До космической ракеты-носителя .

В военной терминологии слово ракета обозначает класс, как правило, беспилотных летательных аппаратов , применяемых для поражения удалённых целей и использующих для полёта принцип реактивного движения. В связи с разнообразным применением ракет в вооружённых силах , различными родами войск , образовался широкий класс различных типов ракетного оружия .

История [ | ]

Существует предположение, что некое подобие ракеты было сконструировано ещё в Древней Греции Аликсом Сином. Речь идёт о летающем деревянном голубе Архита Тарентского (др.-греч. Ἀρχύτας ὁ Ταραντίνος ). Его изобретение упоминается в произведении древнеримского писателя Авла Геллия (лат. Aulus Gellius ) «Аттические ночи» (лат. «Noctes Atticae» ). В книге говорится, что птица поднималась с помощью разновесов и приводилась в движение дуновением спрятанного и скрытого воздуха. До сих пор не установлено, приводился ли голубь в движение действием воздуха, находящегося у него внутри, или воздуха, который дул на него снаружи. Остаётся неясным, как Архит мог получить сжатый воздух внутри голубя. В античной традиции пневматики нет аналогов такого использования сжатого воздуха.

Истоки возникновения ракет большинство историков относят ко временам китайской династии Хань (206 год до н. э. - год н. э.), к открытию пороха и началу его использования для фейерверков и развлечений. Сила, возникающая при взрыве порохового заряда, была достаточной, чтобы двигать различные предметы. Позже этот принцип нашёл применение при создании первых пушек и мушкетов . Снаряды порохового оружия могли летать на далёкие расстояния, однако не были ракетами, поскольку не имели собственных запасов топлива . Тем не менее, именно изобретение пороха стало основной предпосылкой возникновения настоящих ракет. Описание летающих «огненных стрел», применявшихся китайцами, показывает, что эти стрелы были ракетами. К ним прикреплялась трубка из уплотненной бумаги, открытая только с заднего конца и заполненная горючим составом. Этот заряд поджигался, и затем стрела выпускалась с помощью лука. Такие стрелы применялись в ряде случаев при осаде укреплений, против судов, кавалерии.

Известно, что ракеты применялись русскими казаками, начиная с XVI -XVII веков. Многоступенчатые ракеты были описаны в XVI веке Конрадом Хаасом и в XVII веке литовским военным инженером Казимиром Семеновичем .

Двухступенчатая ракета XVI века

Ракетная артиллерия широко применялась вплоть до конца XIX века. Ракеты были более лёгкими и подвижными, чем артиллерийские орудия. Точность и кучность ведения огня ракетами была небольшой, но сопоставимой с артиллерийскими орудиями того времени. Однако во второй половине XIX века появились нарезные артиллерийские орудия, обеспечивающие большую точность и кучность огня и ракетная артиллерия была всюду снята с вооружения. Сохранились лишь фейерверочные и сигнальные ракеты .

В конце XIX века стали предприниматься попытки математически объяснить реактивное движение и создать более эффективное ракетное вооружение. В России одним из первых этим вопросом занялся Николай Тихомиров в 1894 году.

Теорией реактивного движения занимался Константин Циолковский . Он выдвигал идею об использовании ракет для космических полетов и утверждал, что наиболее эффективным топливом для них было бы сочетание жидких кислорода и водорода . Ракету для межпланетных сообщений он спроектировал в 1903 году.

17 августа 1933 года была запущена ракета «ГИРД 9», которую можно считать первой советской зенитной ракетой. Она достигла высоты 1,5 км. А следующая ракета «ГИРД 10», запущенная 25 ноября 1933 года, достигла уже высоты в 5 км.

В 1957 году в СССР под руководством Сергея Павловича Королёва как средство доставки ядерного оружия была создана первая в мире межконтинентальная баллистическая ракета Р-7 , которая в том же году была использована для запуска первого в мире искусственного спутника Земли . Так началось применение ракет для космических полётов.

Ракетные двигатели [ | ]

Большинство современных ракет оснащаются химическими ракетными двигателями . Подобный двигатель может использовать твёрдое, жидкое или гибридное ракетное топливо . Химическая реакция между топливом и окислителем начинается в камере сгорания , получающиеся в результате горячие газы образуют истекающую реактивную струю, ускоряются в реактивном сопле (соплах) и выбрасываются из ракеты. Ускорение этих газов в двигателе создаёт тягу - толкающую силу, заставляющую ракету двигаться. Принцип реактивного движения описывается третьим законом Ньютона .

Однако не всегда для движения ракет используются химические реакции. В паровых ракетах перегретая вода, вытекающая через сопло, превращается в высокоскоростную паровую струю, служащую движителем . Эффективность паровых ракет относительно низка, однако это окупается их простотой и безопасностью, а также дешевизной и доступностью воды. Работа небольшой паровой ракеты в 2004 году была проверена в космосе на борту спутника UK-DMC. Существуют проекты использования паровых ракет для межпланетной транспортировки грузов, с нагревом воды за счёт ядерной или солнечной энергии.

Ракеты наподобие паровой, в которых нагрев рабочего тела происходит вне рабочей зоны двигателя, иногда описывают как системы с двигателями внешнего сгорания . Другими примерами ракетных двигателей внешнего сгорания может служить большинство конструкций ядерных ракетных двигателей .

Силы, действующие на ракету в полёте [ | ]

Наука, исследующая силы, действующие на ракеты или другие космические аппараты, называется астродинамикой .

Основные силы, действующие на ракету в полёте:

Применение [ | ]

Военное дело [ | ]

Ракеты используются как способ доставки к цели . Небольшие размеры и высокая скорость перемещения ракет обеспечивает им малую. Так как для управления боевой ракетой не нужен пилот , она может нести заряды большой разрушительной силы, в том числе ядерные. Современные системы самонаведения и навигации дают ракетам большую точность и манёвренность.

Существует множество видов боевых ракет, отличающихся дальностью полёта, а также местом старта и местом поражения цели («земля» - «воздух»). Для борьбы с боевыми ракетами используются системы противоракетной обороны .

Ракетные метеорологические исследования предшествовали спутниковым, поэтому на первых метеоспутниках стояли те же приборы, что и на метеорологических ракетах. В первый раз ракета была запущена с целью изучить параметры воздушной среды 11 апреля 1937 года , но регулярные ракетные запуски начались с 1950-х годов, когда были созданы серии специализированных научных ракет. В Советском Союзе это были метеорологические ракеты МР-1 , М-100 , МР-12 , ММР-06 и геофизические типа «Вертикаль ». В современной России в сентябре 2007 года использовались ракеты М-100Б . За пределами России применялись ракеты «Аэроби », «Black Brant », «».

