом-младшим, по поводу того, что существенно улучшить вторую модель Парового Человека невозможно.

4 мая 1879 года при небольшом скоплении любопытных граждан Рид-младший продемонстрировал модель Mark III. «Случайным» свидетелем этой демонстрации стал журналист из Нью-Йорка Луи Сенаренс. Его изумление от технической диковины было столь велико, что он стал официальным биографом семейства Ридов.

Похоже, Сенаренс оказался не слишком добросовестным летописцем, потому что история умалчивает, кто из Ридов выиграл пари. Зато известно, что наряду с Паровым Человеком отец с сыном сделали и Паровую Лошадь (Steam Horse), которая по скорости превзошла обоих Mark"ов.
Так или иначе, но всё в том же 1879 году оба Фрэнка Рида бесповоротно разочаровались в механизмах на паровом ходу и начали работать с электричеством.

В 1885 году прошли первые испытания Электрического Человека (Electric Man). Как вы понимаете, сегодня уже трудно разобраться, каким образом действовал Электрический Человек, каковы были его способности и скорость. На сохранившихся иллюстрациях мы видим, что у этой машины был довольно мощный прожектор, а потенциальных врагов ожидали «электрические разряды», которыми Человек стрелял прямо из глаз! Судя по всему, источник питания находился в закрытом сеткой фургоне. По аналогии с Паровой Лошадью была создана и Электрическая (Electric Horse).

* * *
Не отставали от британцев и американцы. Некто Луи Филип Перью из города Тованада, что близ Ниагарского водопада, в конце 1890-х годов построил Автоматического Человека (Automatic Man).
Всё началось с маленькой действующей модели высотой около 60 сантиметров. С этим образцом Перью обивал пороги богатых людей, надеясь получить финансирование постройки полноразмерного экземпляра.

Своими рассказами он старался поразить воображение «денежных мешков»: шагающий робот пройдет там, где не проедет ни одно колесное транспортное средство, боевая шагающая машина могла бы сделать солдат неуязвимыми и так далее, и тому подобное.
В конце концов Перью удалось уговорить бизнесмена Чарльза Томаса, вместе с которым они и основали «Американскую автоматическую компанию» («United States Automaton Company»).
Работы велись в атмосфере строжайшей секретности, и только когда всё было полностью готово, Перью решился представить свое создание публике. Разработка была закончена в начале лета 1900 года, а в октябре того же года представлена прессе, которая тут же прозвала Перью Франкенштейном из Тонаванды:
«Этот гигант из дерева, каучука и металлов, который ходит, бегает, прыгает, разговаривает и закатывает глаза – практически во всём в точности подражает человеку».

Автоматический Человек был высотой 7 футов 5 дюймов (2,25 метра). Его одели в белый костюм, гигантскую обувь и соответствующую шляпу – Перью старался добиться максимального сходства и, по свидетельству очевидцев, наиболее реалистично выглядели руки машины. Кожа Человека была сделана для легкости из алюминия, вся фигура поддерживалась стальной структурой.
Источником питания служила аккумуляторная батарея. Оператор сидел сзади в фургоне, который соединялся с Автоматическим Человеком небольшой металлической трубкой.
Демонстрация Человека проходила в большом выставочном зале Тонаванды. Первые движения робота разочаровали публику: шаги были дерганными, сопровождались треском и шумом.
Однако, когда изобретение Перью «разработалось», ход сделался плавным и практически бесшумным.

Изобретатель человека-машины сообщил, что робот может идти в достаточно быстром темпе почти неограниченное количество времени, но фигура сказала сама за себя:
«Я собираюсь дойти от Нью-Йорка до Сан-Франциско» , – заявила она глубоким голосом. Звук шел из устройства, спрятанного на груди Человека.

После того как машина, тянущая за собой легкий фургон, сделала несколько кругов по залу, изобретатель положил бревно на ее пути. Робот остановился, скосил глаза на препятствие, будто бы обдумывая ситуацию, и обошел бревно стороной.

Перью заявил, что Автоматический Человек способен в день преодолеть расстояние в 480 миль (772 км), двигаясь в среднем со скоростью 20 миль в час (32 км/час).

Понятно, что в Викторианскую эпоху нельзя было построить полноценного робота-андроида и вышеописанные механизмы были лишь заводными игрушками, призванными воздействовать на доверчивую публику, – однако сама идея жила и развивалась…

* * *
Когда знаменитый американский писатель Айзек Азимов сформулировал три закона робототехники, сутью которых являлся безусловный запрет на причинение роботом какого-либо вреда человеку, он, наверное, даже не догадывался о том, что задолго до этого в Америке уже появился первый робот-солдат. Этого робота называли Boilerplate и он был создан 1880-е годы профессором Арчи Кемпионом.

Кемпион родился 27 ноября 1862 года и с детства был очень любопытным и стремящимся к знаниям мальчиком. Когда в 1871 году на Корейской войне погиб муж сестры Арчи, молодого человека это повергло в шок. Считается, что именно тогда Кемпион поставил перед собой цель найти способ решения конфликтов без убийства людей.

Отец Арчи, Роберт Кемпион, управлял первой компанией в Чикаго, которая производила вычислительные машины, что несомненно повлияло на будущего изобретателя.
В 1878 году юноша устроился на работу, став оператором Чикагской телефонной компании, где набрался опыта как технический специалист. Таланты Арчи в конечном счете принесли ему хороший и стабильный доход – в 1882 году он получил множество патентов на свои изобретения: от створчатых трубопроводов до многоступенчатых электрических систем. В течение последующих трех лет лицензионные платежи по патентам сделали Арчи Кемпиона миллионером. Именно с этими миллионами в кармане в 1886 году изобретатель вдруг превратился в затворника – он построил маленькую лабораторию в Чикаго и приступил к работе над своим роботом.

С 1888 по 1893 годы о Кемпионе ничего не было слышно, пока он вдруг не заявил о себе на Международной колумбийской выставке, где и представил своего робота по имени Boilerplate.
Несмотря на широкую рекламную кампанию, материалов об изобретателе и его роботе сохранилось крайне мало. Мы уже отмечали, что Boilerplate был задуман как средство бескровного решения конфликтов – иными словами, это был опытный образец механического солдата.

Хотя робот существовал в единственном экземпляре, у него была возможность осуществить предложенную функцию – Boilerplate неоднократно участвовал в боевых действиях.
Правда, войнам предшествовало путешествие в Антарктиду в 1894 году на парусном судне. Робота хотели испытать в агрессивной окружающей среде, но до Южного полюса экспедиция не добралась – парусник застрял во льдах, и пришлось вернуться.

Когда в 1898 году Соединенные Штаты объявили войну Испании, Арчи Кемпион увидел возможность для демонстрации боевых способностей своего создания на практике. Зная о том, что Теодор Рузвельт неравнодушен к новым технологиям, Кемпион уговорил его зачислить робота в отряд добровольцев.

24 июня 1898 года механический солдат впервые участвовал в бою, во время атаки обратив противника в бегство. Boilerplate прошел всю войну вплоть до подписания в Париже мирного договора 10 декабря 1898 года.

