«Луноход-1» (кодовое название 8ЕЛ № 203) являлся уникальным в своем роде, ведь с его помощью впервые в истории человечества были проведены исследования поверхности небесного объекта, а именно спутника Земли - Луны. Построенный в рамках специального проекта Е-8 (серии дистанционно-управляемых аппаратов «Луноход» для исследования лунной поверхности), аппарат проработал на Луне практически целый лунный год (10 с половиной земных месяцев).

Краткое описание

Аппарат был построен с целью изучения характера поверхности Луны, рентгеновского и радиоактивного космического излучения на лунной поверхности, а также свойств и химического состава лунной почвы.


"Луноход-1"

Вес планетохода составил 756 кг, его длина была почти 4,5 м, а ширина - чуть более 2-х м. Высота лунохода была почти 2 метра (1,92 м). Ширина колеи составляла 1 600 мм, сами колеса были не слишком большими - 200 мм в ширину и с диаметром 510 мм.

На Луну аппарат был доставлен 17 ноября 1970 года носителем - межпланетной станцией «Луна-17».

«Луноход-1» в действии

Старт состоялся осенью, 10 ноября 1970 года. Через неделю «Луна-17» произвела посадку в Море Дождей, и исследовательский аппарат был спущен на лунный грунт.

Первые три месяца на Луне аппарат не только исследовал поверхность спутника Земли, но и осуществлял прикладную программу, отрабатывая поиск района и места возможного приземления лунной кабины. Программа была выполнена, после чего «Луноход-1» успешно продолжил свою работу. Он смог проработать в три раза больше, чем теоретически позволял ему первоначальный ресурс (3 месяца).

За все время исследовательской миссии «Луноходом-1» было пройдено 10 540 м, обследовано 80 000 м2 и передано на Землю 25 000 фотографий и 211 лунных панорам. Максимальная скорость, которую мог развивать луноход, - 2 км/час. В общей сумме длительность активной деятельности аппарата составила около 301 суток. Было проведено 157 сеансов с Землей и передано 24 820 радиокоманд. Аппаратура, оценивавшая проходимость, в 25 точках произвела химический анализ верхнего слоя местного грунта и отработала 537 циклов, определяя его физические и механические свойства.

15 сентября 1971 года стало очевидно, что ресурс аппарата начинается исчерпываться, о чем свидетельствовало снижение температуры внутри полностью герметичного контейнера «Лунохода-1». 30 сентября исследовательский аппарат впервые не вышел на связь, а 4 октября все попытки наладить с ним контакт были окончательно прекращены.

Луноход-1 был первым из двух автоматических аппаратов, изучавших Луну в рамках советской программы « Луноход». Космический корабль, доставивший Луноход-1 на поверхность Луны, назывался Луна-17. Луноход-1 стал первым управляемым колесным роботом, который работал за пределами Земли. Дата начала работы аппарата на Луне - 17 ноября 1970 года. Луноход-2 был запущен спустя три года.

« Луноход» - транспортное устройство, управляемое автоматически, способное передвигаться по Луне и предназначенное для проведения исследования Луны.

Копия « Лунохода-1» в Мемориальном музее космонавтики в Москве

Перед советскими учеными и конструкторами при разработке и создании первого автоматического лунохода встала необходимость решения комплекса сложных проблем. Надо было создать совершенно новый тип машины, способной длительное время функционировать в необычных условиях открытого космоса на поверхности другого небесного тела. Основные задачи: создание оптимального двигателя с высокой проходимостью при малых массе и энергопотреблении, обеспечивающего надежную работу и безопасность движения, систем дистанционного управления движением лунохода; обеспечение необходимого теплового режима с помощью системы терморегулирования, поддерживающей температуру газа в приборных отсеках, температуру элементов конструкции и оборудования, расположенных внутри герметичных отсеков и вне их (в открытом космосе в периоды лунных дней и ночей), в заданных пределах; выбор источников питания, материалов для элементов конструкции: разработка смазочных материалов и систем смазок для условий вакуума и другое.