Существуют также специальные противоградовые ракеты, предназначенные для защиты сельскохозяйственных угодий от градовых облаков. Они несут в головной части реагент (обычно йодистое серебро), который при взрыве распыляется и приводит к образованию дождевых облаков вместо градовых. Высота полета ограничивается 6-12 км.

Космонавтика [ | ]

Создателем космонавтики как науки считается Герман Оберт , впервые доказавший физическую возможность человеческого организма выносить возникающие при запуске ракеты перегрузки, а также состояние невесомости.

Чаще всего в качестве ракет-носителей используются многоступенчатые баллистические ракеты. Старт ракеты-носителя происходит с Земли, или, в случае долгого полёта, с орбиты

Эта статья представит читателю такую интереснейшую тему, как космическая ракета, ракета-носитель и весь тот полезный опыт, который это изобретение принесло человечеству. Также будет рассказано и о полезных грузах, доставляемых в космическое пространство. Освоение космоса началось не так давно. В СССР это была середина третьей пятилетки, когда окончилась Вторая мировая война. Космическая ракета разрабатывалась во многих странах, однако даже США обогнать нас на том этапе не удалось.

Первые

Первой в удачном запуске ушла из СССР космическая ракета-носитель с искусственным спутником на борту 4 октября 1957 года. Спутник ПС-1 удалось вывести на околоземную орбиту. Нужно отметить, что для этого понадобилось создать шесть поколений, и только седьмого поколения космические ракеты России смогли развить нужную для выхода в околоземное пространство скорость - восемь километров в секунду. Иначе невозможно преодолеть притяжение Земли.

Это стало возможным в процессе разработок баллистического оружия дальнего радиуса, где применялось форсирование двигателя. Не следует путать: космическая ракета и космический корабль - это разные вещи. Ракета - средство доставки, а корабль крепится на неё. Вместо него там может быть что угодно - космическая ракета может нести на себе и спутник, и оборудование, и ядерную боеголовку, что всегда служило и до сих пор служит сдерживанием для ядерных держав и стимулом к сохранению мира.

История

Первыми теоретически обосновали запуск космической ракеты русские учёные Мещерский и Циолковский, которые уже в 1897 году описали теорию её полёта. Значительно позже эту идею подхватили Оберт и фон Браун из Германии и Годдард из США. Именно в этих трёх странах началась работа над задачами реактивного движения, создания твёрдотопливных и жидкостных реактивных двигателей. Лучше всех эти вопросы решались в России, по крайней мере твёрдотопливные двигатели уже широко использовались во Второй мировой войне ("Катюши"). Жидкостные реактивные двигатели лучше получились в Германии, создавшей первую баллистическую ракету - "Фау-2".

После войны команда Вернера фон Брауна, прихватив чертежи и разработки, нашла приют в США, а СССР вынужден был довольствоваться небольшим количеством отдельных узлов ракеты без какой бы то ни было сопроводительной документации. Остальное придумали сами. Ракетная техника развивалась стремительно, всё более увеличивая дальность и массу несомого груза. В 1954 году началась работа над проектом, благодаря которому СССР смог первым осуществить полет космической ракеты. Это была межконтинентальная двухступенчатая баллистическая ракета Р-7, которую вскоре модернизировали для космоса. Она получилась на славу - исключительно надёжная, обеспечившая множество рекордов в освоении космического пространства. В модернизированном виде её используют до сих пор.

"Спутник" и "Луна"

В 1957 году первая космическая ракета - та самая Р-7 - вывела на орбиту искусственный "Спутник-1". США чуть позже решили повторить такой запуск. Однако в первую попытку их космическая ракета в космосе не побывала, она взорвалась на старте - даже в прямом эфире. "Авангард" был сконструирован чисто американской командой, и он не оправдал надежд. Тогда проектом занялся Вернер фон Браун, и в феврале 1958 года старт космической ракеты удался. А в СССР тем временем модернизировали Р-7 - к ней была добавлена третья ступень. В результате скорость космической ракеты стала совсем другой - была достигнута вторая космическая, благодаря которой появилась возможность покидать орбиту Земли. Ещё несколько лет серия Р-7 модернизировалась и совершенствовалась. Менялись двигатели космических ракет, много экспериментировали с третьей ступенью. Следующие попытки были удачными. Скорость космической ракеты позволяла не просто покинуть орбиту Земли, но и задуматься об изучении других планет Солнечной системы.

Но сначала внимание человечества было практически полностью приковано к естественному спутнику Земли - Луне. В 1959 году к ней вылетела советская космическая станция "Луна-1", которая должна была совершить жёсткую посадку на лунной поверхности. Однако аппарат из-за недостаточно точных расчётов прошёл несколько мимо (в шести тысячах километров) и устремился к Солнцу, где и пристроился на орбиту. Так у нашего светила появился первый собственный искусственный спутник - случайный подарок. Но наш естественный спутник недолго находился в одиночестве, и в этом же 1959-м к нему прилетела "Луна-2", выполнив свою задачу абсолютно правильно. Через месяц "Луна-3" доставила нам фотографии обратной стороны нашего ночного светила. А в 1966-м прямо в Океане Бурь мягко приземлилась "Луна-9", и мы получили панорамные виды лунной поверхности. Лунная программа продолжалась ещё долго, до той поры, когда американские космонавты на ней высадились.

Юрий Гагарин

День 12 апреля стал одним из самых знаменательных дней в нашей стране. Невозможно передать мощь народного ликования, гордости, поистине счастья, когда объявили о первом в мире полёте человека в космос. Юрий Гагарин стал не только национальным героем, ему рукоплескал весь мир. И потому 12 апреля 1961 года - день, триумфально вошедший в историю, стал Днём космонавтики. Американцы срочно попытались ответить на этот беспрецедентный шаг, чтобы разделить с нами космическую славу. Через месяц состоялся вылет Алана Шепарда, но на орбиту корабль не выходил, это был суборбитальный полёт по дуге, а орбитальный у США получился только в 1962-м.

Гагарин полетел в космос на космическом корабле "Восток". Это особая машина, в которой Королёв создал исключительно удачную, решающую множество всевозможных практических задач космическую платформу. Тогда же, в самом начале шестидесятых, разрабатывался не только пилотируемый вариант космического полёта, но был выполнен и проект фото-разведчика. "Восток" вообще имел множество модификаций - более сорока. И сегодня эксплуатируются спутники из серии "Бион" - это прямые потомки корабля, на котором совершён первый полёт человека в космос. В этом же 1961 году гораздо более сложная экспедиция была у Германа Титова, который целые сутки провёл в космосе. Соединённые Штаты смогли это достижение повторить только в 1963 году.

