Катапультное кресло современного самолета - сложнейшая система, которая должна уметь спасать пилота на любой высоте и скорости. 20 Июль 2017, 14:45

Катапультное кресло современного самолета - сложнейшая система, которая должна уметь спасать пилота на любой высоте и скорости. О том, как именно это происходит и почему американские военные в 1990-е годы любой ценой хотели получить информацию о российских разработках в этой сфере, рассказывает военный летчик Дмитрий Дрозденко.

8 июня 1989 года, аэродром в местечке Ле Бурже, всего 12 километров от Парижа. Советский летчик-испытатель Анатолий Квочур поднял в воздух МиГ-29 для выполнения демонстрационной программы. Сразу после отрыва от полосы самолет закрутил «мертвую петлю», затем «колокол» с разворотом, двойную горизонтальную бочку, «квадратную петлю», вираж и начал пролет на минимально допустимой скорости. Этот режим, когда мощная реактивная машина буквально «ползет» по воздуху на запредельных углах атаки, очень эффектен, но одновременно и опасен.

И вот, в тот момент, когда многотонной машине важен каждый килограмм тяги, происходит хлопок с видимым выбросом пламени из двигателя. Самолет на мгновение замирает в воздухе и начинает валиться вправо-вниз. Из-за попадания птицы в воздухозаборник произошел помпаж правого двигателя. Отказ движка случился на критически малой скорости и высоте. До земли 92 метра, машина неуправляемо падает. В этот момент летчик-испытатель катапультируется, причем нос самолета практически «смотрит» на землю, а крен достиг 90 градусов.

Обыкновенное чудо

Судя по видеозаписи и расчетам специалистов, на высоте 16–17 м летчик был еще в кресле и падал со скоростью 25–30 м/с. Купол парашюта наполнился перед самой землей и успел снизить скорость падения до 11 м/с. Помогла взрывная волна от взорвавшегося самолета. Она отбросила летчика по касательной и «поддернула» купол парашюта. Но это все равно много. Скорость снижения была в два раза больше положенной скорости снижения парашютиста, но это дало возможность сохранить жизнь пилоту.

Конечно, Анатолий Квочур получил травмы, но, как сказали в репортаже с авиасалона: «Советский летчик отделался синяками и легким ушибом спины». Более того, на следующий день наш летчик-испытатель снова поднялся в небо, но уже на другом МиГ-29. Что это было - чудо?

Это было не чудо, а советское катапультируемое кресло К-36, которое спасло летчика в безнадежной для зарубежных машин ситуации. Тогда для них высота покидания 90 метров при практически нулевой скорости была смертельна. Даже если «убрать» показатели крена и тангажа, в которых в момент катапультирования находился самолет, зарубежные системы спасения не сохранили бы жизнь своему пилоту. Но только не у нас.

Неудивительно, что после этого публичного инцидента к нашим системам катапультирования был проявлен очень пристальный интерес. Развал СССР и последовавшие за этим «лихие» девяностые позволили американцам практически за бесценок получить наши уникальные технологии спасения, но об этом чуть позже.

Везунчик Смит

Разгонитесь на машине до 100 км/ч и высуньте руку в окно. Чувствуете? А теперь представьте не руку, а всего себя и на скорости 1300 км/ч. В 1955 году себя и свое везение испытал американский летчик-испытатель Джон Смит, он первым в мире катапультировался на сверхзвуке. При испытаниях истребителя F-100A на высоте 11 300 метров неожиданно заклинило управление. Самолет пошел в крутое пике, скорость постоянно возрастала, достигнув 1300 км/час. Когда высота снизилась до критической, Смит решил катапультироваться. Он знал, что два случая покидания самолета на сверхзвуковой скорости закончились очень плачевно, но выбора не было.

Страшный динамический удар превратил его лицо в кровавое месиво, кресло, не имевшее стабилизации, бешено кувыркалось в воздухе. Когда парашют раскрылся, кресло отцепилось, и Смит упал в воду, состояние его было ужасно. У него был отрезан кончик носа.

Отсутствовали ботинки и носки. Вся одежда была изодрана в клочья.


Желудок настолько надулся воздухом, что находящийся без сознания пилот покачивался в воде, как поплавок. Его тут же подобрали и направили в госпиталь, где он пришел в себя лишь через 5 дней. Смиту очень повезло.

Летающее кресло

Главная задача катапультируемого кресла - отвести пилота на безопасное расстояние от терпящей бедствие машины, обеспечить достаточную высоту для открытия парашюта и гашения вертикальной скорости. При этом хрупкое человеческое тело должно быть защищено от встречного воздушного потока - вспоминаем «руку в окне» и опыт Джона Смита. Для этого специальная система за доли секунды «собирает в кучу» тело пилота. Подтягиваются ремни, ноги «подбиваются» вверх, ограничители прижимают руки к телу. Тело фиксируется в оптимальном, сгруппированном положении.

Мощный воздушный удар снимается специальным дефлектором. Перегрузка - а кресло должно за доли секунды успеть «перекинуть» пилота через киль самолета - должна нарастать равномерно, так, чтобы не травмировать человека. Этим занимается специальные реактивные двигатели.


Кресло не должно «крутиться» в воздушном потоке. Здесь важную роль играет система аэродинамической стабилизации. Она включает в себя два стабилизирующих парашюта на раздвигающихся телескопических штангах. Система обеспечивает такое положение кресла, чтобы перегрузки, которым подвергается пилот, шли по линии «спина-грудь», они переносятся легче, а не «голова-таз», что чревато потерей сознания. Лишь после этого самого ответственного этапа катапультирования происходит ввод в поток спасательного парашюта, расфиксация летчика и отделение его от каркаса кресла.


Все это происходит за одну секунду. Вместе с пилотом на парашюте к земле отправится только крышка сиденья, под которым расположен носимый аварийный запас (НАЗ) и аварийный запас кислорода. Сложнейшая техническая задача, ведь после катапультирования летчик должен вернуться в строй. Это важно не только с человеческой точки зрения, но и с экономической. Подготовка обычного пилота стоит до трети стоимости истребителя, а «стоимость» аса ее превышает. Как вы понимаете, создать подобную систему - сложнейшая задача.

История обмана

В начале статьи я рассказал про аварию МиГ-29 на международном авиасалоне в Ле Бурже. Спустя всего четыре года ведущая американская научно-исследовательская лаборатория ВВС США «ArmstrongLaboratory» опубликовала большой доклад о русском катапультном кресле К-36Д. «Опыт использования принятых в ВВС США катапультных кресел неудовлетворителен», - заявил директор лаборатории Томас Мур. По его мнению, исправить эту ситуацию можно было за счет советских технологий. Спасти американцев должно было катапультируемое кресло К-36Д, которое было спроектировано и изготовлено на заводе № 918 МАП. Сейчас это предприятие называется НПП «Звезда им. Г. И. Северина».


Тогда же осуществлялась межправительственная программа оценки зарубежных сравнительных технологий Foreign Comparative Testing (FCT) «Россия - США», что-то вроде одностороннего «обмена опытом». Программа существует и сейчас. Ее цель – проверка высоких военных технологий союзников США для их последующего применения Пентагоном. Главные задачи: «…снижение собственных затрат на разработку, производство и эксплуатацию военной техники. Совершенствование военно-промышленной базы США…» Обратите внимание: написано именно США, не общей, союзнической армии и промышленности, а только американской.