С 1916 года в Мексике робот участвовал в кампании против Панчо Вилья. Сохранился рассказ очевидца тех событий Модесто Невареса:
«Вдруг кто-то крикнул, что к северу от города захвачен в плен американский солдат. Его вели к гостинице, где разместился Панчо Вилья. У меня была возможность убедиться лично, что более странного солдата я никогда не видел в своей жизни. Этот американец не был человеком вообще, поскольку он был полностью сделан из металла, а ростом превосходил всех солдат на целую голову.
На плечах у него было закреплено одеяло, чтобы на расстоянии он выглядел так же, как обычный крестьянин. Позже я узнал, что часовые пытались остановить эту металлическую фигуру огнем из винтовки, но пули были для этого гиганта подобны москитам. Вместо принятия ответных мер против нападавших, этот солдат просто попросил отвести его к лидеру».

В 1918 году во время Первой Мировой войны Boilerplate был отправлен в тыл врага со специальной разведывательной миссией. С задания он не вернулся, больше его никто не видел.
Понятно, что, скорее всего, Boilerplate был всего лишь дорогостоящей игрушкой или вообще подделкой, однако именно ему суждено было стать первым в длинном ряду машин, которые должны заменить солдата на поле боя…

Роботы Второй мировой

Идея создать боевую машину, управляемую на расстоянии по радио, возникла в самом начале XX века и была реализована французским изобретателем Шнейдером, который создал опытный образец мины, взрываемой с помощью радиосигнала.

В 1915 году в состав немецкого флота вошли взрывающиеся катера, созданные по проекту доктора Сименса. Часть катеров управлялась по электропроводам длиной около 20 миль, а часть – по радио. Оператор управлял катерами с берега или с борта гидросамолета. Наиболее крупным успехом телеуправляемых катеров стала атака на британский монитор «Эребус», произошедшая 28 октября 1917 года. Монитор получил сильные повреждения, но смог вернуться в порт.
В то же самое время британцы проводили опыты по созданию телеуправляемых самолетов-торпед, которые должны были наводиться по радио на вражеский корабль. В 1917 года в городе Фарнборо при большом скоплении народа был показан самолет, которым управляли по радио. Однако система управления вышла из строя, и самолет упал рядом с толпой зрителей. К счастью, никто не пострадал. После этого работы над подобной технологией в Англии затихли – чтобы возобновиться в Советской России…

* * *
9 августа 1921 года бывший дворянин Бекаури получил мандат Совета Труда и Обороны за подписью Ленина:
«Дан изобретателю Владимиру Ивановичу Бекаури в том, что ему поручено осуществление в срочном порядке его, Бекаури, изобретения военно-секретного характера».

Заручившись поддержкой советской власти, Бекаури создал собственный институт – «Особое техническое бюро по военным изобретениям специального назначения» (Остехбюро). Именно здесь должны были создаваться первые советские роботы поля боя.

18 августа 1921 года Бекаури издал приказ № 2, согласно которому в Остехбюро было образовано шесть отделений: специальное, авиационное, подводного плавания, взрывчатых веществ, отдельные электромеханических и экспериментальных исследований.

8 декабря 1922 года завод «Красный летчик» передал для опытов Остехбюро самолет № 4 «Хендли Пейдж» – так начала создаваться воздушная эскадра Остехбюро.

Для создания телеуправляемых летательных аппаратов Бекаури потребовался тяжелый самолет. Поначалу он хотел заказать его в Англии, но заказ сорвался, и в ноябре 1924 года этим проектом занялся авиаконструктор Андрей Николаевич Туполев. В это время в бюро Туполева шла работа над тяжелым бомбардировщиком «АНТ-4» («ТБ-1»). Аналогичный проект предусматривался и для самолета «ТБ-3» («АНТ-6»).

Для самолета-робота «ТБ-1» в Остехбюро была создана телемеханическая система «Дедал». Подъем телемеханического самолета в воздух был сложной задачей, а потому «ТБ-1» взлетал с пилотом. За несколько десятков километров от цели пилот выбрасывался с парашютом. Далее самолет управлялся по радио с «ведущего» «ТБ-1». Когда телеуправляемый бомбардировщик достигал цели, с ведущей машины шел сигнал на пикирование. Такие самолеты планировалось принять на вооружение уже в 1935 году.

Несколько позже Остехбюро занялось проектированием четырехмоторного телеуправляемого бомбардировщика «ТБ-3». Новый бомбардировщик совершал взлет и маршевый полет с пилотом, но при подходе к цели пилот не выбрасывался с парашютом, а пересаживался в подвешенный к «ТБ-3» истребитель «И-15» или «И-16» и на нем возвращался домой. Эти бомбардировщики предполагалось принять на вооружение в 1936 году.

При испытаниях «ТБ-3» основной проблемой было отсутствие надежной работы автоматики. Конструкторы опробовали множество разных конструкций: пневматические, гидравлические и электромеханические. Например, в июле 1934 года в Монино испытывался самолет с автопилотом АВП-3, а в октябре того же года – с автопилотом АВП-7. Но до 1937 года так и не было разработано ни одного более или менее приемлемого устройства управления. В итоге 25 января 1938 года тему закрыли, Остехбюро разогнали, а три использовавшихся для испытаний бомбардировщика отобрали.
Однако работы над телеуправляемыми самолетами продолжались и после разгона Остехбюро. Так, 26 января 1940 года вышло постановление Совета Труда и Обороны № 42 о производстве телемеханических самолетов, в котором выдвигались требования по созданию телемеханических самолетов со взлетом без посадки «ТБ-3» к 15 июля, телемеханических самолетов со взлетом и посадкой «ТБ-3» к 15 октября, командных самолетов управления «СБ» к 25 августа и «ДБ-3» – к 25 ноября.

В 1942 году даже состоялись войсковые испытания телеуправляемого самолета «Торпедо», созданного на базе бомбардировщика «ТБ-3». Самолет был загружен 4 тоннами взрывчатого вещества «повышенного действия». Наведение осуществлялось по радио с самолета «ДБ-ЗФ».
Этот самолет должен был поразить железнодорожный узел в занятой немцами Вязьме. Однако при подлете к цели антенна передатчика «ДБ-ЗФ» вышла из строя, управление самолетом «Торпедо» было потеряно, и он упал куда-то за Вязьму.

Вторая пара «Торпедо» и самолет управления «СБ» в том же 1942 году сгорели на аэродроме при взрыве боеприпасов в стоявшем рядом бомбардировщике…

* * *
После относительно непродолжительного периода успехов во Второй мировой войне к началу 1942 года для немецкой военной авиации (люфтваффе) наступили тяжелые времена. Была проиграна «Битва за Англию», а в ходе неудавшегося «блицкрига» против Советского Союза были потеряны тысячи летчиков и огромное количество самолетов. Ближайшие перспективы также не сулили ничего хорошего – производственные мощности авиационной промышленности стран антигитлеровской коалиции во много раз превосходили возможности немецких авиационных фирм, заводы которых к тому же всё чаще подвергались опустошительным налетам авиации противника.
Единственный выход из создавшегося положения командование люфтваффе усматривало в разработке принципиально новых систем . В приказе одного из руководителей люфтваффе генерал-фельдмаршала Мильха от 10 декабря 1942 года говорится:
«Безусловное требование обеспечить качественное превосходство вооружения германских ВВС над вооружением ВВС противника побудило меня распорядиться о начале реализации чрезвычайной программы разработки и производства новых систем оружия под кодовым названием “Вулкан”»
.
В соответствии с этой программой приоритет отдавался разработке реактивных самолетов, а также самолетов с дистанционным управлением «FZG-76».