"Восток"

Для космонавтов на всех кораблях "Восток" было предусмотрено катапультное кресло. Это было мудрым решением, поскольку одно-единственное устройство выполняло задачи и на старте (аварийное спасение экипажа), и мягкую посадку спускаемого аппарата. Конструкторы сосредоточили усилия на разработке одного устройства, а не двух. Это уменьшало технический риск, в авиации система катапульт в то время уже была отлично отработана. С другой стороны, огромный выигрыш во времени, чем если проектировать принципиально новое устройство. Ведь космическая гонка продолжалась, и её выигрывал с довольно большим отрывом СССР.

Таким же образом приземлился и Титов. Ему повезло опуститься на парашюте около железной дороги, по которой ехал поезд, и его немедленно сфотографировали журналисты. Система посадки, которая стала самой надёжной и мягкой, разработана в 1965 году, в ней используется гамма-высотомер. Она служит и до сих пор. В США этой технологии не было, именно поэтому все их спускаемые аппараты, даже новые Dragon SpaceX не приземляются, а приводняются. Только шаттлы являются исключением. А в 1962 году СССР уже начал групповые полёты на космических кораблях "Восток-3" и "Восток-4". В 1963 году отряд советских космонавтов пополнился первой женщиной - Валентина Терешкова побывала в космосе, став первой в мире. Тогда же Валерий Быковский поставил не побитый до сих пор рекорд длительности одиночного полёта - он пробыл в космосе пять суток. В 1964 году появился многоместный корабль "Восход", США и тут отстали на целый год. А в 1965-м Алексей Леонов вышел в открытый космос!

"Венера"

В 1966 году СССР начал межпланетные перелёты. Космический корабль "Венера-3" совершил жёсткую посадку на соседнюю планету и доставил туда глобус Земли и вымпел СССР. В 1975-м "Венере-9" удалось совершить мягкую посадку и передать изображение поверхности планеты. А "Венера-13" сделала цветные панорамные снимки и звукозапись. Серия АМС (автоматические межпланетные станции) для изучения Венеры, а также окружающего космического пространства продолжает совершенствоваться и сейчас. На Венере условия жёсткие, а достоверной информации о них практически не было, разработчики ничего не знали ни о давлении, ни о температуре на поверхности планеты, всё это, естественно, осложняло исследование.

Первые серии спускаемых аппаратов даже плавать умели - на всякий случай. Тем не менее поначалу полёты удачными не были, зато впоследствии СССР настолько преуспел в венерианских странствиях, что эту планету стали называть русской. "Венера-1" - первый из космических аппаратов в истории человечества, предназначенный для полёта на другие планеты и их исследования. Был запущен в 1961 году, через неделю потерялась связь от перегрева датчика. Станция стала неуправляемой и смогла сделать только первый в мире пролёт вблизи Венеры (на расстоянии около ста тысяч километров).

По стопам

"Венера-4" помогла нам узнать, что на этой планете двести семьдесят один градус в тени (ночная сторона Венеры), давление до двадцати атмосфер, а сама атмосфера - девяносто процентов углекислого газа. А ещё этот космический аппарат обнаружил водородную корону. "Венера-5" и "Венера-6" многое поведали нам о солнечном ветре (потоки плазмы) и его структуре вблизи планеты. "Венера-7" уточнила данные о температуре и давлении в атмосфере. Всё оказалось ещё сложнее: температура ближе к поверхности была 475 ± 20°C, а давление выше на порядок. На следующем космическом аппарате было переделано буквально всё, и через сто семнадцать суток "Венера-8" мягко привенерилась на дневной стороне планеты. На этой станции был фотометр и множество дополнительных приборов. Главное - была связь.

Оказалось, что освещение на ближайшей соседке почти не отличается от земного - как у нас в пасмурный день. Да там не просто пасмурно, погодка разгулялась по-настоящему. Картины увиденного аппаратурой просто ошеломили землян. Помимо этого, был исследован грунт и количество аммиака в атмосфере, измерена скорость ветра. А "Венера-9" и "Венера-10" смогли показать нам "соседку" по телевизору. Это первые в мире записи, переданные с другой планеты. А сами эти станции и теперь искусственные спутники Венеры. На эту планету последними летали "Венера-15" и "Венера-16", которые тоже стали спутниками, предварительно снабдив человечество абсолютно новыми и нужными знаниями. В 1985 году продолжением программы стали "Вега-1" и "Вега-2", которые изучали не только Венеру, но и комету Галлея. Следующий полёт планируется в 2024 году.

Кое-что о космической ракете

Поскольку параметры и технические характеристики у всех ракет отличаются друг от друга, рассмотрим ракету-носитель нового поколения, например "Союз-2.1А". Она является трёхступенчатой ракетой среднего класса, модифицированным вариантом "Союза-У", который весьма успешно эксплуатируется с 1973 года.

Данная ракета-носитель предназначена для того, чтобы обеспечить запуск космических аппаратов. Последние могут иметь военное, народнохозяйственное и социальное назначение. Эта ракета может выводить их на разные типы орбит - геостационарные, геопереходные, солнечно-синхронные, высокоэллиптические, средние, низкие.

Модернизация

Ракета предельно модернизирована, здесь создана принципиально иная цифровая система управления, разработанная на новой отечественной элементной базе, с быстродействующей бортовой цифровой вычислительной машиной с гораздо большим объёмом оперативной памяти. Цифровая система управления обеспечивает ракету высокоточным выведением полезных нагрузок.

Кроме того, установлены двигатели, на которых усовершенствованы форсуночные головки первой и второй ступеней. Действует другая система телеизмерений. Таким образом повысилась точность выведения ракеты, её устойчивость и, разумеется, управляемость. Масса космической ракеты не увеличилась, а полезный выводимый груз стал больше на триста килограммов.

Технические характеристики

Первая и вторая ступени ракеты-носителя оснащены жидкостными ракетными двигателями РД-107А и РД-108А от НПО "Энергомаш" имени академика Глушко, а на третьей ступени установлен четырёхкамерный РД-0110 от КБ "Химавтоматики". Ракетным топливом служат жидкий кислород, являющийся экологически чистым окислителем, а также слаботоксичное горючее - керосин. Длина ракеты - 46,3 метра, масса на старте - 311,7 тонн, а без головной части - 303,2 тонны. Масса конструкции ракеты-носителя - 24,4 тонны. Компоненты топлива весят 278,8 тонн. Лётные испытания "Союза-2.1А" начались в 2004 году на космодроме Плесецк, и прошли они успешно. В 2006-м ракета-носитель произвела первый коммерческий полёт - вывела на орбиту европейский метеорологический космический аппарат "Метоп".