Пульт управления Луноходом

Научная аппаратура лунохода должна была обеспечить: изучение топографии местности; определение химического состава и физико-механических свойств грунта; исследование радиационной обстановки на трассе перелета к Луне и на ее поверхности; изучение рентгеновского космического излучения; эксперименты по лазерной локации Луны. Первый луноход - советский « Луноход-1» был доставлен на Луну космическим аппаратом « Луна-17» и проработал на ее поверхности почти год (с 17.11.1970 по 4.10.1971).

Схема Лунохода-1

« Луноход-1» состоит из двух частей: герметичного приборного отсека с аппаратурой и самоходного шасси. Масса « Лунохода-1» 756 кг, длина (с открытой крышкой) 4,42 м, ширина 2,15 м, высота 1,92 м. Приборный отсек служит для размещения аппаратуры бортовых систем и зашиты ее от воздействия внешней среды в условиях космоса. Имеет форму усеченного конуса с выпуклыми верхним и нижним днищами. Корпус отсека изготовлен из магниевых сплавов, обеспечивающих достаточные прочность и легкость. Верхнее днище отсека используется как радиатор-охладитель в системе терморегулирования и закрывается крышкой. В период лунной ночи крышка закрывает радиатор и препятствует отводу теплоты из отсека благодаря тепловому излучению радиатора. В течение лунного дня крышка открыта, и элементы солнечных батарей, расположенные на ее внутренней стороне, обеспечивают подзарядку аккумуляторов, питающих бортовую аппаратуру электроэнергией.

В приборном отсеке размещены системы терморегулирования, электропитания, приемные и передающие устройства радиокомплекса, приборы системы дистанционного управления и электронно-преобразовательного устройства научной аппаратуры. В передней части расположены: иллюминаторы ТВ камер, электрический привод подвижной остронаправленной антенны, служащей для передачи на Землю ТВ изображений лунной поверхности; малонаправленная антенна, обеспечивающая прием радиокоманд и передачу телеметрической информации, научные приборы и оптический уголковый отражатель, изготовленный во Франции. По левому и правому бортам установлены: 2 панорамные телефотокамеры (в каждой паре одна из камер конструктивно объединена с определителем местной вертикали), 4 штыревые антенны для приема радиокоманд с Земли. Для подогрева газа, циркулирующего внутри аппарата, служит изотопный источник тепловой энергии. Рядом с ним расположен прибор для определения физико-механических свойств лунного грунта.

Резкие температурные перепады при смене дня и ночи на поверхности Луны, а также большая разница температур между деталями аппарата, находящимися на солнечной стороне и в тени, сделали необходимой разработку специальной системы терморегулирования. При низких температурах в период лунной ночи для обогрева приборного отсека автоматически прекращается циркуляция газа-теплоносителя по контуру охлаждения и газ направляется в контур подогрева.
Система электропитания лунохода состоит из солнечных и химических буферных батарей, а также приборов автоматического управления. Управление приводом солнечных батарей осуществляется с Земли; при этом крышка может быть установлена на любой угол в пределах от 0 до 180 градуса, необходимый для максимального использования солнечного излучения.

Бортовой радиокомплекс обеспечивает прием команд из Центра управления и передачу информации с борта аппарата на Землю. Ряд систем радиокомплекса используется не только при работе на поверхности Луны, но и на участке перелета с Земли на Луну. Две ТВ системы лунохода служат для решения самостоятельных задач. Система малокадрового телевидения предназначена для передачи на Землю ТВ изображений местности, необходимых экипажу, управляющему с Земли движением лунохода. Возможность и целесообразность применения такой системы, для которой характерна более низкая по сравнению с вещательным телевизионным стандартом скорость передачи изображения, была продиктована специфическими лунными условиями. Основное из них - медленное изменение ландшафта при движении лунохода. Вторая ТВ система служит для получения панорамного изображения окружающей местности и съемки участков звездного неба, Солнца и Земли с целью астроориентации. Система состоит из четырех панорамных телефотокамер.