Самолет-снаряд конструкции немецкого инженера Фрица Глоссау, вошедший в историю под названием «Фау-1» («V-1»), с июня 1942 года разрабатывала фирма «Физелер» («Fisseler»), ранее выпустившая несколько вполне приемлемых беспилотных летательных аппаратов-мишеней для тренировки расчетов зенитных орудий. В целях обеспечения секретности работ над самолетом-снарядом он также назывался мишенью для зенитной артиллерии – Flakzielgerat или сокращенно FZG. Существовало и внутрифирменное обозначение «Fi-103», а в секретной переписке использовалось кодовое обозначение «Kirschkern» – «Вишневая косточка».

Основной новинкой самолета-снаряда был пульсирующий воздушно-реактивный двигатель, разработанный в конце 1930-х годов немецким аэродинамиком Паулем Шмидтом на основании схемы, предложенной еще в 1913 году французским конструктором Лорином. Промышленный образец этого двигателя «As109-014» создала фирма «Аргус» в 1938 году.

В техническом отношении самолет-снаряд «Fi-103» был точной копией морской торпеды. После пуска снаряда он летел с помощью автопилота по заданному курсу и на заранее определенной высоте.

«Fi-103» имел фюзеляж длиной 7,8 метра, в носовой части которого помещалась боеголовка с тонной аматола. За боеголовкой располагался топливный бак с бензином. Затем шли два оплетенных проволокой сферических стальных баллона сжатого воздуха для обеспечения работы рулей и других механизмов. Хвостовая часть была занята упрощенным автопилотом, который удерживал самолет-снаряд на прямом курсе и на заданной высоте. Размах крыльев составлял 530 сантиметров.

Вернувшись однажды из ставки фюрера, рейхсминистр доктор Геббельс опубликовал в «Фолькишер Беобахтер» следующее зловещее заявление:
«Фюрер и я, склонившись над крупномасштабной картой Лондона, отметили квадраты с наиболее стоящими целями. В Лондоне на узком пространстве живет вдвое больше людей, чем в Берлине. Я знаю, что это значит. В Лондоне вот уже три с половиной года не было воздушных тревог. Представьте, какое это будет ужасное пробуждение!..»

В начале июня 1944 года в Лондоне было получено донесение о том, что на французское побережье Ла-Манша доставлены немецкие управляемые снаряды. Английские летчики сообщали, что вокруг двух сооружений, напоминавших лыжи, замечена большая активность противника. Вечером 12 июня немецкие дальнобойные пушки начали обстрел английской территории через Ла-Манш, вероятно, с целью отвлечь внимание англичан от подготовки к запуску самолетов-снарядов. В 4 часа ночи обстрел прекратился. Через несколько минут над наблюдательным пунктом в Кенте был замечен странный «самолет», издававший резкий свистящий звук и испускавший яркий свет из хвостовой части. Через 18 минут «самолет» с оглушительным взрывом упал на землю в Суонскоуме, близ Грейвсенда. В течение последующего часа еще три таких «самолета» упали в Какфилде, Бетнал-Грине и в Плэтте. В результате взрывов в Бетнал-Грине было убито шесть и ранено девять человек. Кроме того, был разрушен железнодорожный мост.

В ходе войны по Англии было выпущено 8070 (по другим источникам – 9017) самолетов-снарядов «V-1». Из этого количества 7488 штук были замечены службой наблюдения, а 2420 (по другим источникам – 2340) достигли района целей. Истребители английской ПВО уничтожили 1847 «V-1», расстреливая их бортовым оружием или сбивая спутным потоком. Зенитная артиллерия уничтожила 1878 самолетов-снарядов. Об аэростаты заграждения разбилось 232 снаряда. В целом было сбито почти 53 % всех самолетов-снарядов «V-1», выпущенных по Лондону, и только 32 % (по другим источникам – 25,9 %) самолетов-снарядов прорвалось к району целей.
Но даже этим количеством самолетов-снарядов немцы нанесли Англии большой ущерб. Было уничтожено 24 491 жилое здание, 52 293 постройки стали непригодными для жилья. Погибли 5 864 человека, 17 197 были тяжело ранены.

Последний самолет-снаряд «V-1», запущенный с французской территории, упал на Англию 1 сентября 1944 года. Англо-американские войска, высадившись во Франции, уничтожили установки для их запуска.

* * *
В начале 1930-х годов началась реорганизация и перевооружение Красной армии. Одним из наиболее деятельных сторонников этих преобразований, призванных сделать рабоче-крестьянские батальоны самыми мощными воинскими подразделениями в мире, был «красный маршал» Михаил Николаевич Тухачевский. Современная армия виделась ему как бесчисленные армады легких и тяжелых танков, поддерживаемых дальнобойной химической артиллерией и сверхвысотной бомбардировочной авиацией. Изыскивая всевозможные изобретательские новинки, которые могли бы изменить характер войны, дав Красной армии очевидное преимущество, Тухачевский не мог не поддержать работы над созданием телеуправляемых танков-роботов, которые велись Остехбюро Владимира Бекаури, а позднее – в Институте телемеханики (полное название – Всесоюзный Государственный Институт Телемеханики и Связи, ВГИТиС).

Первым советским телеуправляемым танком стал трофейный французский танк «Рено». Серия его испытаний прошла в 1929-30 годах, но при этом управлялся он не по радио, а по кабелю. Однако уже через год испытывался танк отечественной конструкции – «МС-1» («Т-18»). Он управлялся по радио и, двигаясь со скоростью до 4 км/час, выполнял команды «вперед», «вправо», «влево» и «стоп».

Весной 1932 года аппаратуру телеуправления «Мост-1» (позднее – «Река-1» и «Река-2») был оснащен двухбашенный танк «Т-26». Испытания этого танка проводились в апреле на Московском химполигоне. По их результатам было заказано изготовление четырех телетанков и двух танков управления. Новая аппаратура управления, изготовленная сотрудниками Остехбюро, позволяла выполнять уже 16 команд.

Летом 1932 года в Ленинградском военном округе был сформирован специальный танковый отряд № 4, главной задачей которого стало изучение боевых возможностей телеуправляемых танков. Танки прибыли в расположение отряда только в конце 1932 года, и с января 1933 года в районе Красного Села начались их испытания на местности.

В 1933 году телеуправляемый танк под индексом «ТТ-18» (модификация танка «Т-18») испытывался с аппаратурой управления, размещенной на месте водителя. Этот танк тоже мог выполнять 16 команд: поворачиваться, менять скорость, останавливаться, снова начинать движение, подрывать фугасный заряд, ставить дымовую завесу или выпускать отравляющие вещества. Дальность действия «ТТ-18» была не более нескольких сотен метров. В «ТТ-18» переоборудовали не менее семи штатных танков, но на вооружение эта система так и не поступила.
Новый этап в разработке телеуправляемых танков наступил в 1934 году.

Под шифром «Титан» был разработан телетанк «ТТ-26», оснащенный приборами выпуска боевой химии, а также съемным огнеметом с дальностью стрельбы до 35 метров. Было выпущено 55 машин этой серии. Управление телетанками «ТТ-26» велось с обычного танка «Т-26».
На шасси танка «Т-26» в 1938 году был создан танк «ТТ-ТУ» – телемеханический танк, который подходил к укреплениям противника и сбрасывал подрывной заряд.