Нужно сказать, что у ракет разные возможности вывода полезной нагрузки. Носители есть лёгкие, средние и тяжёлые. Ракета-носитель "Рокот", например, выводит космические аппараты на околоземные низкие орбиты - до двухсот километров, а потому ей по силам нагрузка в 1,95 тонн. А вот "Протон" - тяжёлого класса, на низкую орбиту он может вывести 22,4 тонн, на геопереходную - 6,15, а на геостационарную - 3,3 тонны. Рассматриваемая нами ракета-носитель предназначена для всех площадок, которыми пользуется "Роскосмос": Куру, Байконур, Плесецк, Восточный, и работает в рамках совместных российско-европейских проектов.

Двухступенчатая ракета космического назначения легкого класса "Космос-3М" (11К65М) предназначена для выведения космических аппаратов на эллиптические и околокруговые орбиты высотой до 1700 км с наклонениями плоскости орбиты 66 o , 74 o и 83 o . Используется для запусков низкоорбитальных навигационных и связных спутников, космических аппаратов международной системы поиска КОСПАС-SARSAT и военного назначения. Ранее она использовалась для запусков геодезических космических аппаратов первого поколения и искусственных спутников Земли по программе "Интеркосмос".

Создана под руководством М.К. Янгеля в начале шестидесятых годов в Особом конструкторском бюро №586 (ныне - ГКБ "Южное", г. Днепропетровск) на базе одноступенчатой баллистической ракеты средней дальности Р-14У. Была передана для изготовления и дальнейшего конструкторского сопровождения в производственное объединение "Полет" (г. Омск).

Ракета-носитель состоит из двух ступеней, соединенных по схеме "тандем". На внешней поверхности второй ступени установлены баки системы малой тяги. Двигательные установки обеих ступеней работают на самовоспламеняющейся топливной паре: окислитель - 27-процентный раствор четырехокиси азота в азотной кислоте ; горючее - несимметричный диметилгидразин . Запуск двигательной установки первой ступени происходит по "пушечной" схеме, когда компоненты топлива начинают поступать в камеры сгорания под рабочим давлением, и двигатель за доли секунды выходит на основной режим. Такая схема запуска сокращает непроизводительные достартовые расходы ракетного топлива и увеличивает эффективность его использования в ходе полета ракеты-носителя. Двигательная установка второй ступени может до двух раз выходить на основной режим, между ними полет второй ступени происходит при работе двигателя в режиме малой тяги. Возможность перевода двигателя на режим пониженной тяги позволяет осуществлять одновременное выведение группы космических аппаратов на разные по высоте орбиты, лежащие в одной плоскости. Групповое выведение восьми искусственных спутников Земли при одном пуске ракеты-носителя "Космос-3М" регулярно проводится на космодроме "Плесецк" с апреля 1970 года. Стартовая масса ракеты-носителя "Космос-3М" составляет около 109 тонн, длина - 32,4 метра. На низкую круговую приполярную орбиту высотой 250 км она может выводить до 1400 кг полезного груза, на круговые орбиты высотой 1000 км - до 950 кг. Первый пуск ракеты-носителя "Космос-3М" с космодрома "Плесецк" состоялся 15 мая 1967 года ("Космос-158"). По состоянию на 1 января 1999 года проведено 397 пусков, из них 373 полностью успешных. Частота успешных пусков составила 93,95%. Выведено на орбиты спутников Земли 707 космических аппаратов, из них 6 субспутников.

С 15 апреля 1992 года пуски РКН "Космос-3М" проводятся с учетом реализации мер по защите окружающей среды от проливов ракетного топлива, которое остается в отработавших первых ступенях. Количество топливо, остающееся в баках ступени уменьшено на 15%.

Основные характеристики:

Тип носителя жидкостная двухступенчатая ракета
Компоненты топлива:
окислитель 27% раствор четырехокиси азота в азотной кислоте (АК-27И)
горючее несимметричный диметилгидразин (НДМГ)
Система управления автономная, инерциальная
Условия пуска:
температура воздуха от -40 o С до +50 o С
скорость ветра у земли не более 20 м/с
Длина, м 32.4
Диаметр, м 2.4
Максимальный диаметр, м 2.8
Стартовая масса, тонн до 109
Масса конструкции РКН, тонн 7.2
Максимальная масса КА, кг:
H кр = 250 км 1350
H кр = 1000 км 950
Масса заправляемого топлива, тонн:
окислитель 71.0
горючее 29.5
Тяга двигательной установки, тонн
1 ступень (у земли) 151.1
2 ступень (в пустоте) 16.0

Баллистические данные

Выведение спутников на заданные орбиты осуществляется по схеме с двукратным включением двигательной установки 2 ступени. После первого включения полет 2 ступени происходит по переходной траектории, в расчетной точке которой вторым включением двигательной установки обеспечивается дополнительное приращение скорости, необходимое для выведения КА на требуемую орбиту.

Циклограмма полета РКН с КА типа "Надежда" и "Цикада"
Наименование команд Время, час:мин:сек Траектория полета
Высота, км Скорость, м/с Удаление от СК, км
Старт РКН 0:00:00 0 0 0
Предварительная команда на выключение ДУ 1 ступени (ПК) 0:02:10 58 2536 77
Механическое разделение 1 и 2 ступеней 0:02:12 59 2584 80
Сброс створок головного обтекателя (СГО) 0:02:27 76 2568 114
Предварительная команда на выключение ДУ 2 ступени (ПК1) 0:07:57 150 7907 1488
Главная команда на выключение ДУ 2 ступени (ГК1) 0:08:03 150 7937 1535
Команда на разгон гироинтеграторов (ПВ) 0:52:19 930 7170 20461
Команда на повторный запуск ДУ2 ступени (ВК) 1:02:19 1003 7116 24055
Предварительная команда на выключение ДУ 2 ступени (ПК2) 1:02:24 1003 7252 24085
Главная команда на выключение ДУ 2 ступени (ГК2) 1:02:30 1003 7287 24122
Отделение КА (ОК) 1:02:50 1003 7292 24244

Примечание. Повторный запуск ДУ 2 ступени и отделение космического аппарата происходят над Антарктидой (берег Принцессы Марты).

Запуск космических аппаратов на околоземные орбиты и осуществление полетов к Луне, планетам и другим телам Солнечной системы стало возможно после создания необходимых для этого многоступенчатых космических ракет – ракет-носителей (РН).