Самоходное шасси предназначено для перемещения лунохода по поверхности Луны. Характеристика шасси: число колес - 8 (все ведущие); колесная база - 170 мм; колея - 1600 мм; диаметр колеса по грунтозацепам - 510 мм; ширина колеса - 200 мм. Шасси выполнено таким образом, чтобы луноход имел высокую проходимость и надежно работал в течение длительного времени при минимальной собственной массе и потребляемой электроэнергии. Шасси обеспечивает передвижение « Лунохода» вперед (с двумя скоростями) и назад, повороты на месте и в движении. Оно состоит из ходовой части (упругая подвеска и движитель), блока автоматики, системы безопасности движения, прибора и комплекса датчиков для определения механических свойств грунта и оценки проходимости шасси. Поворот достигается за счет различной частоты вращения колес правого и левого бортов и изменением направления их вращения. Торможение осуществляется переключением тяговых электродвигателей шасси в режим электродинамического торможения. Для удержания лунохода на уклонах и его полной остановки включаются дисковые тормоза с электромагнитным управлением. Блок автоматики управляет движением лунохода по радиокомандам с Земли, измеряет и контролирует основные параметры самоходного шасси и автоматическую работу приборов для исследования механических свойств лунного грунта. Система безопасности движения обеспечивает автоматическую остановку лунохода при предельных углах крена и дифферента и перегрузках электродвигателей колес. Прибор для определения механических свойств лунного грунта позволяет оперативно получать информацию о движения. Пройденный путь определяется по числу оборотов ведущих грунтовых условиях колес. Для учета их пробуксовки вносится поправка, определяемая с помощью свободно катящегося девятого колеса, которое специальным приводом опускается на грунт и поднимается в исходное положение. Управление аппаратом осуществляется из Центра дальней космической связи экипажем в составе командира, водителя, штурмана, оператора, бортинженера.

Снимок Лунохода-1, полученный LRO

Режим движения выбирался в результате оценки телевизионной информации и оперативно поступающих телеметрических данных о крене, дифференте, пройденном пути, состоянии и режимах работы приводов колес. В условиях космического вакуума, радиации, значительных перепадов температур и сложного рельефа местности по трассе движения все системы и научные приборы лунохода функционировали нормально, обеспечив выполнение как основной, так и дополнительных программ научных исследований Луны и космического пространства, а также инженерно-конструкторских испытаний.

Колея, оставленная Луноходом-1

« Луноход-1» детально обследовал лунную поверхность на площади 80000 м?. С помощью ТВ систем было получено более 200 панорам и свыше 20000 снимков поверхности. Более чем в 500 точках по трассе движения изучались физико-механические свойства поверхностного слоя грунта, а в 25 точках проведен анализ его химического состава. Пройденное расстояние 10 км 540 м. Длительность активного функционирования « Лунохода-1» составила 301 сутки 6 ч 37 мин; прекращение работы было вызвано выработкой ресурсов его изотопного источника теплоты. В конце работы он поставлен на практически горизонтальной площадке в такое положение, при котором уголковый отражатель обеспечил многолетнее проведение лазерной локации его с Земли.

16.1.1973 с помощью автоматической станции « Луна-21» в район восточной окраины Моря Ясности (древний кратер Лемонье) был доставлен « Луноход-2». Района посадки был выбран, чтобы получить новые данных о сложной зоне сочленения лунного « моря» и « материка». Усовершенствование конструкции и бортовых систем, а также установка дополнительных приборов и расширение возможностей аппаратуры позволили значительно повысить маневренность и выполнить большой объем научных исследований. За 5 лунных дней в условиях сложного рельефа « Луноход-2» прошел расстояние 37 км.

Использованные источники:

1. Луноход-1 [Электронный ресурс].- 2014 - Режим доступа: http://ru.wikipedia.org
2. Луноход-1 [Электронный ресурс].- 2014 - Режим доступа: http://astronomy.net.ua
3. Луноход-1 [Электронный ресурс].- 2014 - Режим доступа:

Американские ученые попали в советский луноход лазерным лучом - такая новость появилась в пишущих о науке СМИ в конце апреля. "Луноход-1" неподвижно простоял на Луне почти 40 лет, и поэтому тем более удивительной оказалась высокая интенсивность ответного луча, пойманного исследователями. Теперь специалисты намерены использовать "проснувшийся" луноход для проведения различных научных экспериментов и даже проверить с его помощью теорию относительности.

История вопроса

Прежде чем рассказать, как созданная в 1970 году машина с недоброй славы радиоактивным изотопом полония внутри связана с Альбертом Эйнштейном, коротко напомним, какие события предшествовали появлению описываемой новости.