Гешефт на двадцать миллионов

В рамках этой программы штатовские специалисты привезли в Россию самую совершенную контрольно-записывающую аппаратуру с использованием портативной компьютерной техники и по полной программе испытали наше катапультируемое кресло К-36Д с записью всех параметров. Все заявленные характеристики были подтверждены, после чего наша оборонка вместе с американскими инженерами модернизировала свое детище до уровня К-36Д-3,5А. Бюджет совместных работ составил всего 21 миллион долларов.

Вы только подумайте – двадцать один миллион. Да, мы получили деньги на модернизацию своего изделия, а американцы получили то, что реально стоит в десятки раз дороже. Одновременно с работами в рамках программы FCT фирма «McDonnell Douglas» вела масштабные и дорогие НиОКР по созданию новых ракетных двигателей для катапульт, систем их управления и пространственного ориентирования. Интересно, но эти очень затратные и многомиллионные работы завершились в 1995 году, именно тогда и закончилась программа FCT.


В 1997 году в США провели испытания модифицированного кресла ACES-2, оборудованного инерционными стабилизаторами. Но тогда американцам так и не удалось полностью решить проблему ограничения разброса рук и ног летчика. Испытания этих катапульт на самолете F-15 выявили большой риск телесных повреждений, и стали основанием для более жестких требований к массе и росту летчика.

Фиксаторы рук и ног для американцев в итоге сделали японцы. Был определен предел относительно безопасного катапультирования - 1100 км/ч. Кстати, российское кресло К-36Д-3,5А обеспечивает спасение на скорости до 1390 км/ч. Пентагон признал уникальность разработок НПП «Звезда», а с другой - американцы назвали программу FCT очень полезной для них.

Продолжение истории

Затем был инцидент 12 июня 1999 года на Международном авиасалоне в Ле Бурже, когда во время тренировочного полета истребитель Су-30МКИ на выходе из петли задел хвостовой частью землю и загорелся. Тогда командир экипажа Вячеслав Аверьянов и штурман Владимир Шендрик, отведя самолет от зрителей, успешно катапультировались на высоте 50 метров.


Гай Ильич Северин, комментируя это происшествие, заявил, что с помощью катапультных кресел производства «Звезды» было спасено более пятисот летчиков, среди которых только 3% не смогли вернуться в строй. «Это является наивысшим показателем в мире, поскольку кресла западных разработок обеспечивают возврат в строй около 55−60% катапультировавшихся пилотов», - подчеркнул он.

При создании катапульт между русскими и американцами имеется принципиальная разница в подходе. Наши более глубоко прорабатывают вопросы спасения, поскольку советская, а теперь и российская военная доктрина ориентирована на максимальную безопасность летчика, с тем, чтобы он мог на следующий день вступить в бой. А для американских разработчиков важен только факт безопасного покидания самолета, а всё остальное не является зоной их ответственности. Иными словами, это ровно тот случай, когда запросы бизнеса вступают в противоречие с военными интересами.

Сейчас американцы имеют уже небольшие, но все-таки проблемы с системами жизнеобеспечения на F-22 Raptor - не работала кислорододобывающая установка. Есть проблемы с катапультным креслом на жутко дорогом F-35 Lighing II. Не знаю как, но катапульта, установленная на этом «произведении искусства» производства «Lokhid Martin», работает не очень хорошо, ведь неспроста на вес летчика снова наложены ограничения. Заложены ограничения и по высоте полета.

Надежность и доверие

Согласитесь, надежность и доверие к разработчику - наверное, самые важные качества продукции, предназначенной для спасения летчика. Если честно, то на моей памяти это единственный случай, когда сын жизнью отвечал за изделия отца. Герой России, инженер и космонавт-испытатель Владимир Гайевич Северин «летал» на отцовских катапультах, испытывал скафандры, рискуя при этом своей жизнью. Это как отец должен был верить в свои изделия, а сын доверять отцу и своим коллегам!

Сергей Сергеевич Поздняков, генеральный директор - главный конструктор ОАО НПП «Звезда»:

Кресло К‑36Д‑5 на сегодняшний день имеет самые совершенные характеристики среди аналогов. Оно оснащено модернизированной системой автоматики, чтобы обеспечить покидание самолёта на всех режимах полёта, в том числе и на земле. И на следующий год мы тоже планируем выйти со своими разработками на конкурс.

Шанс на спасение

Когда самолёт становится неуправляемым и падает, когда кажется, что гибель неминуема, катапультное кресло может дать пилоту шанс на спасение. А конструкция кресел серии К-36, состоящих на вооружении отечественных Вооружённых сил, не просто спасает лётчику жизнь, но и защищает его от тяжёлых травм, позволяя вернуться в строй после катапультирования.

Отечественные катапультные кресла разрабатывают, испытывают и производят на научно-производственном предприятии «Звезда», расположенном в подмосковном Томилине. Изготовление кресел - это в прямом смысле слова ручная работа, на сборку одного изделия уходит до трёх месяцев. Тем не менее в год здесь производят до нескольких сотен спасательных систем. При этом на предприятии пристально следят за дальнейшей судьбой своих изделий.

По своим характеристикам и по статистике возвращения лётчиков в строй после катапультирования наши кресла самые лучшие. Я говорю о линейке К-36, - комментирует генеральный директор - главный конструктор ОАО «НПП «Звезда» Сергей Сергеевич Поздняков. - С некоторыми условиями, которые порой возникают при катапультировании, зарубежные аналоги не справляются, тогда как наши изделия обеспечивают спасение практически во всём лётном диапазоне современных боевых самолётов.

Гай Ильич Северин, до 2008 года бывший генеральным конструктором НПП «Звезда», отмечал уникальность российского подхода к средствам спасения. Он говорил: «Стоимость подготовки квалифицированного пилота оценивается в 10 миллионов долларов.

Это почти половина стоимости самого самолёта. Поэтому мы с самого начала решили не просто спасать пилота любой ценой, как это делают на Западе, а спасать без травм, чтобы он в дальнейшем мог вернуться в строй. После катапультирования с помощью наших кресел 97% пилотов продолжают летать».

Сторонним наблюдателям это кажется чудом. «Автор этого чуда, - говорил Гай Северин, - уникальное кресло К-36ДМ, разработанное в НПП «Звезда». В частях военно-воздушных сил на кресла серии К-36 фактически молятся и говорят, что они спасли жизнь «целой дивизии пилотов».


Защитить лётчика на всех этапах полёта

Основная задача разработчиков средств спасения - защитить лётчика на всех этапах полёта. При этом пилоту должно быть максимально удобно в кресле, ведь это не только его подстраховка, но и рабочее место во время многочасовых полётов. Для обеспечения комфортной и безопасной работы заголовник, сиденье и спинка кресла особым образом профилированы, повторяя форму тела пилота.

Возможность использования кресла лётчиком во время маневренного полёта проверяют на НПП «Звезда» в ходе испытаний на центрифуге, имитируя пилотажные перегрузки вплоть до девяти единиц. Причём кресло вращают вместе с испытателем. Именно он даёт оценку комфортности изделия и уровню защиты, которую оно предоставляет: насколько плотно тело прилегает к креслу, насколько хорошо зафиксирована голова, может ли пилот во время полёта прицеливаться и так далее.

Помимо благоприятных условий эксплуатации, кресло должно защитить лётчика и в процессе катапультирования. Важнейшая задача при этом - максимально быстро и надёжно зафиксировать лётчика. Механизмы кресла притягивают плечи и пояс лётчика к спинке и сиденью - это необходимо при катапультировании, чтобы не повредить позвоночник под воздействием перегрузок, возникающих под действием пиротехнического стреляющего механизма, выбрасывающего кресло с лётчиком из кабины.