Ракета (от итальянского rocchetta – веретено) – летательный аппарат, использующий принцип реактивного движения и способный летать не только в атмосфере, но и в вакууме. Большинство современных ракет-носителей оснащаются химическими ракетными двигателями, которые используют твердое, жидкое или гибридное ракетное топливо. Основные компоненты топлива – жидкий кислород (окислитель) и керосин (горючее), кроме того, применяются четырехокись азота и несимметричный диметилгидразин, жидкие кислород и водород. Масса топлива составляет 85 – 90% от стартовой массы ракеты. Химическая реакция между горючим и окислителем проходит в камере сгорания двигателя, в результате получаются горячие газы, которые выбрасываются, создавая тягу, она и заставляет ракету двигаться. Основной энергетический показатель работы каждого ракетного двигателя – удельный импульс тяги (отношение тяги к расходу топлива в секунду). Например, один из мощных современных ракетных двигателей РД-701 (Россия) тягой 4 МН (408 тс) и удельным импульсом в вакууме 462 с расходует топливо со скоростью 491 кг/с. Стартующие с Земли РН позволяют запускать полезные нагрузки (ПН) со скоростью равной или выше первой космической – 7.9 км/с, то есть достаточной для выведения ИСЗ на низкие орбиты. Обычно ракета при выведении ПН на низкую околоземную орбиту движется на активном участке, то есть с работающими двигателями, примерно 10–15 мин. Если необходимо выведение ПН на более высокие орбиты или траектории полета к Луне и за пределы тяготения Земли, то еще раз включаются двигатели последней (верхней) ступени РН или разгонный блок после пассивного участка, длительность движения на котором зависит от выбранной траектории полета. КА переводится либо на геостационарную орбиту (высотой 36 тыс. км), либо на высокоэллиптические орбиты, либо на траекторию полета к Луне и планетам. Вторая космическая скорость в поле тяготения Земли (11.19 км/с) необходима для запуска АМС к планетам и другим телам Солнечной системы. Третья космическая скорость (16.7 км/с) достаточна, чтобы КА улетел за пределы Солнечной системы.

Современная многоступенчатая космическая ракета представляет собой сложное сооружение, состоящее из тысяч деталей и устройств. Разрабатываемые в настоящее время ракеты-носители соответствуют высочайшим критериям современной науки и техники, при их создании используются передовые технологии и вычислительная техника. Космические технологии оказывают значительное влияние на нашу жизнь, помогая внедрить новые материалы и сплавы, средства коммуникации, компьютерную технику и т.д. Ступени ракет-носителей содержат топливные баки с горючим и окислителем, двигательную установку (маршевые и рулевые двигатели). Полет ракеты регулируется бортовой системой управления движением. Схема расположения ступеней на РН различна. При продольном разделении ступени размещаются одна над другой и работают последовательно друг за другом, включаясь только после отделения предыдущей ступени. Такая, весьма распространенная, схема применяется, например, на российских РН «Днепр» и «Протон-М», китайских «CZ-3/3A» и «CZ-4С», израильской «Shavit». Верхние ступени, доставляющие ПН на заданные орбиты, сейчас заменили разгонными блоками, например, российские ДМ, «Бриз-М» (РН «Протон») и «Фрегат» (РН «Союз-ФГ»). В отличие от продольной, в поперечной схеме («пакетная») несколько блоков первой ступени симметрично располагаются вокруг корпуса второй ступени. Таких РН немного и они бывают двухступенчатыми, например, советская «Спутник» (1957 – 1958) и американские «Atlas-B/D» (1958 – 1963). Широко используется комбинированная схема – продольно-поперечная, позволяющая совместить преимущества обеих схем. К ним относятся отечественные ракеты-носители «Восток», «Союз» и «Энергия», американские «Titan-3/4» и «Delta-4Н», европейская «Ariane-5», японские «H-II/IIA», индийская «GSLV». По особой схеме устроена американская многоразовая транспортная космическая система «Спейс Шаттл», первая ступень которой – два твердотопливных ускорителя, а вторая ступень – пилотируемый космический корабль с внешним сбрасываемым топливным баком.

Маршевая двигательная установка корабля расходует топливо из внешнего бака; когда оно исчерпано, бак сбрасывается. Далее работают другие двигатели корабля (маневрирования и ориентации), они же используются для маневров в космосе и торможения во время посадки. Современные ракеты-носители, как правило, имеют не более четырех ступеней. Чтобы улучшить энергетические характеристики РН, применяются стартовые ускорители, работающие, в основном, на твердом топливе. На участке полета в плотных слоях атмосферы ПН и разгонный блок, как правило, закрыты головным обтекателем, который сбрасывается в разреженных слоях атмосферы. В зависимости от энергетических характеристик и способности выводить на низкую околоземную орбиту ПН определенной массы ракеты-носители условно разделяются на классы: легкие (масса ПН до 4 т), средние (до 20 т), тяжелые (20 – 30 т) и сверхтяжелые (более 30 т). К основным характеристикам РН относятся: внешние габариты (максимальные высота и диаметр), используемый на ступенях тип топлива, число ступеней, разгонных блоков и стартовых ускорителей, стартовая масса, тяга двигательных установок на уровне моря (стартовая), максимальная масса ПН на низкой околоземной орбите. Стартовая тяга двигательной установки РН обычно выражается в меганьютонах (1 МН = 102 тс). Например, у гагаринского носителя «Восток» суммарная тяга достигала 3.4 МН = 347 тс (мощность двигательной установки – 15 х 106 кВт, или 2 х 107 л.с.).

В начале космической эры ракеты-носители были только у СССР и США. В настоящее время собственными РН обладают шесть стран (Россия, США, Китай, Япония, Индия и Израиль) и две международные корпорации – «Arianespace» (ESA) и «Морской старт». Первые спутники с помощью собственных ракет-носителей запустили в 1957 – 1958 гг. СССР и США, в 1970 г. к ним присоединились КНР и Япония, в 1979 – 1980 гг. - ESA и Индия, в 1988 г. – Израиль. В 1999 г. впервые стартовала РН «Зенит-3SL» с морской платформы «Одиссей» по программе «Морской старт».

Россия

К числу современных наиболее мощных отечественных ракет-носителей относятся «Союз-2», «Днепр» и «Протон-М».

Носитель среднего класса «Союз-2» (высота 50.7 м, диаметр 10.3 м, топливо – керосин + жидкий кислород, три ступени и разгонный блок «Фрегат», стартовые масса – 308.6 т и тяга – 3.8 МН, ПН – до 9 т) заменит старые РН «Союз» и «Молния», будет запускать КА на различные орбиты, пилотируемые и грузовые корабли на МКС. На ней используется новая цифровая система управления, модифицированные ЖРД и большой головной обтекатель (диаметр 4.1 м и длина 11.4 м). Запуски РН производятся с 2004 г. 19 октября 2006 г. она запустила с космодрома Байконур метеорологический ИСЗ «Metop-А» европейской организации «Eumetsat» (масса 4 т), через два месяца оттуда же она стартовала с французской космической обсерваторией «Corot», а с Плесецка вывела новый российский спутник связи «Меридиан» (масса 2 т).