"Луноход-1". Фото с сайта nasa.gov

Дистанционно управляемый самоходный аппарат-планетоход "Луноход-1" разрабатывался в НПО имени Лавочкина в рамках советской космической программы. После успеха "Спутника" и знаменитого гагаринского "Поехали!" в СССР серьезно готовились к следующему шагу - освоению Луны. В Крыму под Симферополем был создан полигон, на котором будущие обитатели лунной базы тренировались управлять специальными аппаратами для передвижения по лунному грунту, а инженеры-испытатели учились контролировать передвижения "беспилотных" луноходов – машин класса "Луноход-1".

В общей сложности было построено четыре таких машины. Одна из них должна была стать первым земным объектом, достигшим поверхности спутника. 19 февраля 1969 года ракета-носитель серии "Протон", которая несла "Луноход-1", стартовала с космодрома Байконур. Однако на 52-й секунде полета ракета взорвалась из-за аварийного отключения двигателей первой ступени. Организовать новый старт сразу же было невозможно, и в итоге американцы, которые не менее напряженно работали над программой пилотируемых полетов, успели первыми. Запуск космического корабля "Аполлон-11", на борту которого находились Нил Армстронг, Базз Олдрин и Майкл Коллинз, состоялся 16 июля того же года.

Вторую попытку запустить "Луноход-1" советские инженеры предприняли 10 ноября 1970 года. На этот раз полет прошел штатно: 15 числа автоматическая межпланетная станция "Луна-17" вышла на орбиту земного спутника, а 17 числа совершила посадку в Море Дождей – заполненном высохшей лавой гигантском кратере. "Луноход-1" съехал на поверхность Луны и отправился в путь.

Научная программа лунохода была весьма обширной – аппарат должен был изучать физические и механические свойства лунного грунта, фотографировать окружающий пейзаж и его отдельные детали и передавать все данные на Землю. Похожее на каравай "тело" лунохода располагалось на платформе, снабженной восемью колесами. Аппарат был более чем полноприводным – операторы могли независимо регулировать направление и скорость вращения каждого из колес, изменяя направление движения ровера практически как угодно.


Стрелкой указано пятно, которое и является "Луноходом-1". Фото NASA/GSFC/Arizona State U

Правда, управлять луноходом было весьма непросто - из-за почти пятисекундной задержки сигнала (от Земли до Луны и обратно сигнал идет чуть больше двух секунд) операторы не могли ориентироваться по сиюминутной обстановке и должны были предугадывать местоположение аппарата. Несмотря на эти сложности "Луноход-1" проехал свыше 10,5 километра, а его миссия длилась втрое дольше, чем рассчитывали исследователи.

14 сентября 1971 года ученые, как обычно, получили радиосигнал от лунохода, и вскоре после этого, когда на Луне наступила ночь, температура внутри ровера начала понижаться. 30 сентября солнце вновь осветило "Луноход-1", но на связь с Землей он не вышел. Специалисты полагают, что аппаратура не выдержала лунной ночи с ее морозом в минус 150 градусов Цельсия. Причина неожиданного остывания лунохода проста: у него кончился запас радиоактивного изотопа полония-210. Именно распад этого элемента обогревал приборы ровера в то время, когда он находился в тени. Днем "Луноход-1" работал от солнечных батарей.

Точное местоположение лунохода было неизвестно ученым – в 70-е годы навигационная техника была развита хуже, чем сейчас, и кроме того, сам по себе лунный рельеф во многом оставался terra incognita. А найти аппарат, размер которого сравним с "Окой", на расстоянии в 384 тысячи километров – задача посложнее, чем отыскать пресловутую иголку в стоге сена.

Надежды на обнаружение лунохода связывали с орбитальными лунными зондами, обращающимися вокруг земного спутника. Однако до недавнего времени разрешения их камер никак не хватало для того, чтобы разглядеть "Луноход-1". Все изменилось в 2009 году, когда американцы запустили аппарат Lunar Reconnaissance Orbiter (LRO), оснащенный камерой LROC, специально предназначенной для фотографирования объектов размером до нескольких метров.