Не меньшие опасности подстерегают пилота и после отделения кресла от самолёта. При катапультировании на больших скоростях воздушный поток после выхода из кабины достигает такой силы, что всё тело летчика, и особенно его конечности, испытывает огромные нагрузки. Воздушный поток может попросту убить человека. Для защиты лётчика в этих условиях кресла типа К-36 обладают целым рядом защитных устройств. Системы всех современных кресел предусматривают фиксацию голеней специальными петлями, но только российское оснащено ещё и системой подъёма ног - кресло как бы «группирует» лётчика, снижая воздействие на тело перегрузок и давление воздушного потока. Кроме того, только у российских кресел есть боковые ограничители разброса рук, существенно повышающие безопасность катапультирования. Помимо этого, К-36 оснащено выдвижным дефлектором, защищающим грудь и голову от воздушного потока при катапультировании на высоких скоростях (до трёх махов!).

Мы с самого начала решили, что характеристики наших средств аварийного покидания борта должны полностью соответствовать возможностям самолётов. Если кресло может спасти пилота на скорости 1400 км/ч, то на скорости 800 км/ч это будет гораздо проще, - говорит главный специалист расчётно-теоретического отдела НПП «Звезда» Александр Лившиц.

Кресла типа К-36 существенно превосходят зарубежные аналоги по возможности спасения на больших скоростях и высотах полёта. И залог этого не только в сложной системе фиксации, но и в уникальной системе стабилизации, надёжно обеспечивающей вертикальное расположение кресла в потоке. Такое положение позволяет выдержать большие перегрузки торможения (в направлении «грудь-спина») при отделении от самолёта, обеспечивает защиту от воздушного потока с помощью уже упомянутого дефлектора, а также даёт возможность максимально использовать импульс ракетного двигателя. Стабилизация в потоке обеспечивается за счёт двух жёстких телескопических штанг, «выстреливаемых» под действием встроенного пиротехнического механизма при выходе кресла из кабины и имеющих на своих концах небольшие вращающиеся парашюты.

В зарубежных креслах такой системы стабилизации нет, - говорит Сергей Поздняков. - Там есть парашюты, которые как бы разворачивают кресло в потоке, но любой парашют на больших скоростях рвётся, поэтому на скорости свыше 1100 км кресла не гарантируют спасение. Как правило, там надо либо скорость сбросить, либо сделать что-то ещё, чтобы скорость была меньше.

Отечественные катапультные кресла разрабатывают, испытывают и производят на научно‑производственном предприятии «Звезда», расположенном в подмосковном Томилине. Изготовление кресел - это в прямом смысле слова ручная работа, на сборку одного изделия уходит до трёх месяцев.


Фонарный вопрос

Для того чтобы безопасно катапультироваться, должна быть устранена «естественная преграда на пути» - фонарь кабины. В этой ситуации каждая доля секунды на счету. При больших скоростях полёта фонарь после его расфиксации уносится потоком воздуха, а вот на относительно небольших скоростях задержка в отходе фонаря может создать опасность для жизни.

Если фонарь достаточно тонкий, можно просто катапультировать пилота «сквозь» него - специальные пробойники помогут креслу пройти через остекление, особенно если им при этом помогает дополнительная система, состоящая из пиротехнических шнуров, наклеенных на стекло и подрываемых в момент катапультирования. Такая схема применяется практически на всех самолётах вертикального взлёта и посадки, а также на лёгких учебно‑тренировочных самолётах. С толстым фонарём помогут справиться специальные толкатели, которые отбрасывают его назад и вверх.

Наиболее перспективной является гибридная схема: на малых скоростях фонарь разрезается шнуром и проламывается пробойниками кресла, а на больших сбрасывается традиционным способом.

Типичная диаграмма катапультирования К-36Д-3,5

0 секунд

Лётчик вытягивает поручни механизма управления катапультирования, запуская работу системы автоматики. Подаётся команда на сброс фонаря, опускание светозащитного фильтра защитного шлема лётчика. Происходит инициация системы фиксации: принудительный притяг плечевых и поясных ремней, фиксация и подъём ног, опускаются и поджимаются боковые ограничители разброса рук.

0,2 секунды

Фиксация заканчивается. Происходит корректировка работы энергодатчиков кресла в зависимости от массы лётчика. Если сброшен фонарь, подаётся команда на телескопический стреляющий механизм и начинается собственно процесс катапультирования. На высоких скоростях вводится защитный дефлектор.

0,2-0,4 секунды

Кресло под действием стреляющего механизма движется по направляющим в кабине. По ходу движения происходит ввод стабилизирующих штанг.

0,4-0,8 секунды

Кресло выходит из кабины, включается пороховой ракетный двигатель. При необходимости (большой угол крена самолёта или разведение лётчиков при парном катапультировании) последовательно включаются двигатели коррекции по крену.

0,8 секунды

На малых скоростях происходит отстрел заголовника, разделение лётчика с креслом и ввод спасательного парашюта. На больших скоростях

Это происходит после торможения кресла до приемлемой скорости, определяемой системой автоматики. В состав подвесной системы лётчика входит крышка сиденья, которая остаётся у него после отделения от кресла. Под крышкой расположена аварийная кислородная система, а также уложены носимый аварийный запас (НАЗ), надувной спасательный плот и радиомаяк. Через 4 секунды после разделения лётчика с креслом НАЗ отделяется и повисает на фале, так же как и автоматически надувшийся плот.


Гай Северин, генеральный директор и генеральный конструктор НПП «Звезда», 1982-2008 гг.:

«Стоимость подготовки квалифицированного пилота оценивается в 10 миллионов долларов. Это почти половина стоимости самого самолёта. Поэтому мы с самого начала решили не просто спасать пилота любой ценой, как это делают на Западе, а спасать без травм, чтобы он в дальнейшем мог вернуться в строй. После катапультирования с помощью наших кресел 97% пилотов продолжают летать».

Самостоятельный летательный аппарат

У всех ещё на слуху недавнее авиационное происшествие, когда самолёт МиГ-29К, взлетев с палубы тяжёлого авианесущего крейсера «Адмирал Кузнецов», потерпел крушение в водах Средиземного моря. Это потом будут расследование, анализ ситуации и вариации на тему «а почему?». Но в то роковое мгновение пилот принял решение покинуть самолёт, и катапультное кресло спасло ему жизнь. А на самолётах данного типа установлено современная модификация катапультного кресла - К-36Д-3,5.

Подобные кресла - это фактически самостоятельные летательные аппараты, оснащённые несколькими пороховыми двигателями, парашютами и современной электроникой. Встроенный компьютер управляет работой всех систем, снижая воздействие на лётчика перегрузок катапультирования и позволяя благополучно покинуть аварийный самолёт в самых сложных ситуациях.

Автоматика кресла, в зависимости от информации, поступающей от бортовых систем в момент катапультирования, выбирает и реализует оптимальный вариант последовательности работы исполнительных систем - в части работы двигателя; системы стабилизации; системы управления движением в поперечной плоскости; системы ввода спасательного парашюта. В связи с этим повышается вероятность благоприятного исхода катапультирования на малых высотах полёта при сложном пространственном положении самолёта в момент аварии.


Новые «рецепты» катапультных кресел

Совершенствование катапультных кресел продолжается. Конструкция кресла дорабатывается, когда у заказчика появляются новые требования. Отсюда и возможность размещения лётчиков самого широкого диапазона антропометрии, и возможность эксплуатации практически во всех климатических и географических районах Земли. Именно такими характеристиками обладает самое современное детище НПП «Звезда» - катапультное кресло К-36Д-5.