РН «Днепр» (высота 34.3 м, диаметр 3.0 м, топливо – азотный тетроксид + несимметричный диметилгидразин, три ступени, стартовые масса – 207 – 211 т и тяга – 2.8 МН, ПН – до 4 т) создана в КБ «Южное» (Украина) на базе МБР Р-36М (РС-20А). Она обладает высокими энергетическими возможностями, точностью выведения и надежностью в полете. Программа реализуется международной компанией «Космотрас» (Россия и Украина). Стартует РН из шахтного транспортно-пускового контейнера, двигательная установка первой ступени запускается после покидания шахты. Первый запуск осуществлен 21 апреля 1999 г. с космодрома Байконур (английский научный спутник «UoSAT-12»). 17 апреля 2007 г. она запустила сразу 14 микроспутников разных стран.

На модифицированной РН «Протон-М» (высота 52 – 58.2 м, диаметр 7.4 м, топливо – азотный тетроксид + несимметричный диметилгидразин, три ступени и разгонный блок «Бриз-М», стартовые масса – 700 – 710 т и тяга – 11.8 МН, ПН – до 24 т) используются новые агрегаты и системы. Большие головные обтекатели (диаметр 5 м) позволяют более чем вдвое увеличить объем для размещения ПН и конкурировать с зарубежными носителями, например с РН «Ariane-5», а также использовать ряд перспективных разгонных блоков. При первом старте 7 апреля 2001 г. с космодрома Байконур «Протон-М» вывела геостационарный спутник связи «Экран М-4», созданный в НПО ПМ. 11 февраля 2008 г. она вывела на геостационарную орбиту норвежский ИСЗ связи «Thor-5» (масса 2 т), а 15 марта – американский «АМС-14» (масса 4.1 т) того же назначения. С помощью «Протона-М» запускаются спутники «Глонасс М» отечественной навигационной системы.

В настоящее время создается семейство ракет-носителей «Ангара». За основу нового поколения носителей взят универсальный ракетный модуль с кислородно-керосиновыми двигателями. В серию «Ангара» войдут носители от легкого до тяжелого классов в диапазоне грузоподъемности от 1.5 т до 28 т. Перспективную РН тяжелого класса «Ангара-5А» (длина 54.3 – 63.9 м, диаметр 10.6 м, топливо – керосин + жидкий кислород, три ступени и разгонный блок «Бриз-М» или КВРБ, стартовые масса – 773 – 790 т и тяга – 12.2 МН, ПН – 24.5 – 28 т) планируют запускать с 2015 г. с космодрома Байконур.

Многоразовая транспортная система «Спейс Шаттл» (высота 56.3 м, диаметр 16.6 м, топливо – жидкий водород + жидкий кислород, одна ступень и стартовые ускорители, стартовые масса – до 2063 т и тяга – 28.6 МН, КК – до 122 т, в том числе ПН – до 22 т) эксплуатируется с апреля 1981 г. Изготовлено шесть кораблей («Интерпрайз», «Колумбия», «Челленджер», «Дискавери», «Атлантис», «Индевор»), из них два потерпели катастрофу: «Челленджер» (28 января 1986 г.) и «Колумбия» (1 февраля 2003 г.). Всего совершено 123 полета, в том числе 26 в рамках строительства МКС. С помощью кораблей «Спейс Шаттл» запущены различные ИСЗ, АМС «Магеллан», «Галилео» и «Улисс», космический телескоп им. Хаббла (КТХ), лабораторные блоки «Спейслэб». На орбите ремонтировался КТХ, возвращались КА на Землю, производились стыковки с ОК «Мир»; на МКС доставлялись модули, грузы и экипажи.

Новая РН среднего класса «Atlas-5» (высота 58 – 59.4 м, диаметр 5.1 м, топливо – керосин + жидкий кислород, две ступени и стартовые ускорители, стартовые масса – 435 т и тяга – 6.8 МН, ПН – до 20 т) создана на базе «Atlas-II» компанией «Lockheed Martin Asronautic» в связи с увеличением массы коммерческих КА. На первой ступени установлен российский РД-180 – один из самых мощных маршевых ЖРД в мире (тяга в вакууме 4.1 МН). С 2002 г. «Atlas-5» запускает с космодрома Канаверал в основном геостационарные связные и военные спутники. 19 января 2006 г. с ее помощью АМС «Новые горизонты» стартовала к Плутону и развила пока наибольшую в мире скорость 17.62 км/с.

Самая большая по грузоподъемности американская одноразовая РН «Delta-4 Heavy» (высота 68.1 – 71.6 м, диаметр 15.3 м, топливо – керосин + жидкий кислород, две ступени и стартовые ускорители, стартовые масса – 725.6 т и тяга – 9.2 МН, ПН – до 25.8 т) создана компанией «Boeing». Она запускается с декабря 2004 г. с космодрома Канаверал. 11 ноября 2007 г. она вывела военный спутник (масса 3.4 т) на геостационарную орбиту. С 2010 г. ее старты планируются с космодрома Ванденберг (шт. Калифорния).

В настоящее время NASA проектирует еще более мощные ракеты-носители - «Ares-1» (высота 54 – 67 м, диаметр 5.6 м, топливо – жидкий водород + жидкий кислород, две ступени, стартовые масса – 530 – 780 т и тяга – 8.7 МН, ПН – до 26 т) и «Ares-5» (высота 116 м, диаметр 15.3 м, топливо – жидкий водород + жидкий кислород, две ступени и стартовые ускорители, стартовые масса – 2500 – 2780 т и тяга – 33.7 МН, ПН – до 137 т). Эти РН должны стать частью эффективной транспортной инфраструктуры, которая разрабатывается NASA в рамках программы «Constellation» ("Созвездие"). «Ares-1» – основное средство выведения на околоземную орбиту полезных грузов и нового пилотируемого КК «Орион». «Ares-5» способен запускать к Луне ПН массой до 71 т: посадочный модуль с экипажем, крупногабаритные конструкции, жилые блоки и расходуемые материалы для строительства постоянной лунной базы. Летные испытания РН «Ares-1» запланированы на 2012 г., первый полет экипажа на МКС – 2014 г. «Ares-1» и «Ares-5» будут применяться для лунных (начиная с 2020 г.) и марсианских экспедиций (намечена на 2030 г.).