Специалисты, курирующие работу LROC, заметили на одном из переданных зондом снимков подозрительный светлый объект. Определить, что пятнышко, которое запечатлела камера, - это автоматическая станция "Луна-17", помогли уходящие от объекта колеи. Их мог оставить только "Луноход-1", и, проследив, куда ведут колеи, ученые обнаружили аппарат. Точнее сказать, они обнаружили пятно, которое с высокой вероятностью было не чем иным, как застывшим луноходом.

Одновременно со специалистами из NASA (зонд LRO был создан под эгидой Американского космического агентства) поисками лунохода занималась команда физиков из Калифорнийского университета в Сан-Диего. Как позже рассказал ее руководитель Том Мерфи (Tom Murphy), ученые в течение нескольких лет пытались отыскать аппарат в районе, находящемся на много километров в стороне от истинного места остановки лунохода.

Дьявол в деталях

В этом месте читатель может окончательно запутаться: как уголковые отражатели связаны с лунным ядром и при чем здесь все-таки теория относительности? Связь, действительно, не самая очевидная. Начнем с общей теории относительности (ОТО). Она утверждает, что из-за гравитационных эффектов и искривления пространства-времени Луна будет обращаться вокруг Земли не совсем по той орбите, которая постулируется в рамках ньютоновской механики. ОТО предсказывает лунную орбиту с точностью до сантиметров, поэтому для того, чтобы ее проверить, необходимо проводить измерения орбиты с не меньшей точностью.

Уголковые отражатели являются прекрасным инструментом для определения орбиты – имея множество измеренных расстояний от Земли до Луны, ученые могут очень точно вывести траекторию вращения спутника. Жидкие "внутренности" Луны влияют на характер движения спутника (попробуйте вращать на столе вареное и сырое куриные яйца, и вы сразу увидите, как проявляется это влияние), и поэтому для получения точной картины необходимо выяснить, как именно Луна отклоняется из-за особенностей своего ядра.

Итак, пятый отражатель был жизненно необходим Мерфи и коллегам. После того как ученые установили место стоянки "Лунохода-1", они "выстрелили" в этот район лазерным лучом диаметром около ста метров при помощи установки в обсерватории "Апач-пойнт" в Нью-Мексико. Исследователям повезло – они "попали" в отражатель лунохода со второй попытки и таким образом сузили диапазон поисков до 10 метров. К удивлению Мерфи и его команды, пришедший от "Лунохода-1" сигнал был очень интенсивным – более чем в 2,5 раза сильнее, чем лучшие сигналы второго лунохода. Кроме того, ученым в принципе повезло, что они смогли дождаться отраженного луча – ведь отражатель вполне мог оказаться повернутым от Земли. В ближайшее время исследователи намерены уточнить местоположение аппарата и начать полноценные эксперименты по проверке справедливости утверждений Эйнштейна.

Таким образом, история "Лунохода-1", прервавшаяся 40 лет назад, получила неожиданное продолжение. Не исключено, что некоторые из читателей возмутятся (а судя по реакции на новость в Сети – уже начали возмущаться), почему это американские ученые пользуются нашим луноходом и как жаль, что российские специалисты оказались в этом опыте не у дел. Чтобы как-то снизить градус будущих дискуссий, хочется отметить, что наука – это международное дело, и поэтому спорить о национальных приоритетах научных работ – занятие, в лучшем случае, бесполезное.

И проработал на её поверхности до 4 октября 1971 года. Предназначался для изучения особенностей лунной поверхности, радиоактивного и рентгеновского космического излучения на Луне, химического состава и свойств грунта. Найден 22 апреля 2010 года на поверхности Луны Томом Мерфи с группой ученых, отправивший лазерные импульсы с телескопа обсерватории Апаче-Пойнт в Нью-Мексико.

История

Луноход-1 был создан в конструкторском бюро химкинского Машиностроительного завода имени С. А. Лавочкина под руководством Григория Николаевича Бабакина. Самоходное шасси для Лунохода было создано во ВНИИТрансМаш под руководством Александра Леоновича Кемурджиана.
Эскизный проект лунохода был утвержден осенью 1966 года. К концу 1967 года была готова вся конструкторская документация.