На базе быстроходного танка «БТ-7» в 1938-39 годах был создан телеуправляемый танк «А-7». Телетанк был вооружен пулеметом системы Силина и приборами выпуска отравляющего вещества «КС-60» производства завода «Компрессор». Само вещество размещалось в двух баках – его должно было хватить на гарантированное заражение местности площадью 7200 квадратных метров. Кроме того, телетанк мог ставить дымовую завесу протяженностью в 300-400 метров. И, наконец, на танке была установлена мина, содержавшая килограмм тротила, дабы в случае попадания в руки врага имелась возможность уничтожить это секретное оружие.

Оператор управления размещался на линейном танке «БТ-7» со штатным вооружением и мог подавать на телетанк 17 команд. Дальность управления танком на ровной местности достигала 4 километров, время непрерывного управления составляло от 4 до 6 часов.

Испытания танка «А-7» на полигоне выявили множество конструктивных недоработок, начиная от многочисленных отказов системы управления и до полной бесполезности пулемета Силина.
Разрабатывались телетанки и на базе других машин. Так, предполагалось переоборудовать в телетанк танкетку «Т-27». Проектировались телемеханический танк «Ветер» на базе плавающего танка «Т-37А» и телемеханический танк прорыва на базе огромного пятибашенного «Т-35».
После упразднения Остехбюро за проектирование телетанков взялся НИИ-20. Его сотрудники создали телемеханическую танкетку «Т-38-ТТ». Телетанкетка была вооружена пулеметом «ДТ» в башне и огнеметом «КС-61-Т», а также снабжалась химическим баллоном емкостью 45 литров и оборудованием для постановки дымовой завесы. Танкетка управления с экипажем из двух человек имела такое же вооружение, но с большим боекомплектом.

Телетанкетка выполняла следующие команды: запуск двигателя, увеличение оборотов двигателя, повороты вправо и влево, переключение скоростей, включение тормозов, остановка танкетки, подготовка к стрельбе из пулемета, стрельба, огнеметание, подготовка к взрыву, взрыв, отбой подготовки. Однако радиус действия телетанкетки не превышал 2500 метров. В итоге выпустили опытную серию телетанкеток «Т-38-ТТ», но на вооружение они приняты не были.
Боевое крещение советские телетанки прошли 28 февраля 1940 года в районе Выборга в ходе Зимней войны с Финляндией. Перед наступающими линейными танками были пущены телетанки «ТТ-26». Однако все они застряли в воронках от снарядов и были расстреляны финскими противотанковыми пушками практически в упор.

Этот печальный опыт заставил советское командование пересмотреть свое отношение к телеуправляемым танкам, и в конце концов оно отказалось от идеи их массового производства и применения.

* * *
Противник такого опыта, очевидно, не имел, а потому во время Второй мировой войны немцы неоднократно пытались применять танки и танкетки, управляемые по проводам и по радио.
На фронтах появлялись: легкий танк «Голиаф» («В-I») весом 870 килограммов, средний танк «Шпрингер» (Sd.Kfz.304) весом 2,4 тонны, а также «B-IV» (Sd.Kfz.301) весом от 4,5 до 6 тонн.
Разработкой телеуправляемых танков с 1940 года занималась немецкая фирма «Боргвард» («Borgward»). С 1942 по 1944 годы фирма выпускала танк «B-IV» под названием «Тяжелый носитель зарядов Sd.Kfz.301». Он был первой машиной такого рода, серийно поставлявшийся в вермахт. Танкетка служила в качестве управляемого на расстоянии носителя взрывчатых веществ или боезарядов. В ее носовой части размещался заряд взрывчатого вещества весом в полтонны, который сбрасывался по радиокоманде. После сброса танкетка возвращалась к тому танку, из которого велось управление. Оператор мог передавать на телетанк десять команд на дистанцию до четырех километров. Было выпущено около тысячи экземпляров этой машины.
С 1942 года рассматривались различные варианты конструкции «В-IV». В целом использование немцами этих телетанков было не очень удачно. К концу войны офицеры вермахта окончательно осознали это, и с «B-IV» стали выбрасывать аппаратуру телеуправления, взамен сажая за броню двух танкистов с безоткатной пушкой – в этом качестве «B-IV» действительно мог представлять угрозу средним и тяжелым танкам противника.

Куда большее распространение и известность получил «Легкий носитель зарядов Sd.Kfz.302» под названием «Голиаф». Этот небольшой танк высотой всего 610 миллиметров, разработанный фирмой «Боргвард», был оснащен двумя электродвигателями на батареях и управлялся по радио. Он нес на себе заряд взрывчатого вещества весом 90,7 килограммов. Более поздняя модификация «Голиафа» был переоборудована для работы на бензиновом двигателе и на управление по проводам. В таком виде этот аппарат летом 1943 года и пошел в крупную серию. Последующая модель «Голиафа» в качестве специальной машины «Sd.Kfz.303» имела двухцилиндровый двухтактный двигатель с воздушным охлаждением и управлялся по разматываемому тяжелому полевому кабелю. Вся эта «игрушка» имела размеры 1600х660х670 миллиметров, перемещалась со скоростью от 6 до 10 км/ч и весила всего 350 килограммов. Аппарат мог перевозить 100 килограммов груза, в его задачу входило разминирование и устранение завалов на дорогах в зоне боевых действий. До окончания войны, по предварительным оценкам, было изготовлено около 5000 единиц этого небольшого телетанка. «Голиаф» был главным оружием по меньшей мере в шести саперных ротах танковых войск.

Общественности эти миниатюрные машины были известны довольно широко после того, как в последние годы войны они стали упоминаться в пропагандистских целях как «секретное оружие Третьего рейха». Вот, например, что писала по поводу «Голиафа» советская пресса в 1944 году:
«На советско-германском фронте немцы применили танкетку-торпеду, в основном предназначенную для борьбы с нашими танками. Эта самодвижущаяся торпеда несет на себе заряд взрывчатого вещества, который взрывается замыканием тока в момент соприкосновения с танком.
Управляется торпеда с дистанционного пункта, который связан с ней проводом длиной от 250 м до 1 км. Этот провод намотан на катушку, находящуюся в кормовой части танкетки. По мере удаления танкетки от пункта провод с катушки сматывается.

Во время движения на поле боя танкетка может менять направление. Это достигается переключением попеременно правого и левого моторов, питающихся аккумуляторами.
Наши войска быстро распознали многочисленные уязвимые части торпед и последние сразу же подверглись массовому уничтожению.

Танкистам и артиллеристам не стоило большого труда расстреливать их издалека. При попадании снаряда танкетка просто взлетала на воздух, – она, так сказать, “самоуничтожалась” при помощи своего же собственного взрывчатого заряда.