«Арианспейс» (ЕSА)

Наиболее мощный носитель Европейского космического агентства РН тяжелого класса «Ariane-5» (высота 54.5 м, диаметр 10.3 м, топливо – жидкий водород + жидкий кислород, две ступени и стартовые ускорители, стартовые масса – 718 т и тяга – 11.8 МН, ПН – до 21 т). На ракете применяется самый крупный головной обтекатель диаметром 5.4 м и длиной 17 м. Первый старт с космодрома Куру состоялся 4 июня 1996 г. и оказался неудачным. Второй экспериментальный пуск 30 октября 1997 г. прошел успешно (запущены три ИСЗ). РН выводит в основном телекоммуникационные ИСЗ (общей массой до 8 т) на геостационарную орбиту. 9 марта 2008 г. РН «Ариан-5ES» вывела на орбиту первый грузовой корабль (ATV) «Жюль Верн» массой 9.7 т, позднее состыковавшийся с МКС.

«Морской старт»

По международной программе «Морской старт» («Sea Launch») для запусков КА с морской платформы из района экватора в Тихом океане применяется российско-украинская РН «Зенит-3SL», созданная на базе носителя «Зенит-2» и разгонного блока «ДМ». Ее характеристики: высота 59.6 м, диаметр 4.2 м, топливо – керосин + жидкий кислород, три ступени, стартовые масса – 470.8 т и тяга – 7.4 МН, ПН – до 13.8 т. С помощью этого носителя запускаются с 1999 г. коммерческие спутники связи.

Китай использует для запусков ПН ракеты-носители серии «Chang Zheng» ("Великий поход"). РН среднего класса «CZ-3В» (высота 54.8 м, диаметр 11.8 м, топливо – азотный тетроксид + несимметричный диметилгидразин, три ступени и стартовые ускорители, стартовые масса – 426 т и тяга – 8.1 МН, ПН – 13.6 т) используется в настоящее время для запусков с космодрома Сичан китайских телекоммуникационных ИСЗ и спутников других стран на геостационарную орбиту.

Самая мощная китайская РН тяжелого класса «CZ-4С» (высота 53.2 м, диаметр 4.1 м, топливо – жидкий водород + жидкий кислород, три ступени, стартовые масса – 440 т и тяга – 9.3 МН, ПН – до 21 т) с космодрома Тайюань запускает с 1999 г. метеорологические и океанографические спутники, а также военные КА.

Наиболее мощный носитель среднего класса «Н-II» был создан компанией «Rocket System Corporation» в рамках реализации космической программы Японии. Первые три пробных пуска в 1994 – 1995 гг. прошли успешно. На ее основе разработана РН «Н-IIА» с жидкостными стартовыми ускорителями (длина 52.5 м, диаметр 8.2 м, топливо – жидкий водород + жидкий кислород, три ступени и стартовые ускорители, стартовые масса – 410 т и тяга – 8.3 МН, ПН – до 15 т). Она запускается с 2001 г. с космодрома Йосинобу вблизи космического центра Танегасима. ПН представляют собой геостационарные телекоммуникационные и военные спутники массой до 4.8 т. 14 сентября 2007 г. с ее помощью к Луне запущена АМС «Кагуя».

С 1986 г. фирмой «Hindustan Aeronautics» под руководством индийского космического агентства ISRO разрабатывалась РН среднего класса «GSLV» (Geosynchronous Satellite Vehicle – носитель для выведения спутников на геостационарную орбиту; высота 50.9 м, диаметр 8.6 м, топливо – жидкий водород + жидкий кислород, две ступени и стартовые ускорители, стартовые масса – 402 – 414 т и тяга – 6.8 МН, ПН – до 13 т). 18 апреля 2001 г. с космодрома Шрикарикота осуществлен первый запуск на геостационарную орбиту спутника связи «G-SAT-1» (Индия).

Разработку и производство единственной израильской РН «Shavit» ("Метеор") осуществляет компания «Israel Aircraft Industries Ltd». Это прототип твердотопливной баллистической ракеты «Jericho-2» с добавленной третьей ступенью, созданной в Израиле в начале 1980-х гг. РН «Shavit» легкого класса (длина 18.2 м, диаметр 1.4 м, топливо – твердое, три – четыре ступени, стартовые масса – 22 т и тяга – 0.5 МН, ПН – до 0.3 т) запускает с 1988 г. с космодрома Пальмачим в основном национальные разведывательные спутники «Ofeg» (горизонт). 10 июня 2007 г. выведен очередной ИСЗ («Ofeg-7») массой 300 кг.

По материалам Роскосмос, РКК «Энергия» им. С.П. Королёва, «ЦСКБ – Прогресс», ГКНПЦ им. М.В. Хруничева, NASA, ESA, CASC, JAXA, ISRO и IAI.

Лёгкая двухступенчатая ракета-носитель (РН) «Космос-3М» (11К65М) служит для выведения автоматических космических аппаратов (КА) легкого и среднего класса различного назначения на круговые и эллиптические орбиты.

Видео Космос-3М

На обеих ее ступенях установлены маршевые жидкостные ракетные двигатели (ЖРД) открытого цикла с турбонасосной подачей долгохранимого самовоспламеняющегося топлива (окислитель – 27% раствор тетроксида азота в азотной кислоте (АК-27И), горючее – несимметричный диметилгидразин (НДМГ)). Система управления – инерциальная. Управление на участке работы первой ступени РН осуществляется с помощью четырёх графитовых газовых рулей (устанавливаются незадолго перед стартом ракеты), на участке работы второй ступени – с помощью четырёх качающихся сопел, работающих на отработанном на турбине («мятом») генераторном газе.

КА устанавливаются под головным обтекателем (ГО), на ферменном переходнике в зоне размещения полезного груза (ПГ). ГО сбрасывается на участке работы второй ступени на высоте 75 км.

Разделение ступеней – холодное, с использованием тормозных твердотопливных двигателей на межбаковом отсеке первой ступени.
Выведение КА на орбиту функционирования – по схеме с двухкратным включением ДУ второй ступени: после первого включения полёт происходит по переходной траектории, в расчётной точке которой вторым включением обеспечивается дополнительное приращение скорости, необходимое для выхода аппарата на заданную орбиту.

Параметры траектории определяются за счет выбора продолжительности работы и интервалов между включениями ДУ второй ступени. Стабилизация ступени на участке полёта по переходной траектории – с помощью четырёх ЖРД малой тяги (по 25 Н каждый), имеющих автономные баки с вытеснительной системой подачи топлива.