Автоматическая межпланетная станция Луна-17 с Луноходом-1 стартовала в 10 ноября 1970 года и 15 ноября Луна-17 вышла на орбиту искусственного спутника Луны.

17 ноября 1970 года станция благополучно прилунилась в Море Дождей и Луноход-1 съехал на лунный грунт.
Управление исследовательским аппаратом осуществлялось при помощи комплекса аппаратуры контроля и обработки телеметрической информации на базе «Минск-22» - СТИ-90. Центр управления луноходом в Симферопольском Центре космической связи включал в себя пункт управления луноходом, который состоял из пультов управления командира экипажа, водителя лунохода и оператора остронаправленной антенны, рабочее место штурмана экипажа, а также зал оперативной обработки телеметрической информации. Основную сложность при управлении луноходом составляла задержка времени, радиосигнал двигался до Луны и обратно около 2 секунд, и применение малокадрового телевидения с частотой смены картинки от 1 кадра в 4 секунды до 1 в 20 секунд. В результате общая задержка в управлении доходила до 24 секунд.

В течение первых трёх месяцев запланированной работы, помимо изучения поверхности аппарат выполнял еще и прикладную программу, в ходе которой отрабатывал поиск района посадки лунной кабины. После выполнения программы луноход проработал на Луне в три раза больше своего первоначально рассчитанного ресурса. За время нахождения на поверхности Луны «Луноход-1» проехал 10 540 м, передал на Землю 211 лунных панорам и 25 тысяч фотографий. Более чем в 500 точках по трассе движения изучались физико-механические свойства поверхностного слоя грунта, а в 25 точках проведён анализ его химического состава.

15 сентября 1971 года температура внутри герметичного контейнера лунохода стала падать, так как исчерпался ресурс изотопного источника тепла. 30 сентября аппарат на связь не вышел и 4 октября все попытки войти с ним в контакт были прекращены.

11 декабря 1993 года Луноход-1 вместе с посадочной ступенью станции Луна-17 были выставлен фирмой Lavochkin Association на аукционе Сотбис. При заявленной начальной цене 5 000$ торги закончились на сумме 68 500$. По информации российской прессы, покупателем оказался сын одного из американских астронавтов. В каталоге было указано, что лот «покоится на поверхности Луны».

Конструкция

Основным разработчиком шасси для планетоходов (колеса, двигатели, привод, подвеска, система управления ими) в СССР был (и остается до настоящего времени в России) ленинградский ВНИИтрансмаш (ВНИИТМ). В этом учреждении разрабатывались главным образом шасси для танков, так что был накоплен обширный опыт в области создания транспорта повышенной проходимости, ведь общее свойство у планетохода и танка - движение по неподготовленной местности.

Здесь было создано и испытано множество самых различных устройств - Луноход 1 и 2 (1970), шагающий планетоход отправленный в 1971 году на Марс, прыгающий для Фобоса (1988), робот для очистки крыши разрушенного энергоблока Чернобыльской АЭС (1986), планетоход для неудавшейся экспедиции Марс-96, несколько планетоходов в рамках сотрудничества с зарубежными организациямипоследние годы) и т.д.

Наверное многие обратили внимание, что все луноходы, которые перемещались по другим планетам - колёсные. И это при том, что давно известно множество других подходов - гусеничный, шагающий и т.д. Видимо, есть серьезные причины выбирать именно колеса.

Почти все небесные тела которые доступны нам для исследования имеют твердую поверхность с множеством относительно ровных участков. Там нет болот, зыбучих песков, леса и растительности, которые могли бы потребовать гусениц или шагающих движителей. На Луне и Марсе, также как на Меркурии и Венере - везде колеса вполне можно использовать.