По сравнению со своими предшественниками возможности этого кресла значительно расширились. Работать в этом кресле могут и хрупкие женщины, и высокие, крупные мужчины: вес пилотов может находиться в диапазоне от 45 до 110 кг. Улучшились эксплуатационные свойства кресла, совместно с пермской фирмой «НИИПМ» были разработаны новые пороховые заряды, повысилась защищённость систем кресла от внешних электромагнитных воздействий, что особенно актуально в последнее время.

Помимо этого, ещё больше развился «интеллект» системы автоматики. Теперь, благодаря встроенным датчикам, момент ввода парашюта может точно определяться даже при отсутствии в момент катапультирования информации о скорости полёта с бортовых систем самолёта.

Кресло К-36Д-5 разрабатывается в рамках программы создания самолёта пятого поколения ПАК ФА (перспективный авиационный комплекс фронтовой авиации). Также данное кресло входит в состав комплекса средств аварийного покидания Су-35С.


Спасательный парашют

Важнейшей системой катапультных кресел является спасательный парашют. На креслах типа К‑36 парашют уложен в заголовнике, при его отстреле кресло получает противоположный импульс и отделяется от лётчика. А целый и невредимый пилот на раскрывшемся парашюте плавно опускается на землю. Зарубежные катапультные кресла оснащены парашютами, ввод которых возможен на скоростях до 520 км/ч. Спасательный парашют, входящий в состав кресел типа К‑36, может вводиться на скоростях до 650 км/ч, что позволяет сократить время торможения и,

Особенностью принудительного покидания вертолёта является наличие вращающихся лопастей над кабиной пилота, а также то, что в момент аварии вертолёт может двигаться в самом произвольном направлении - даже хвостом вперёд. На вертолёте К-52 имеется специальное устройство, отстреливающее лопасти при подаче команды на катапультирование. А для обеспечения надёжного и безопасного покидания машины за спинкой кресла К-37-800М находится специальный пороховой двигатель, связанный длинным фалом с подвесной системой лётчика. Это самая настоящая ракета, которая имеет две ступени. Сопла двигателя расположены так, что ракета вращается и тем самым стабилизируется, обеспечивая заданную траекторию полёта, чтобы лётчик не травмировался и избежал столкновения с колонкой вертолёта.

На случай жёсткой аварийной посадки кресло К-37-800М оснащено энергопоглощающими элементами.

Когда вертолёт падает, при жёсткой посадке на пилота действуют несовместимые с жизнью вертикальные перегрузки в 30-40 единиц. За счёт деформации специальных устройств при аварийной посадке сиденье вместе с человеком перемещается с контролируемым усилием, и энергия удара частично поглощается. В результате кресло обеспечивает снижение действующей перегрузки до переносимых человеком величин - в 15-18 единиц, - говорит начальник научно-технического отдела ОАО «НПП «Звезда» Виктор Александрович Наумов.

ОАО «НПП «Звезда»
разрабатывает средства спасения
не только для боевых самолётов,
но и для вертолётной техники.


Научно-производственное предприятие «Звезда» (недавно преобразованное в АО «Звезда») - головное предприятие России в области создания интегрированных комплексов индивидуальных систем жизнеобеспечения летчиков и космонавтов и спасения их при авариях летательных аппаратов. В числе разработок фирмы - семейство уникальных катапультных систем. Катапультное кресло К-36 явилось результатом длительных разработок, лабораторных исследований и испытаний. В комплекте с защитным и кислородным оборудованием оно представляет собой систему, превосходящую все зарубежные аналоги. Накопленный в результате разработки «ноу-хау» и его внедрение, наряду с рядом уникальных инженерных решений позволяют этой системе спасать экипаж самолета практически во всем диапазоне высот и скоростей полета. При этом кресло обеспечивает «мягкое катапультирование», исключающее травматизм.

Самые совершенные модели кресел обеспечивают оптимальную жизнеспособность пилота на всех высотах и скоростях летательного аппарата, даже если катапультирование совершено с земли. Кроме самолетов, катапультные кресла устанавливались на космических кораблях «Восток». Их эксплуатация предусматривалась в аварийных ситуациях и для приземления в нормативных условиях, когда полет завершался.




1 — заголовник; 2 — стабилизирующая штанга; 3 — пиромеханизм системы стабилизации; 4 — пряжка ремня механизма эксплуатационного притягивания плечевых ремней; 5 — лопасть ограничителя рук; 6 — пряжка ремня механизма эксплуатационного притягивания поясных ремней; 7 — ручка механизма эксплуатационного притягивания поясных ремней; 8 — механизм эксплуатационного притягивания поясных ремней; 9 — кресло; 10 — кнопки системы регулирования сиденья; 11 — ручка аварийного включения кислорода; 12 — НАЗ; 13 — ограничитель ноги; 14 — ложемент голеней и ног; 15 — ложемент механизма подъема ног; 16 — щиток дефлектора; 17 — ручка катапультирования; 18 — замок системы фиксации; 19 — система фиксации; 20 — такелажный узел; 21 — свободные концы парашютной системы

Есть несколько схем отсоединения катапультируемого кресла от ЛА, но самый распространенный относится к выстреливанию кресла при помощи реактивного двигателя (К-36ДМ), сжатого воздуха (Су-26 ), порохового заряда (КМ-1М). После выстрела оно в автономном режиме отбрасывается, и пилот приземляется на землю на парашюте. В некоторых вариантах использовались спасательные кабины (В-1) или капсулы (В-58), которые опускались на парашютах.

Многолетняя эксплуатация и статистика применения подтвердила правильность заложенных в систему конструкторских решений. Сотни летчиков обязаны ей своей жизнью. Известны случаи, когда летчики катапультировались дважды, даже трижды, и все они продолжают летать. Сегодня катапультируемые кресла типа К-36 установлены практически на всех современных самолетах ВВС, авиации ПВО и флота России. При незначительной доработке они могут быть установлены на любой тип зарубежного военного самолета. Важно отметить, что система аварийного покидания на базе кресла К-36 стала родоначальником целого семейства интересных разработок.

Предпосылки к конструированию катапультируемого кресла

До второй половины Второй мировой войны пилот покидал кабину самолета следующим образом: нужно было встать с сиденья, переступить через борт, добраться до крыла и спрыгнуть в промежуток между хвостовым оперением и крылом. Таким способом можно было пользоваться на скоростях 400-500 км/ч. Но авиастроение не стояло на месте, и к концу Второй мировой пределы скоростей самолетов значительно выросли. Используя тот же принцип покидания самолета, многие летчики погибали или даже не могли сдвинуться с места, поскольку навстречу им шел сильный воздушный поток.

Как гласит немецкая статистика, на период с конца 30-х и начала 40-х годов в 40% случаев покидание самолетов вышеупомянутым способом заканчивалось катастрофой для пилота. В США ВВС также проводили исследования, которые показали, что 45,5% покиданий борта таким способ заканчивались травмами пилотов, а 12,5% - смертью. Назрела очевидная необходимость в поиске нового способа покидания самолета. Подходящим вариантом стало выбрасываемое кресло с летчиком.

История

Эксперименты с принудительным выбросом летчика из самолета проводились еще в 20-30-х годах, но их цель заключалась в решении проблемы страха пилотов перед «прыжками в пустоту». В 1928 году в Кельне на выставке представили систему, осуществляющую выбрасывание пилотов в кресле с парашютом. Выброс осуществлялся на 6-9 метров при помощи сжатого воздуха.

В 1939 году в Германии появились первые катапульты. Экспериментальный ЛА Heinkel He-176 был оснащен носовой сбрасываемой частью. Немного позже катапульты начали производить серийно. Их начали устанавливать на турбореактивные Heinkel Не-280 и поршневые Heinkel Не-219. В январе 1942 года Гельмунт Шенк (летчик-испытатель) совершил первое успешное катапультирование. Помимо этого, катапультируемые кресла устанавливали на другие немецкие самолеты. За весь период Второй мировой немецкие пилоты совершили примерно 60 катапультирований.