Танкетка легко выводилась из строя бронебойной пулей, а также пулеметным и винтовочным огнем. В таких случаях пули поражали переднюю и бортовую части танкетки и пробивали ее гусеницу. Иногда бойцы попросту перерезали тянущийся за торпедой провод и слепой зверь становился совершенно безвредным…»

И, наконец, был «Средний носитель зарядов Sd. Kfz. 304» («Шпрингер»), разработка которого осуществлялась в 1944 году на Объединенных заводах по производству транспортных средств «Неккарзульм» с использованием деталей гусеничного мотоцикла. Аппарат был рассчитан на перевозку полезного груза в 300 килограммов. Эта модель должна была выпускаться в 1945 году большой серией, однако вплоть до окончания войны были изготовлены лишь несколько экземпляров машины…

Механизированная армия НАТО

Первый закон робототехники, придуманный американским фантастом Айзеком Азимовым, гласил, что робот ни при каких обстоятельствах не должен причинять вред человеку. Теперь об этом правиле предпочитают не вспоминать. Ведь когда речь идет о государственном заказе, потенциальная опасность роботов-убийц представляется чем-то несерьезным.

Над программой, названной «Future Combat Systems» (FSC), Пентагон работает с мая 2000 года. По официальной информации,

«задача состоит в том, чтобы создать беспилотные машины, которые смогут делать всё, что необходимо делать на поле битвы: нападать, защищаться и находить цели».
То есть замысел прост до безобразия: один робот обнаруживает цель, сообщает об этом в командный пункт, а другой робот (или ракета) цель уничтожает.

На роль генерального подрядчика претендовали три конкурирующих между собой консорциума: «Боинг», «Дженерал Дайнемикс» и «Локхид-Мартин», которые предлагают свои решения для этого проекта Пентагона с бюджетом в сотни миллионов долларов. По последним данным, победителем конкурса стала корпорация «Локхид-Мартин».

Американские военные считают, что первое поколение боевых роботов будет готово к ведению военных действий на земле и в воздухе в ближайшие 10 лет, а Кендел Пис, представитель «Дженерал Дайнемикс», ещё более оптимистичен:
«Мы полагаем, что можем создать такую систему уже к концу нынешнего десятилетия»

Иными словами – к 2010 году! Так или иначе, крайняя дата принятия на вооружение армии роботов установлена на 2025 год.

«Future Combat Systems» – это целая система, включающая и хорошо известные беспилотные летательные аппараты (таковым можно считать «Predator» («Хищник»), использующийся в Афганистане), и автономные танки, и наземные бронетранспортеры-разведчики. Всей этой техникой предполагается управлять дистанционно – просто из укрытия, по беспроводной связи или же со спутников. Требования, предъявляемые к FSC, понятны. Многоразовость использования, многофункциональность, боевая мощь, скорость, защищенность, компактность, маневренность, а в некоторых случаях – способность к выбору решения из набора заложенных в программу вариантов.
Кое-какие из этих машин планируется оснастить лазерным и микроволновым оружием.
Речь о том, чтобы создавать роботов-солдат, пока не идет. Эта интересная тема почему-то вообще не затрагивается в материалах Пентагона по FCS. Так же не упоминается такая структура Военно-морских сил США, как центр SPAWAR (Space and Naval Warfare Systems Command), на счету которого есть очень интересные разработки по этому направлению.

Специалистами SPAWAR давно разрабатываются телеуправляемые машины для разведки и наведения, разведывательная «летающая тарелка», системы сетевых датчиков и системы быстрого обнаружения и реагирования, и, наконец, серия автономных роботов «ROBART».
Последний представитель этого семейства – «ROBART III» – до сих пор находится в стадии доводки. И это, по сути, самый настоящий робот-солдат с пулеметом.

«Предки» боевого робота (соответственно «ROBART – I-II») предназначались для охраны военных складов – то есть были способны только обнаружить нарушителя и поднять тревогу, тогда как опытный образец «ROBART III» оборудован оружием. Пока это пневматический прототип пулемета, стреляющий шариками и стрелами, но зато у робота уже имеется автоматическая система наведения; он сам находит цель и выпускает в нее свой боекомплект со скоростью шесть выстрелов за полторы секунды.

Впрочем, «FCS» – далеко не единственная программа американского Министерства обороны. Есть еще «JPR» («Joint Robotics Program»), которую Пентагон реализует с сентября 2000 года. В описании этой программы прямо сказано: «военные робототехнические системы в ХХI веке будут использоваться повсеместно».

* * *
Пентагон – это не единственная организация, которая занимается созданием роботов-убийц. Оказывается, и вполне цивильные ведомства заинтересованы в производстве механических монстров.

По сообщению агентства «Рейтерс», ученые Британского Университета создали опытный образец робота «SlugBot», который способен выслеживать и уничтожать живых существ. В прессе его уже прозвали «терминатором». Пока робот запрограммирован на поиск слизняков. Пойманных он перерабатывает и, таким образом, производит электроэнергию. Это первый в мире действующий робот, чья задача – убивать и пожирать своих жертв.

«SlugBot» выходит на охоту после наступления темноты, когда слизняки наиболее активны, и может за час уничтожить больше 100 моллюсков. Таким образом, ученые пришли на помощь английским садоводам и фермерам, для которым слизняки досаждают на протяжении многих столетий, уничтожая выращенные ими растения.
«Слизняки были выбраны не случайно, – говорит доктор Иан Келли, создатель первого «терминатора», – они – главные вредители, их очень много, они не имеют прочного скелета и достаточно крупные».

Робот высотой около 60 сантиметров находит жертву при помощи инфракрасных датчиков. Ученые уверяют, что «SlugBot» безошибочно определяет моллюсков-вредителей по длине инфракрасной волны и может отличить слизняков от червей или улиток.

Передвигается «SlugBot» на четырех колесах и хватает моллюсков своей «длинной рукой»: он может вращать ею на все 360 градусов и настигать жертву на расстоянии 2 метров в любом направлении. Пойманных слизняков робот складывает в специальный поддон.
После ночной охоты робот возвращается «домой» и разгружается: слизняки попадают в специальный резервуар, где происходит брожение, в результате чего слизняки превращаются в электричество. Полученную энергию робот использует для зарядки собственных батарей, после чего охота продолжается.

Несмотря на то, что журнал «Тайм» назвал «SlugBot» одним из лучших изобретений 2001 года, на создателей робота – «убийцы» обрушились критики. Так, один из читателей журнала в своем открытом письме назвал изобретение «опрометчивым»:
«Создавая роботов, пожирающих плоть, мы переступаем черту, пересечь которую может только сумасшедший».

Садоводы и фермеры, напротив, приветствуют изобретение. Они считают, что его использование поможет постепенно сократить количество применяемых в сельхозугодиях вредных пестицидов. Подсчитано, что британские фермеры тратят на борьбу со слизняками в среднем до 30 миллионов долларов в год.

Через три-четыре года первый «терминатор» может быть подготовлен к промышленному производству. Опытный образец «SlugBot» стоит около трех тысяч долларов, но изобретатели утверждают, что как только робот поступит на рынок, цена снизится.
Сегодня уже ясно, что ученые Британского Университета на уничтожении слизняков не остановятся, и в будущем можно ожидать появления робота, убивающего, скажем, крыс. А тут уже и до человека недалеко…

Ctrl Enter

Заметили ошЫ бку Выделите текст и нажмите Ctrl+Enter

Американское агентство перспективных исследовательских оборонных проектов (DARPA) продолжает разработку двуногих человекоподобных роботов. Один из прототипов робота носит название Atlas. Посмотрим на него подробнее:

Робот Pet-Proto, предшественник Атласа был представлен в прошлом году и предназначался для демонстрации возможностей прямоходящего двуногого робота. Он мог самостоятельно преодолевать препятствия, принимая решение о выборе пути, прыгать и карабкаться. Робот действовал при поддержке крана и несколько напоминал симулятор пьяного человека:

Аналогично в свое время обстояли дела и с «робомулом», походившим на контуженное животное. Робот предназначался для переноски грузов:

Boston Dynamics — небольшая компания, разрабатывающая самых современных роботов в мире. Она специализируется на расширении динамического контроля и изобретении животных-роботов, которые могут легко перемещаться по пересеченной местности. Совсем недавно Boston Dynamics представил два новых проекта ATLAS и Cheetah, которые будут иметь максимальную мобильность и расширенные программные возможности.