«Космос-3М» (Впервые наименование «Космос-3М» было заявлено в СМИ 26 апреля 1994 г.) использовался для выведения на орбиту спутников серии «Надежда» международной системы спасения «КОСПАС-САРСАТ», геодезических, навигационно-связных и других КА военного назначения, индийских спутников Aryabhata, Bhaskara и Bhaskara 2, французского КА Signe-3, шведских Astrid и Astrid 2, американских FAISat и FAISat-2V, мексиканского Unamsat-2, итальянских MegSat 0 и MITA, германских Tubsat B, Abrixas и CHAMP, британского SNAP-1, китайского Tsing Hua 1.

С помощью ракеты "Космос-3М" проводились астрофизические, технологические и другие эксперименты в интересах Академии наук СССР, международной организации «Интеркосмос», отраслевых научно-исследовательских организаций, в т.ч. с возвращением ПГ на Землю (см. табл. 2). Примерно половина всех проведенных пусков ракеты приходится на суборбитальные полёты с полигона Капустин Яр для выполнения экспериментов на гиперзвуковых скоростях.

В 1995 г. ракета "Космос-3М" участвовала в международном конкурсе на легкий носитель Med-Lite для NASA. По оценке американских специалистов, которые провели сравнительный анализ 18 типов ракет легкого класса, созданных в разных странах, «Космос-3М» был признан одним из самых совершенных.

Маркетинг носителя на западном рынке ведут совместное предприятие Cosmos International GmbH (при участии германской фирмы OHB-Systems) и российское предприятие «Пусковые услуги».

Производство носителя осуществляется (в низком темпе) в ПО «Полет» (г.Омск). В настоящее время конструкторы предприятия ведут разработку перспективного варианта 11К65МУ «Космос-3МУ» («Взлет»), оснащенного новой системой управления.

Краткая история создания носителя «Космос-3М»

Эскизный проект носителя 65С3 для вывода КА «малой» и «средней» массы (от 100 до 1500 кг) на круговые (высотой от 200 км до 2000 км) и эллиптические орбиты был разработан к апрелю 1961 г. в ОКБ-586 (г.Днепропетровск) на базе одноступенчатой баллистической ракеты среднего радиуса действия Р-14 (8К65) и подкреплен Постановлением ЦК КПСС и Совета Министров СССР № 984-425 от 30 октября 1961 г. и Комиссией Президиума Совета Министров от 12 июля 1962 г. Поскольку эта работа несколько выпадала из главного направления деятельности предприятия (создание боевых баллистических ракет), генеральный конструктор днепропетровского ОКБ М.К.Янгель предложил передать ее в красноярское ОКБ-10 под руководством М.Ф.Решетнева.

В конце 1961 г. представители ОКБ-10 включились в работу. Решетневцы предложили оригинальное техническое решение, позволяющее запускать спутники на круговые орбиты путем введения «пунктирного» участка стабилизированного полёта. Для реализации идеи была принята двухимпульсная схема включения маршевого ЖРД второй ступени: первый импульс формирует эллиптическую траекторию, в апогее которой вторым включением аппарат переводится на круговую орбиту.

В ОКБ-456 А.М.Исаева создали трехрежимный двигатель 11Д49 (два включения на номинальной тяге и работа в дроссельном режиме), а решетневцы разработали систему малой тяги, обеспечившую стабилизированный полёт между двумя включениями маршевого ЖРД. Топливо для этой системы располагалось в двух специальных баках, подвешенных на внешней поверхности основного бака второй ступени.

Разработка ракетного комплекса велась в два этапа. На первом был создан носитель 11К65 «Космос-3». В мае 1964 г. две таких ракеты были вывезены на Байконур для пуска со стартовой площадки 41, имеющей недобрую славу: именно здесь в 1960 г. при катастрофе во время предстартовой подготовки ракеты Р-16 погибла большая группа специалистов и военных, включая маршала М.И.Неделина.

В августе началась предстартовая подготовка. В соответствии «с законами жанра», незаправленная ракета упала со стартового стола!
Приняли решение: пустую ракету до заправки крепить к башне обслуживания. За ночь, используя «производственные мощности» ремонтного поезда В.Н.Челомея, изготовили установку для крепления.
После заправки носителя на полигон пришла туча с ветром до 25 м/с (порывы до 27 м/с), что превышало тактико-технические требования. Судьба продолжала и далее испытывать создателей «Космоса-3»: произошли три сбоя электроники и местная потеря устойчивости хвостового отсека (на его обшивке появились «хлопуны»). Но с третьей попытки, 18 августа, ракета стартовала, выведя на орбиту три габаритно-весовых макета КА «Стрела» (спутники «Космос-38»…-40) с передатчиками системы «Маяк», получавшими питание от батареек для карманного фонаря.

3 сентября 1965 г. ТАСС сообщил о выведении пяти новых «Космосов» (№80–84) на круговую орбиту высотой 1500 км.

Дальнейшая судьба 11К65М сложилась так: первые 14 носителей были изготовлены на опытном производстве ОКБ-10 с участием «Красмашзавода». В 1966 г. их изготовление было полностью передано на «Красмашзавод», а с 1970 г. – в ПО «Полёт».
Постановлением ЦК КПСС и Совмина СССР №949-321 от 30 декабря 1971 г. ракета-носитель 11К65М была принята на вооружение в составе космического комплекса специального назначения.

В 1972 г. разработка 11К65М была отмечена Государственной премией СССР в области науки и техники.

Для замены РН «Космос-3М» в 1980-х годах ОКБ «Южное» (Днепропетровск) и ПО «Полет» (Омск) выпущен проект легкой экологически чистой ракеты 11К55 на базе технологических решений, разработанных в ходе программы «Энергия–Буран», но разработка сначала затормозилась, а потом и полностью прекратилась, осложненная процессами, происходящими в последние годы существования СССР.

Тактико-технические характеристики Космос-3М

Количество ступеней........................2
Длина........................32,4 м
Диаметр........................2,4 м
Стартовая масса........................109000 кг
История запусков
Состояние........................снята с эксплуатации
Места запуска........................Плесецк, Капустин Яр
Число запусков........................440
- успешных........................420
- неудачных........................20
Первый запуск........................15 мая 1967

Первая ступень - Р-14У

Маршевый двигатель........................РД-216 (11Д614)
Тяга........................1485,6 кН на уровне моря
Удельный импульс........................291 с на уровне моря
Время работы........................130 с

Вторая ступень

Маршевый двигатель........................11Д49
Тяга........................157,3 кН
Удельный импульс........................303 с
Время работы........................350 с
Горючее........................НДМГ
Окислитель........................АК-27И

Фото Космос-3М