Первое поколение катапультных кресел разрабатывалось с единственным заданием - выбросить человека из кабины самолета. Отдалившись от ЛА, летчик должен был отстегнуть ремни для отсоединения кресла и раскрыть парашют.

Катапультные кресла второго поколения начали появляться в 50-х годах. В процессе покидания самолета частично принимала участие автоматика. Все, что нужно было сделать - дернуть рычаг. Стреляющий пиротехнический механизм выбрасывал кресло и вводился парашютный каскад: сначала стабилизирующий, потом тормозной и затем основной парашютный. Простая автоматика смогла обеспечить блокировку по высоте и задержку по времени.

Третье поколение появилось спустя 10 лет. Кресла начали укомплектовывать твердотопливным ракетным двигателем, который работал после отсоединения кресла от кабины. Их снабжали более новой автоматикой. Первые кресла этого поколения разрабатывались в НПП «Звезда» и обладали парашютным автоматом КПА, который соединялся с самолетом 2 пневматическими трубками и настраивался на высоту и скорость.

Современные модели катапультирующих кресел - британский Martin Baker Mk 14, американский МcDonnell Douglas ACES 2 и российский К-36ДМ. 10 декабря 1954 года полковник Д. П. Стэпп на авиабазе Холломан подвергся рекордной перегрузке - 46,2 g. Летчик-испытатель Д. Смит в 1955 году впервые совершил катапультирование на сверхзвуковой скорости.


Практически на всех самолетах привод катапультного кресла курируется пилотом. Но есть такие типы самолетов, в которых продумана функция принудительного катапультирования членов экипажа командиром самолета (Ту-22М). В России есть только один ЛА (палубный СВВП Як-38), оснащенный полностью автономной системой катапультирования. Данная система сама наблюдала за опасными режимами во время полета и при необходимости без желания члена экипажа выбрасывает его.

На сегодняшний день производством катапультируемых кресел все так же занимаются американские компании Stencil и МcDonnell Douglas и британская Martin Baker. В России такие кресла создает только НПП «Звезда». На практике в Советском Союзе катапультирующие кресла разрабатывались под определенный тип ЛА. Есть производители таких кресел и в Китае.

На «Звезде» в сотрудничестве с ОКБ имени Камова впервые в мировой практике была создана катапультная система аварийного покидания для вертолета. Такое кресло, получившее название К-37, установлено на вертолете Ка-50 - знаменитой «Черной акуле». Оно оснащено буксировочной ракетой, которая при аварии уносит летчика на безопасное расстояние от вертолета. Кроме того, система включает аварийный сброс лопастей вертолета, чтобы исключить удар ими по катапультирующемуся пилоту. Эта система также обеспечивает спасение экипажа на всех режимах полета. Совместно с конструкторским бюро имени Миля, разрабатывающем известные во всем мире вертолеты с маркой «Ми», «Звезда» разработала и внедрила в эксплуатацию амортизационное кресло «Памир» для установки на вертолете Ми-28. Такое кресло совместно с системой аварийной амортизации шасси вертолета существенно повышает безопасность экипажа в случае аварийной посадки.

Для учебно-тренировочных реактивных самолетов «Звезда» спроектировала легкое катапультное кресло, масса которого не превышает 58 килограммов. При этом в таком кресле сохранены основные конструкторские решения, примененные в К-36, что обеспечивает высокую надежность легкого кресла и безопасность пилота при катапультировании.

«Звезда» продолжает разработку принципиально новых систем, призванных спасать жизнь пилотам летательных аппаратов всех типов. Накопленный фирмой опыт и «ноу-хау» позволяют решать задачи, которые ранее считались нерешаемыми. Одной из таких проблем является проблема спасения пилота или экипажа спортивно-пилотажных самолетов. Сегодня мы представляем созданную также впервые в мировой практике суперлегкую систему аварийного покидания для самолетов этого класса. Необходимость в создании такой системы назрела уже давно. Анализ летных происшествий со спортивными самолетами, имевшими катастрофический исход, показывает, что в случае, когда самолет сваливается в неуправляемый штопор, погибает более 60% летчиков. Традиционное решение, при котором пилот имеет парашют, не решает проблемы спасения.
Не всегда есть возможность быстро воспользоваться парашютом

Однако использование традиционного катапультного оборудования здесь невозможно. Проблема состоит в том, что обычные решения не годятся для легкой спортивной машины из-за ограниченности массы и габаритов. Для спортивного самолета требовалось найти новые технические решения. И они были найдены.Предложенная «Звездой» новая система аварийного покидания принципиально отличается от ранее известных в мировой практике. Особенность этой схемы заключается в том, что в ней реализуется катапультирование членов экипажа из самолета без использования традиционных катапультных кресел. Как же она действует?

В случае аварии выстреливается заголовник кресла пилота с уложенным в нем куполом парашюта. Заголовник разбивает фонарь кабины самолета и, удаляясь от самолета, быстро вводит парашют в воздушный поток. Почти одновременно срабатывает стреляющий механизм, который по сути «выдергивает» летчика из кабины за ремни подвесной-привязной системы и сообщает ему скорость, обеспечивающую безопасность его траектории относительно самолета. Все это происходит практически мгновенно. Вся система проста, легка и надежна. Дополнительная масса оборудования, устанавливаемого на самолет, не превышает 12-13 килограммов на члена экипажа. Эта система обеспечивает спасение экипажей как одноместных, так и двухместных спортивных самолетов на всех высотах и скоростях горизонтального полета, а также на различных фигурах пилотажа и в случае штопора.

Отработка катапультирования с земли на машинах Сухого




Спасательная капсула – это катапультируемое закрытое устройство, которое предназначено для спасения летчика из летательного аппарата в сложных аварийных ситуациях. В практике применяются герметичные капсулы, позволяющие лететь без скафандра и парашюта, обладающие непотопляемостью.

Существует две схемы капсульного спасения:

    Отделяемая кабина для экипажа.

    Катапультируемая индивидуальная закрытая капсула для летчика.

История

В 50-х годах в боевой авиации начали появляться совершенно новые катапультируемые средства, повышающие эффективность эксплуатации открытых катапультируемых кресел. При авариях устройство катапультирования срабатывает по сигналу в автоматическом режиме. Летчика вместе с креслом закрывают специальные щитки. В образовавшейся кабинке используемое оборудование более разнообразное. Оно повышает безопасность после момента катапультирования.

Только герметичные спасательные капсулы получили практическое применение. Они защищают человека от динамического воздействия давления, аэродинамического нагрева от перегрузок при торможении. Кроме того, такая капсула позволяет летать без скафандра, парашюта и обеспечивает нормальное приводнение.

Самой первой капсулой считается разработанная в США для военно-морского самолета F4D «Skyray». Но на тот момент капсула так и не применялась. После этого разработкой спасательных капсул для бомбардировщиков В-58 и ХВ-70 занялась компания Stanley Aviation. Для Valkyrie диапазон скоростей для отсоединения капсулы начинается со 150 км/ч и варьируется в пределах скоростей до М=3.

Катапультирование на Hustler

Применяемая в капсуле самолета автоматика осуществляет подготовку к покиданию, катапультированию и приземлению. В качестве подготовки имеется в виду придание телу летчика фиксированного положения, закрытие и герметизация капсулы. Механизм катапультирования срабатывает при помощи рычагов, которые расположены на подлокотниках.