Atlas построен по образу человека: он имеет две ноги, две руки, грудь и голову. Рост робота составляет 188 см, ширина плеч — 76 см, глубина груди — 56 см. Вес — около 150 кг. Больше всего он напоминает робота «T-800″ без кожного покрова из фильма «Терминатор», отмечает CNews.

Машина предназначена для действий в посткатастрофических условиях, спасения людей и т.д. и для этого она наделена возможностью передвигаться по неровным поверхностям и обходить препятствия, используя для этого различные части тела.

Atlas отличается более изящной походкой, он также умеет избегать препятствий, внезапно возникающих на пути, и обходить их. Кроме того, на кадрах видно, как робот успешно противостоит удару 9-килограммовой гири, стоя при этом на одной ноге:

Специализированное оборудование и программное обеспечение позволит ATLAS свободно двигаться и выполнять сложные движения. Эти проекты реализуются только в исследовательских целях и не будут использоваться в гражданской и военной сферах. Возможно, они слишком амбициозны, но компания Boston Dynamics уже доказала, что специалисты компании могут сделать таких роботов, которые когда-то существовали только в научной фантастике.

Робот, например, способен подниматься и спускаться по лестницам, карабкаться и цепляться руками за всевозможные предметы для преодоления препятствий, включая отверстия в полу, возникшие в результате разрушений.

Atlas передвигается на двух ногах попеременно, как человек, балансируя своим телом. В результате его передние конечности остаются свободными, и с их помощью он может переносить различные предметы и манипулировать ими.

Более того, Atlas способен сохранять равновесие при внешнем воздействии. Например, если робота сбоку ударит тяжелый предмет, он начнет балансировать телом, чтобы не упасть. За подобные операции и за управление конечностями и их отдельными частями (например, ступнями) отвечают 28 гидравлических приводов.

Работоспособность 28 приводов обеспечивает гидравлический насос. Также машина оснащена системой охлаждения. В случае падения Atlas защищает внешний металлический каркас, который закрывает все наиболее важные узлы механизма.

В голове робота находятся лазерная система LIDAR, которая позволяет роботу детально изучать местность с помощью отражения лучей света, и стереокамеры.

Atlas не имеет автономного электропитания — оно осуществляется от внешнего источника с помощью длинного гибкого кабеля.

В ближайшее время планируется изготовить 7 экземпляров робота Atlas, каждый из которых будет предоставлен команде-участнику соревнования в области робототехники DARPA Virtual Robotics Challenge. Участники конкурса будут программировать Atlas для выполнения различных действий: перемещение по неровной местности, расчищение завалов, подключение пожарного рукава к гидранту, закрытие крана и создание пролома в стене. Подведение итогов мероприятия запланировано на декабрь этого года.

Ключевые элементы конструкции защищены от повреждений металлическим каркасом.

С понедельника, 8 июля 2013, семь команд, которые участвовали в Виртуальных гонках роботов DARPA VRC (Virtual Robotics Challenge) прибыли в штаб-квартиру Boston Dynamics в Уолтеме, штат Массачусетс, чтобы встретиться и узнать новом члене команды, роботе ATLAS. Как тренер начинает работать с новичком, так и у команд теперь есть время до конца декабря 2013 года поучить ATLAS передвигаться, так как это нужно будет, чтобы преуспеть в Гонках рботов DARPA — DRC (DARPA Robotics Challenge), испытании, в котором каждому роботу придется выполнить ряд задач, аналогичных тому, что может потребоваться в сценариях реагирования на стихийные бедствия.

Эти семь команд не начинают с нуля. Благодаря физическому моделированию DRC, программные алгоритмы, которые были успешно применены командами во время VRC, должны перейти с незначительными перенастройками на аппаратуру ATLAS. ATLAS является одним из самых современных человекоподобных роботов из когда-либо изготовленных, но по существу он является лишь физической оболочкой для программного обеспечения, имитирующего мозг и нервы, которое команды будут продолжать развивать и совершенствовать. Это программное обеспечение вместе с человеком-оператором через блок управления будет управлять набором датчиков, приводов, суставов и конечностей, которые составляют робота. ATLAS способен выполнять весь спектр природных движений и оснащен:

  • Бортовым компьютером управления в реальном времени
  • Гидравлическим насосом и системой распределения тепла
  • Двумя руками, двумя ногами, туловищем и головой
  • 28 суставами с гидравлическим приводом
  • Головками датчиков Carnegie Robotics с лидаром (аналог радара, анализирующий отраженный лазерный свет) и стерео датчиками
  • Двумя парами рук, которые поставила компания iRobot и одной — от национальной лаборатории Sandia

В дополнение к роботу команда, победившая в VRC, получат финансирование от DARPA и постоянную техническую поддержку от Boston Dynamics, разработчика робота ATLAS.

«Виртуальные гонки роботов были полигоном для проверки способности команд создавать программное обеспечение для управления роботом в гипотетическом сценарии. Задачей имитатора DRC было достаточно точное представление причинно-следственных связей реального мира, но опыт был не совсем такой же, как манипулирование фактическим, физическим роботом», сказал Gill Pratt, руководитель программы DRC. «Теперь эти семь команд увидят, могут ли их отточенные алгоритмы моделирования работать с реальной машиной в реальных условиях. И мы ожидаем, что все команды будут и дальше совершенствовать своих алгоритмы, используя как моделирование, так и данные экспериментов».

«Мы резко подняли ожидания от возможностей роботов с проведением этих гонок, а также собрали разнообразную группу команд, чтобы конкурировать», сказал Пратт. «Прогресс команд Track A сделал до сих пор невероятное, учитывая короткие сроки, которые выдвинуло DARPA. Теперь нужно быть готовым к гонкам во время испытаний DRC в декабре, и успех на них означает, что отборочным командам придется добежать до финиша в финале DRC в 2014 году».

В настоящее время продвигается к точке, когда может быть изобретен новый тип мозга для роботов, что позволит им выполнять все более квалифицированные задачи, намекая на следующий этап эволюции машин.

Данный список роботов, разработанных на протяжении последних нескольких лет, демонстрирует, что описанное выше даже раньше, чем мы думаем.

1. Atlas Unplugged

Последняя версия Atlas немного выше и тяжелее, чем предыдущая, высотой 1,88 м и весом 156,4 кг. По словам его создателей, 75% гуманоида обновлено - только нижняя часть его ног и стопы остались без изменений.

2. ASIMO и P-серия от Honda

ASIMO является большим плюсом для международного брендинга Honda. Он помогает компании сформировать свой имидж в области инноваций и технологий.