Испытания спасательных капсул на бомбардировщике Convair B-58 Hustler

Сначала зажигается пороховой заряд. Его газы попадают в механизм герметичного закрывания – создается давление, соответствующее 5000-метровой высоте. Когда капсула закрывается, у пилота есть возможность управлять самолетом, поскольку штурвал остается в нормальном положении непосредственно внутри капсулы. У нее есть иллюминатор, который дает возможность наблюдать за приборами.

Видео топ-5 катапультирований в последний момент.

Такая конструкция позволяет лететь дальше. Процесс катапультирования работает по принципу катапультированных сидений, укомплектованных ракетными двигателями. После нажатия рычага катапультирования начинается воспламенение порохового заряда. Выделенные газы выбрасывают фонарь кабины. Далее происходит запуск двигателя. Стабилизирующий парашют выбрасывается, инициируюя раскрытие на поверхности щитков-стабилизаторов. Внутренняя аппаратура жизнеобеспечения включается сразу же. Анероидные автоматы на таймерах вызывают открытие главного парашюта и наполнение резиновых амортизирующих подушек, которые смягчают удар при приводнении или приземлении.

Катапультирование на ХВ-70

Капсула оборудована обтекателем, состоящим из 2 половин, кресло может изменять свой угол наклона. Стабилизация положения капсулы обеспечивается двумя цилиндрическими трехметровыми кронштейнами телескопического типа. Стабилизирующими парашютами оборудовали концы кронштейнов. Силовая установка выбрасывала капсулу на высоту в 85 метров. Снижение происходит при помощи спасательного парашюта. Его диаметр – 11 м. Приземление осуществлялось благодаря амортизатору в виде резиновой подушки, которая наполнялась газом. Подобные капсулы обеспечивают возможность работы экипажа из 2 человек в кабине вентиляционного типа. Внутри капсулы находился набор предметов жизненной необходимости: удочка, радиостанция, вода, продовольствие, ружье.

Отделяемая кабина

При создании отделяемой кабины для экипажа главной задачей считалось разработать более легкий и удобный в эксплуатации тип спасения. Кабина должна была повысить устойчивость в полете и уменьшить время подготовки в сравнении с катапультируемыми капсулами и сиденьями.

В практике эксплуатация аварийной системы покидания летательного аппарата очень сложное занятие. Механические связи, провода и бортовое оборудование в обычных условиях должны соответствовать требованиям полноценного функционирования и надежности, при этом разъединение должно происходить за доли секунды.

Самым рациональным считается отделение кабины с носовой частью фюзеляжа или с частью фюзеляжа, который образует вместе с кабиной легко разъединяемый герметизированный модуль. В конструктивном плане оба варианта могут сильно отличаться в зависимости от способа приземления. Посадка может осуществляться на воду или на сушу. В некоторых вариантах экипаж должен покинуть капсулу на определенной высоте до момента приземления. Проведенные испытания показали, что самым приемлемым типом кабины может быть цельноприземляемый, поскольку он более надежен.

Первые кабины применялись в экспериментальных экземплярах Bell X-2 и Douglas D-558-2 Skyrocket. В Х-2 применялась кабина, которая отделялась вместе с носовой частью. Она опускалась на парашюте до конкретной высоты, и пилот покидал ее привычным способом при помощи парашюта.

Рычаг для катапультирования

В 1961 году во Франции запатентовали отделяемую кабину, оборудованную надувными поплавками. Предполагалось, что во время аварии электрический механизм отделит кабину от летательного аппарата, включит ракетные двигатели и откроет стабилизаторы. В самой высокой точке полета при понижении скорости до нуля предусматривалось открытие парашюта.

В США разрабатывались два варианта отсоединяемых кабин. Stanley Aviation конструировала кабину для F-102, Lockheed – F-104 Starfighter . Практическое применение так и не реализовалось.

Современные кабины нашли практическое использование только в 2 сверхзвуковых самолетах В-1 Lancer и F-111. С такой кабины первое покидание осуществилось в 1967 году, когда F-111 попал в аварию. Экипаж произвел катапультирование на высоте 9 км на скорости 450 км/ч. Приземление благополучное.

Фирма McDonnell разрабатывала полностью герметизированную кабину самолета. Пилоты могли летать без специального оборудования. Покидание самолета было полностью безопасным. Отсоединение кабины происходило после нажатия рычага, который располагался между креслами экипажа. Когда команда была подана, вся система начинала работать в автоматическом режиме. Кабина отделяется, элементы управления и проводов разъединяются. Ракетный двигатель включается.

В зависимости от скорости и высоты полета двигатель отбрасывает кабину на 110-600 метров от самолета. В самой верхней точке полета кабина выбрасывает стабилизирующий парашют и станиолевые полоски, которые облегчают радиолокационное обнаружение для спасательных служб. После 0,6 секунд выбрасывания работа двигателя прекращается и происходит выпуск главного парашюта.

При разработке программы конструирования В-1 предусматривалось применение отделяемой трехместной кабины, как и у самолета F-111. Но из-за внушительной стоимости кабины, необходимости проведения исследований, сложности самой конструкции и обслуживания приняли решение о применении таких кабин только в трех первых экземплярах самолета. Во всех остальных экземплярах эксплуатировали сугубо катапультируемые сиденья.

История создания спасательной капсулы. Видео.

Отредактировано 22.06.2019

В статье была затронута информация об том, как срабатывает НАЗ при использовании катапультируемого кресла.
Думаю будет полезно для общего развития узнать о том, как происходит катапультирование и как работает катапультируемое кресло.

Наиболее простой способ покидания боевого самолета через борт кабины позволял решать
проблему спасения при скоростях полета самолета до 400-500 км/ч. С увеличением скоростей полета до 500-600 км/ч мускульной силы летчика, вылезающего из кабины, не хватает для преодоления действующих на него высоких аэродинамических нагрузок и покидание самолета стало практически невыполнимым. Также с ростом скорости полета траектория движения тела летчика при покидании им самолета становится более пологой и появляется реальная опасность столкновения летчика с хвостовым оперением самолета.

Что бы иметь возможность покинуть самолёт на более больших скоростях, избежать травм и смерти лётчика используется катапультируемое (катапультное) кресло. Катапультируемое кресло вместе с пилотом выстреливается из аварийного летательного аппарата при помощи реактивного двигателя (как, например, ), порохового заряда (как КМ-1М) или сжатого воздуха (как у спортивного Су-26 система ), после чего кресло автоматически отбрасывается, а пилот опускается на парашюте.


Сигнал о необходимости катапультирования (воздействие на привод управления катапультированием) подает летчик на основании визуальной и (или) инструментальной (приборной) информации о параметрах движения самолета и работоспособности всех его систем.
Есть такие типы самолетов, в которых продумана функция принудительного катапультирования членов экипажа командиром самолета. Такая система стоит, например, на Ту-22М. Это осуществляется с помощью ручки принудительного катапультирования лётчика (РПКЛ). Эта ручка всегда стоит в положении ВКЛ.

Когда командир экипажа (находящийся, например, в передней кабине) вытягивает ручку катапультирования то электрическая система управления аварийным покиданием самолета катапультирует второго члена экипажа автоматически. Член экипажа может катапультироваться и самостоятельно, выдернув ручку катапультирования.

А на самолёте вертикального взлёта и посадки Як-38 была полностью автоматическая система катапультирования. Сигнал о принудительном катапультировании на данном самолёте может подать без участия летчика бортовая автоматическая система управления, если какие-либо параметры самолета и его систем изменяются с недопустимой скоростью в неблагоприятном направлении, например угловые скорости вращения самолёта вертикального взлёта и посадки на режимах взлета и посадки, когда летчик чисто физически не успевает принять и реализовать решение о катапультировании.

Подготовка к аварийному покиданию самолёта (катапультированию).

В случае если принято решение о катапультировании и если позволяет обстановка, нужно:
− передать сигнал " "
− при полете на малой высоте увеличить высоту полета до 2000 – 3000 м над рельефом местности, используя скорость самолета и тягу двигателей, при полете на большой высоте снизиться до высоты 4000 м;
− перевести самолет в набор высоты или горизонтальный полет и уменьшить скорость до 400-600 км/ч;
− при наличии облачности покинуть самолет до входа в облака;
− при полете над водной поверхностью выполнять полет в сторону береговой черты;
− при полете вблизи государственной границы выполнять полет в направлении своей территории.
− при полёте вблизи населённого пункта постараться увести самолёт от данной местности.
В случаях, не терпящих отлагательства, катапультироваться немедленно.

Подготовка лётчика к катапультированию:

− опустить светофильтр защитного шлема (при наличии времени)
− плотно прижаться всем корпусом тела к спинке, а головой к подушке заголовника;
− поставить ноги к передней стенке кресла (при наличии времени);
− взяться обеими руками за рукоятки катапультирования, прижав локти к туловищу, и вытянуть их до катапультирования.
После катапультирования крепко удерживать рукоятки до начала устойчивого снижения вместе с креслом (для исключения травмы рук).
При травмировании одной руки катапультирование возможно одной рукой от любой из рукояток при сохранении указанной последовательности действий.


После воздействия на привод управления катапультированием (т.е. лётчик дергает ручку для катапультирования) все элементы системы аварийного спасения срабатывают автоматически от пиромеханизмов и начинается процесс спасения.
Ниже написан один из вариантов работы катапультируемого кресла ( , но похожая подготовка будет и для других кресел).

Подготовка катапультного кресла к катапультированию (начало срабатывания механизмов катапультирования)

- механическое и электрическое включение пиромеханизма системы фиксации
- подача электрического сигнала на пиромеханизм бортовой системы аварийного сброса фонаря 1 (или крышки люка) вверх и назад
- подача электрического сигнала на электропиропатрон светофильтра защитного шлема. Светофильтр шлема опускается.
- замыкание цепи сигнала бортовому самописцу аварийных режимов и параметров полета.
- подача напряжения от бортовой сети через механизм управления катапультированием к механизму блокировки
- подача электрического сигнала бортовым измерительным комплексом реле давления к электропиропатрону пироклапа на системы дополнительной защиты от воздушного потока при катапультировании на скорости полета самолета, не превышающей 800…900 км/ч. При катапультировании на большей скорости электрический сигнал не подается.
- при срабатывании электропиропатрона пироклапан перекрывает связь дефлектора с первой ступенью КСМУ.
- срабатывают пиромеханизмы плечевого и поясного притяга летчика, обеспечивая правильную исходную для катапультирования позу летчика в катапультируемом кресле
- срабатывают ограничители разброса рук 3, фиксаторы ног 4, предотвращающие повреждение конечностей воздушным потоком, голова фиксируется в ложементе заголовника 2

- срабатывание пиропривода механического включения бортовой системы сброса фонаря, дублирующего электрическое включение пиромеханизма сброса.
пиротехническая система обеспечивает сброс фонаря 1.
В случае отказа бортовой системы аварийного сброса фонаря летчик должен отпустить поручни катапультирования, сбросить фонарь с помощью бортовой системы автономного аварийного сброса и повторить вытягивание поручней.
В некоторых случаях катапультирование может пройти и сквозь остекление фонаря
- при сбросе фонаря самолета срабатывает механизм блокировки. Механизм блокировки замыкает электрическую цепь и разблокирывает механический привод включения энергодатчика 5 (что это такое - см. ниже Для справки 1) .

Процесс выхода катапультируемого кресла из кабины (движение в направляющих рельсах)

Под действием газов стреляющего механизма (1-й ступени энергодатчика – КСМ (что такое КСМ написано ниже, в Для справки 2) ) 5 кресло с ускорением начинает двигаться в направляющих рельсах кабины

При движении катапультируемого кресла по направляющим рельсам до момента выхода его из кабины вводятся в действие агрегаты автоматики кресла, обеспечивающие работу всех его систем. И происходит расстыковка разъемов объединенного разъема коммуникаций: прекращается питание электрооборудования кресла от бортовой сети самолета, коммуникации бортового оборудования самолета отсоединяются от высотного снаряжения летчика, включается подача кислорода летчику от кислородного баллона кресла, обеспечивающего дыхание летчика до снижения на безопасную высоту
Пройденное расстояние и тип устройств для включения/отключения зависит от типа самолёта и типа катапультного кресла.
- в зависимости от скорости полета вводится (или не вводится) в поток закрепленный на конструкции кресла дефлектор 6, обеспечивающий дополнительную защиту летчика от действия скоростного напора;
- включается пиромеханизм системы стабилизации, вводящий в поток телескопические штанги 7 с закрепленными на них стабилизирующими парашютами 8
- разъединяются трубы стреляющего механизма (1-й ступени КСМ), пиромеханизм-воспламенитель включает пороховой заряд ракетного двигателя (2-й ступени КСМ), кресло сходит с направляющих рельсов и совершает полет по траектории.

Полет лётчика в катапультируемом кресле по траектории на начальном "активном" участке происходит с работающим ракетным двигателем.
Траектория полета и угловое положение кресла на траектории зависят от высоты, положения и скорости полета самолета, при которых произошло катапультирование, а также от того, каким образом осуществляется стабилизация кресла.

Выбор направления катапультирования, правильная поза человека и фиксация его тела в кресле обеспечивают безопасность воздействия перегрузок при катапультировании.


Стабилизация и снижение высоты катапультируемого кресла после выхода из кабины

Основной ( может быть введен на определенной скорости движения системы (допустимой скорости ввода парашюта, определяемой возможностью наполнения купола парашюта и прочностью купола и стропов) и высоте.

Торможение и снижение лётчика в катапультном кресле до допустимой скорости и высоты ввода парашюта и прекращения сращения этой системы используют аэродинамические средства стабилизации – закрепленные на заголовнике кресла складные горизонтальные (1) и вертикальные (2) щитки (см. рисунок слева, а) или стабилизирующие парашюты, размещаемые на телескопических штангах, позволяющих вывести их из зоны аэродинамического затенения кресла (см. рисунок слева и сверху, б), которые раскрываются при выходе кресла в поток. Наиболее распространены двухкаскадные или трехкаскадные парашютные системы стабилизации.

Ввод парашюта и разделение катапультного кресла

В рассматриваемом примере для ввода и надежного разделения кресла и летчика используется пиромеханизм ввода парашюта, который под действием газов сработавшего пиропатрона отстреливается вместе с заголовником от кресла.

После отделения заголовника:
- срабатывают резаки (гильотины) и перерезают ремни притяга плеч, освобождая плечи летчика от связи с креслом
- происходит расчековка и ввод : раскрывается находящаяся в заголовнике 2 камера парашюта и спасательный парашют 10 выходит из камеры и чехла 9
- срабатывают резаки ремней притяга пояса и ног, освобождая летчика от связи с креслом, ограничители разброса рук освобождают руки летчика, разделяется разъем коммуникаций, связывающий высотное снаряжение летчика с кислородным прибором кресла

На ранних моделях катапультного кресла кресло отделялось вручную.