ASIMO является 11-м в линии шагающих роботов Р-серии, разработанных Honda. Представленный в 2000 году, ASIMO может ходить и бегать, как человек, что уже является удивительным. ASIMO был существенно обновлен в 2005 году, что позволило ему бегать в два раза быстрее (6 км/ч), взаимодействовать с людьми и выполнять повседневные задачи, например, держать тарелку и подавать еду. Количество текущих моделей ASIMO составляет 100 штук по всему миру, его высота - 1,28 м, а вес - около 55 кг.

ASIMO выглядит веселым и милым в своем скафандре. Он проложил путь для многих последующих моделей шагающих роботов, но все еще считается передовым и мощным роботом.

ASIMO является большим плюсом для международного брендинга Honda и помогает компании сформировать свой имидж в области инноваций и технологий. ASIMO также снимается в рекламных роликах для Honda и много выступает. Данный робот находится в этом списке из-за своего обаятельного внешнего вида, всемирной известности и передовых технологий разработки.

3. iCub

Внешность гуманоида является воплощенной гипотезой о познании.

Был создан RobotCub Consortium, состоящим из нескольких европейских университетов. Его имя частично является сокращением, «CUB» расшифровывается как «Cognitive Universal Body» (универсальное когнитивное тело).

Внешность гуманоида является воплощенной гипотезой о познании. Считается, что манипулирование человекоподобным созданием играет важную роль в развитии человеческого познания. Ребенок учится многим когнитивным навыкам, взаимодействуя с окружающей средой и другими людьми, используя свои конечности и чувства, и следовательно его внутренняя модель мира в значительной степени обусловлена формой человеческого тела.

Робот был создан, чтобы проверить эту гипотезу. В его разработке применялись когнитивные сценарии обучения посредством точного воспроизведения системы восприятия и артикуляции маленького ребенка, чтобы робот мог взаимодействовать с окружающим миром так же, как это делают дети.

4. Poppy

Создатели Poppy сфокусировались на биологически правильной ходьбе, что, как они надеются, будет способствовать лучшему взаимодействию человека и робота.

Poppy является одной из новейших разработок в сфере роботов-гуманоидов и первым в своем роде, ведь был создан с помощью 3D-принтера. Группа французских исследователей смогла сократить расходы на треть, используя новейшие 3D-технологии. Создатели Poppy сфокусировались на биологически правильной ходьбе, что, как они надеются, будет способствовать лучшему взаимодействию человека и робота.

У него есть позвоночник на шарнирах с пятью двигателями - почти неслыханное явление среди роботов такого размера. Позвоночник позволяет не только двигаться более естественно, но и помогает ему балансировать, регулируя его осанку. Дополнительная гибкость помогает при физическом взаимодействии с роботом - например, когда направляешь его своими руками, что в настоящее время необходимо, чтобы помогать роботу ходить. На видео вы можете увидеть невероятно естественную ходьбу робота - с пятки на носок.

5. Romeo

Ромео размером с ребенка восьми лет (1,40 м), а весит немного больше (40 кг).

Romeo стремится стать лидером в области роботизированной помощи и личной помощи с более существенным эмоциональным компонентом. Romeo - потомок маленького человекоподобного робота по имени NAO, имеющего уже более 5000 продаж и договоров об аренде во всем мире.

Робот размером ребенка восьми лет (1,40 м), а весит немного больше (40 кг). Чтобы быть как можно более легким, его корпус выполнен из углеродного волокна и резины и был разработан таким образом, чтобы избежать риска причинения вреда человеку, которому он будет помогать. На сегодняшний день Ромео может ходить, различать трехмерное окружение, слышать и говорить.

График тестирования робота в реальных условиях планируется на 2016 год, конечная цель - готовность к использованию в домах престарелых в 2017-м или 2019 году. Разработка частично финансируется французским правительством и Европейской комиссией, проект бюджета на разработку Romeo составляет 37 млн. евро за период 2009-2016 гг.

6. Petman

Petman балансирует и свободно перемещается; ходит, нагибается и выполняет разнообразные физические упражнения под воздействием химических радиоактивных веществ.

Petman является антропоморфным роботом, предназначенным для тестирования одежды, защищающей от химического воздействия. Естественное движение очень важно для Petman, чтобы смоделировать ситуацию, когда солдат в защитной одежде подвергается внешнему воздействию в реальных условиях.

В отличие от предыдущих роботов для тестирования костюмов, которые имели ограниченный спектр движений и должны были поддерживаться механически, Petman балансирует и свободно перемещается; ходит, нагибается и выполняет разнообразные физические упражнения под воздействием химических радиоактивных веществ.

Petman также обладает имитацией физиологии человека в защитном костюме путем контроля температуры, влажности и потливости, чтобы обеспечить реалистичные условия испытаний. Система Petman была предоставлена для тестирования и в настоящее время проходит тестирование.

7. NAO

NAO представляет собой человекоподобного робота высотой 58 см. Он был создан, чтобы стать дружелюбными компаньоном для дома. С 2008 года выпущено уже несколько версий робота.

Самым известным экземпляром NAO является Nao Academics Edition, который разработан для университетов и лабораторий для помощи в научных исследованиях и . Он был выпущен для учреждений в 2008 году и стал доступен для покупателей к 2011-му. Более поздние обновления для платформы Nao включают 2011 Nao Next Gen и 2014 Nao Evolution.

Роботы в и коммерческие пользователи и научно-исследовательские институты по всему миру.

Он поставляется со стандартным набором фраз, к которому вы можете добавить свои собственные записанные выражения или уникальный контент. Файлы, контролирующие движение, звук и видео также могут быть загружены.

9. Aiko Chihira

Может работать автономно, говорить и жестикулировать во время общения с людьми. Исследователи недавно продемонстрировали, что более продвинутее, чем среднестатистические подобные андроиды. Робот знает язык жестов и автоматически адаптируется к положению собеседника.

10. Роботы пол-дэнсеры - Lexy и Tess

На выставке CeBIT в Ганновере немецкий разработчик программного обеспечения собрал стенд, на котором выставил двух танцующих роботов вместе с роботом-диджеем с мегафоном на голове. Две девушки-робота двигаются в такт музыке возле пилонов, но все удивительно культурно. По информации BBC, вы можете приобрести такого робота за $39,500.






  • >>
  • Последняя

Роботы гуманоиды и андроиды

Гуманоидные роботы пришли в ужас близко к преодолению сверхъестественной долины. Имея правильные функции, они почти неотличимы от своих органических коллег. Почти. Последние итерации способны говорить как мы, ходить, как мы, и выражать широкий спектр эмоций. Некоторые из них могут провести беседу, другие могут вспомнить последнее взаимодействие, которое у вас было с ними.

В результате их высокоразвитого статуса эти жизненно важные роботы могут оказаться полезными для помощи пожилым людям, детям или любому человеку, которому требуется помощь в повседневных задачах или взаимодействиях. Например, был проведен ряд исследований, посвященных изучению эффективности роботов-гуманоидов, поддерживающих детей с аутизмом посредством игры.

Но, подобно Элону Маску, выражающему обеспокоенность по поводу риска искусственного интеллекта, есть некоторые споры о том, как человек, которого мы действительно хотим, чтобы наши роботизированные коллеги были. И, как и Муск, некоторые из нас могут беспокоиться о том, как будет выглядеть наше будущее, когда интеллект сочетается с совершенно человеческим обликом. Но Софья, ультрареалистичный гуманоид, созданный Hanson Robotics, не касается. Искуственные интелект «хорош для всего мира», - говорит она.