Раскрытие парашюта и приземление лётчика после катапультирования

Сила отдачи при отстреле заголовника отбрасывает кресло от летчика вниз, наполняющийся купол парашюта тормозит движение летчика и лётчик начинает спускаться на наполненном парашюте.
После разделения лётчик и катапультного кресла срабатывают пирорезки и размещенным в ранце 12, отделяется от жесткой крышкой-сиденья 11, удерживаясь на ней с помощью фала 13. Также выходит и повисает на фале 14, который включается в работу и подает аварийные сигналы при спуске летчика на парашюте и при приземлении (приводнении) и автоматически наполняется надувная спасательная лодка или плот 15.

Такая система обеспечивает высокую вероятность спасения экипажа военного самолета в широком диапазоне скоростей и высот полета.




Действия лётчика после раскрытия парашюта

После того, как лётчик убедится что парашют раскрылся он должен
- снять маску, открыть светофильтр защитного шлема или щиток гермошлема (на высотах не более 3000 м)
- осмотреться, определить направление сноса и примерное место приземления (приводнения);
- заправить главную круговую лямку подвесной системы под бедра;

Особенности использовании катапультируемого кресла на разных высотах и скорости

При катапультировании на стоянке или на малой скорости при рулежке, взлете и послепосадочном пробеге подъем по траектории осуществляется в нестабилизированном положении, а ввод спасательного парашюта производится при приближении системы "летчик–катапультное кресло" к вершине активного участка траектории.

При катапультировании на высоте до 5000 м система "летчик–катапультное кресло" поднимается по траектории в стабилизированном, устойчивом положении, проходит над килем самолета, спасательный парашют вводится в начальный момент снижения системы "летчик–катапультное кресло".

При катапультировании на высоте более 5000 м и высокой скорости полета система "летчик–катапультное кресло" поднимается по траектории в стабилизированном, устойчивом положении, проходит высшую точку траектории и далее снижается, спасательный парашют вводится на высоте, не превышающей 5000 м.

Хронология катапультирования лётчика на примере катапультируемого кресла К-36ДМ

Разные катапультируемые кресла имеют разное время катапультирование. Ниже приведено время для кресла К-36ДМ, взятое с Википедии.


0 секунд . Лётчик дёргает поручни (держки). Происходит подготовка к катапультированию. Подаётся команда на сброс фонаря, начинается работа автоматики. Происходит инициация системы фиксации: начинается притягивание ремней, фиксация и подъём ног, опускаются и сводятся боковые ограничители рук.
0,2 секунды . Фиксация заканчивается. Если сброшен фонарь — подаётся команда на катапультирование. На высоких скоростях вводится защитный дефлектор.
0,35-0,4 секунды . Стреляющий механизм двигает кресло по направляющим. Начинается ввод стабилизирующих штанг.
0,45 секунды. Кресло выходит из кабины. Включаются реактивные двигатели. При необходимости (крен самолёта или разведение лётчиков при двойном катапультировании) включаются двигатели коррекции по крену.
0,8 секунды. На малых скоростях происходит отстрел заголовника, разделение с креслом и ввод парашюта. На больших скоростях это происходит после торможения до приемлемой скорости.
Через 4 секунды после разделения с креслом НАЗ отделяется от лётчика и повисает снизу на фале.

Наземные предохранители пиромеханической системы

Наземные предохранители предназначены для исключения возможности непреднамеренного срабатывания механизмов катапультного кресла, пиромеханической системы управления сбросом фонаря. Что может привести к поломке катапультного кресла, фонаря или травме/гибели техника обслуживающего самолёт или лётчика.
Все наземные предохранители имеют присвоенные им порядковые номера и места их установки в механизмы систем, что указано на бирках с поясняющими надписями. Бирки прикреплены к фалам кабинных (эксплуатационных) и внекабинных (монтажных) связок предохранителей.

Для справки 2.

КСМ - это комбинированный стреляющий механизм.

Включение ракетного двигателя непосредственно в кабине летательного аппарата опасно из-за возможности ожога летчика, повреждения его снаряжения или оборудования кресла факелом ракетного двигателя, отражающимся от стенок кабины. Поэтому необходимо предварительно катапультировать кресло из летательного аппарата. Это и позволяет сделать комбинированный стреляющий механизм. Состоит КСМ из стреляющего механизма и и порохового ракетного двигателя, который включается в действие после выхода кресла из кабины и осуществляет его разгон до скорости 30 м/с и более от начальной (12–14 м/с), обеспеченной стреляющим механизмом. Этой скорости вполне достаточно для безопасного перелета через киль современного самолета при скоростях полета до 1300 км/ч и более.

1 – механизм ввода парашюта; 2 – первая ступень; 3 – установочный болт; 4 – наконечник; 5 – штуцер; 6 – телескопическое устройство системы дополни-тельной защиты от воздушного потока; 7 – вторая ступень; 8 – направляющий штифт; 9 – фиксатор; 10 – срезное кольцо; 11 – гайка крепления срезного кольца; 12 – крышка

Рассматривать более подробно работу стреляющего механизма и порохового ракетного двигателя в этой статье не буду.

Для справки 3.

Как говорят опытные лётчики при отработке навыков катапультирования из самолета пиропатрон рассчитан на создание перегрузок 6-8g. При реальной зарядке кресла пиропатрон рассчитан на 20-25g.

При показательных катапультированиях (раньше такое практиковалось в строевых частях в целях морально психологической подготовки летного состава. Как сейчас - не знаю), когда катапультирование проводили на высоте 500м (высота полета по кругу) с горизонтального полета из задней кабины Миг-17 ути с заранее снятым фонарем и на оптимальной приборной скорости полета, то заряд пиропатрона делали на 16-18g. Цель уменьшения заряда по сравнению с боевым: избежать риска компрессионного сдвига позвонков.

После "боевого" катапультирования лётчики проходят обязательную медкомиссию. И как говорят у всех есть проблемы: или сдвиг позвонков, или компрессионный перелом или ещё что-нибудь похлеще.

Для справки 4.
Для катапультных кресел используют парашюты ИПС-72ПСУ-36, ПСУ-36 серии 2, ПСУ-36 серии 3-3, ПСУ-36 серии 3-5, ПСУ-36 серии 4-3, ПС-М серии 2, ПС-М серии 3, ПС-М серии 4, ПС-М серии 5, С-5И серии 2, С-4Б серии 2, СП-36 серии 2, СП-93, ПС-Т серии 2

Для справки 5.
Кроме катапультных кресел для самолётов есть катапультные кресла для некоторых боевых вертолётов. Например, Катапультно-амортизационная система для вертолётов Ка-50 и Ка-52.
Описание катапультирования из вертолёта здесь приводить не буду. Кому интересно - найдет самостоятельно.


Для справки 6.
После любого катапультирования лётчики проходят медкомиссию. Т.к. перегрузки, вызванные катапультированием, влияют на позвоночник, внутренние органы и физическое состояние в целом.
Как заявляет генеральный конструктор НПП «Звезда» Гай Северин 97 процентов пилотов продолжают летать.
Часть лётчиков после катапультирования отказывается возвращаться к лётной деятельности.


Для справки 7.
Ситуации, когда нужно произвести катапультирование приведены в руководстве по лётной эксплуатации конкретного типа самолёта.

Кто хочет поподробнее почитать про катапультное кресло и другие системы спасения лётчиков то могу для примера посоветовать ознакомиться с:
- Санько В.В., Тормозов И.Е., Яценко В.И. "Средства аварийного покидания самолета МиГ-29"
(2010 год)
- А.Г. Агроник, Л.И.Эгенбург "Развитие авиационных средств спасения" (1990 год)
- Руководство по лётной экслпуатции разных самолетов (вместо "разных самолётов" вставляйте название самолёта, например, Ил-96-300)