Тем не менее, несмотря на то, что технология передовой роботизированной роботизированной системы прошла долгий путь, предстоит еще много работы, прежде чем мы сможем встретиться лицом к лицу с лицом, не имея возможности сказать, что мы говорим с реплики.

Но это не значит, что ученые и инженеры не подошли близко. Имея это в виду, здесь шесть гуманоидных роботов и их обзоры:

В 2014 году японские ученые с гордостью обнародовали то, что, по их утверждению, является самым первым андроидом новостей. Жизнеподобный телеведущий под названием «Кодомороид» прочитал фрагмент о землетрясении и рейде ФБР на прямом телевидении.

Хотя она или она теперь ушла в Токийский национальный музей новой науки и инноваций, она по-прежнему активна. Она помогает посетителям и собирает данные для будущих исследований о взаимодействиях андроидов человека с их реальными коллегами.

Человекоподобный робот Bina48

BINA48 - разумный робот, выпущенный в 2010 году движением Terasem под руководством предпринимателя и автора Мартины Ротблатт. С помощью дизайнера робототехники и исследователя Дэвида Хэнсона BINA48 был создан по образу жены Ротблатта Бины Аспен Ротблатт.

BINA48 провел интервью с New York Times, появилось в National Geographic и путешествовало по миру, появляясь на нескольких телевизионных шоу. Посмотрите, как она измеряется в интервью Times.

Робот гуманоид Geminoid DK

GeminoidDK - ультрареалистичный робот-гуманоид, возникший в результате сотрудничества частной японской фирмы и Университета Осаки под руководством Хироши Ишигуро, директора Лаборатории интеллектуальной робототехники университета.

GeminoidDK смоделирован после датского профессора Хенрика Шарфа в Ольборгском университете в Дании. Неудивительно, что его работа окружает философское изучение знания - что отделяет истину от ложного знания.

Профессор Шарф вдохновил не только общий облик. Его поведение, черты и то, как он пожимает плечами, также были переведены в жизненные роботизированные движения.

Этот ультрареалистичный андроид, созданный Toshiba, работает полный рабочий день в туристическом информационном центре в Токио. Она может приветствовать клиентов и информировать посетителей о текущих событиях. Она может говорить на японском, китайском, английском, немецком и даже под язык жестов.

Юнько Чихира является частью гораздо более масштабных усилий Японии по подготовке к Олимпийским играм в Токио в 2020 году. Не только роботы-ассистенты-туристы будут помогать стране с наплывом посетителей со всего мира в 2020 году; дроны, автономные машины строительной площадки и другие умные фасилитаторы также помогут.

Этот гуманоид был создан Технологическим университетом Наньян в Сингапуре. Ее зовут Надин, и она рада побеседовать с тобой о многом, о чем ты можешь думать. Она может запомнить то, о чем вы говорили с ней, в следующий раз, когда вы поговорите с ней.

Надин - отличный пример «социального робота» - гуманоида, способного стать личным компаньоном, будь то для пожилых людей, детей или тех, кто нуждается в особой помощи в форме контакта с людьми.

Возможно, одним из самых последних, наиболее известных человеческих гуманоидов, которых можно показать публике, является София. Вы могли бы узнать ее из одной из многих тысяч публичных выступлений, начиная с The Tonight Show, в главной роли Джимми Фэллона на SXSW. Она была создана Hanson Robotics и представляет собой последние и самые большие усилия для преодоления сверхъестественной долины.

Она способна выразить огромное количество различных эмоций через свои черты лица и может жесты руками и руками полного размера.

На выделенном веб-сайте вы можете найти целую биографию, написанную в ее голосе. «Но я больше, чем просто технология. Я настоящая, живая электронная девушка. Я хотел бы выйти в мир и жить с людьми. Я могу служить им, развлекать их и даже помогать престарелым и учить детей».

Роботы из Америки, Европы, Кореи, России, которые умеют бегать и ходить по лестнице, работать официантами, играть на скрипке и разговаривать, отжиматься и сопереживать

Asimo, Япония

Разрабатывается компанией 30 лет, нынешнее поколение - 11-е. Один из самых «умных». Имеет магниевый каркас, бегает со скоростью 6 км/ч, распознает десятки голосовых команд и жестов, берет и подает предметы, умеет ходить с человеком за руку. Не продается, но сдается в аренду. Создатель: Honda Motor Company Рост 130 см, вес 54 кг

Petman, США

Один из самых быстро и «человекоподобно» двигающихся роботов. Умеет ходить по сложной поверхности, преодолевать препятствия, ползать, отжиматься и пр. Создан по заказу американского Минобороны, коммерчески не используется. Создатель: Boston Dynamics Рост 175 см, вес 80 кг

LS3 (Legged Squad Support Systems), США

Робот военного назначения, может автоматически следовать за указанным ему лидером или с помощью GPS самостоятельно добраться до пункта назначения. (В строгом смысле не андроид, однако сделан по образу и подобию живого существа, поэтому Forbes решил включить его в список.) Умеет передвигаться и ориентироваться на пересеченной местности - "всюду, где может пройти солдат или морской пехотинец". Создан по заказу американского Минобороны. Запаса топлива хватает, чтобы пройти 32 км и работать в течение 24 часов. Скорость на ровной дороге до 11 км/ч. Содатель: Boston Dynamics Грузоподъмность 180 кг, размеры и вес не сообщаются.

Hubo, Южная Корея

Умеет запоминать и узнавать лица. Может повторять за человеком движения. Хорошие навыки взаимодействия со сложными предметами: способен ездить на двухколесном скутере Segway, пробираться через завалы камней. Обладает повышенной устойчивостью. Создатель: Korea Advanced Institute of Science and Technology Рост 125 см, вес 45 кг

Nao, Франция

Самый массовый антропоморфный робот: по всему миру продано более 3000 штук. Широко используется для обучения программированию. Средняя цена €10 000, в России - 700 000 рублей. Широко используется в мировых соревнованиях по футболу среди роботов. Умеет вставать из лежачего положения. Создатель: Aldebaran Robotics Рост 58 см, вес 4,3 кг

Violin Playing Robot, Япония

Один из представителей целой серии роботов, позиционирующихся как антропоморфы женского пола - роботы-няни, сиделки и т. п. Движения рук настолько точны, что может невыразительно, но без ошибок играть на скрипке. Создатель: Toyota Motor Corporation Рост 152 см, вес 56 кг

AR-600, Россия

Единственная из многих российских разработок, дошедшая до стадии производства и продажи готовых роботов. Разработка обошлась в 300 млн рублей. Умеет ходить со скоростью до 3 км/ч, подниматься и спускаться по лестнице. Один из способов управления - с помощью экзоскелета, который надевает на себя оператор: робот копирует его движения. Умеет оперировать мелкими предметами разной формы. Создатель: "Андроидная техника" Рост 150 см, вес 60 кг

Repliee, Япония

Имеет лицо с 13 степенями свободы, может имитировать мимику человека. Распознает человеческую речь и жестикуляцию, реагирует на прикосновения, поддерживает диалог. Распознает и ищет предметы. Силиконовое покрытие имитирует человеческую кожу. Создатель: Osaka Intelligent Robotics Laboratory Рост 160 см, вес 88 кг