Колёса - очень экономичный вид движителя. Чтобы прокручивать, скажем, гусеницы, нужна куда большая мощность. А ведь это дополнительные батареи, которые нужно доставлять за сотни тысяч километров.
Важна и надежность - проблематично заменить на Марсе порванную гусеницу или сломанный рычаг ноги, в то время как поломка даже нескольких колес совсем необязательно ставит под угрозу выполнение задачи.
Теория движения колесных машин также разработана лучше всего. Достаточно вспомнить, что до сих пор почти не нашли применения шагающие машины, даже в хорошо изученных земных условиях.
Сравнительно прост и привод колес от электромоторов, легко обеспечивать разворот.
Итак, выбор колёсного движителя явно оправдан. Колеса Лунохода уже можно считать классикой. Большинство последующих макетов и реальных планетоходов хоть что-то, да позаимствовали от них. Колеса состоят из трех титановых ободов, с закрепленной на них стальной сетки с грунтозацепами из того же титана. На твердой поверхности опора происходит на средний обод, на мягком же грунте обод проникает глубоко и тогда работает сетка.

Если же рассматривать колесный движитель в целом, возникает вопрос - почему у планетоходов, в частности Лунохода, столько колёс?
Во-первых, до последнего момента не исключалось использование гусениц. В случае с 8 колесами Лунохода это не потребовало бы полного пересмотра конструкции. Во-вторых, снижение нагрузки на грунт. И наконец, надежность - работоспособность при выходе из строя нескольких колес.
На случай заедания в приводе колес в Луноходе были предусмотрены специальные механизмы разблокировки. Пиротехнический заряд по команде с Земли мог перебить вал и в результате неисправное заблокированное колесо стало бы ведомым. У четырех колесного такое было бы невозможно. К счастью, эта возможность не была ни разу использована

Подвеска

Подвеску делают независимой для каждого мотор-колеса. Это позволяет преодолевать небольшие выступы и впадины избегая сильных кренов всей машины и перегрузки отдельных двигателей. В идеале, каждое колесо в любой момент времени должно касаться грунта, причем с примерно одинаковыми нагрузками от взаимодействия с ним. Это обеспечивается не только механикой, но и электронной частью, оценивающей нагрузки на двигатели, и подвеску. Механическая часть подвески обычно выполняется в виде рычагов, причем в качестве упругих элементов используются торсионы - стальные или титановые стержни, которые представляют собой "пружину" работающую на кручение. Использование гидравлики проблематично, из-за сильных колебаний температуры на поверхности планет.

Поучительна история гибели Лунохода-2 - на нем был установлен новый датчик крена-дифферента (весь блок автоматики Лунохода-2 разрабатывался с тройным дублированием - как для обитаемой машины).
Датчик в Луноходе-1 был разработан самим ВНИИТМ, но посчитали, что машиностроительное предприятие должно заниматься своим делом и разработку нового датчика поручили другой организации.
В новом датчике использовалась незамерзающая жидкость. Однако, не была учтена малая сила тяжести на Луне. В результате, сразу после прилунения, датчик оказался нерабочим. А ведь этот датчик должен предохранять Луноход от опрокидывания - автоматически останавливать его, если наклон слишком велик (попутно - позволяет получить представление о геометрии лунной поверхности). Здесь же он показал что Луноход стоит под углом 40 градусов еще до съезда с посадочного модуля.
Пришлось ездить без датчика, ориентируясь лишь на то, что видно через телекамеры - линию горизонта и простой уровень - катающийся металлический шарик. Все шло хорошо, но на третий месяц Луноход заехал в довольно большой кратер. Он стоял там с открытой солнечной батареей и подзаряжался. Когда пришло время выезжать из кратера, недооценили угол наклона. В результате, машина зацепилась солнечной батареей, на нее попал грунт, что привело к падению мощности. Попытки стряхнуть грунт только усугубили положение - грунт попал во внутренний отсек. Так закончил свою жизнь Луноход-2.

Кстати говоря, Луноходу-1 повезло еще меньше - при старте взорвался ракетоноситель. Так что тот Луноход-1 что был на Луне - не совсем первый Луноход.

В любом случае Луноход-2 прошел по Луне намного большее расстояние - 40 км за 3 месяца, чем Луноход-1 - 10 км. за 10 месяцев. Сказался опыт, который приобрели исследователи и водители.

Скорость движения

Возможно для некоторых это станет неожиданностью, но максимальные скорости всех автоматических планетоходов очень небольшие - не более 1-2 км/ч. Собственно, для аппаратов без экипажа это не так важно, поскольку управление ими осложнено задержкой сигнала, которая доходит до десятков секунд. Также, низкая скорость снижает вероятность повреждений при наезде на камень, отсутствуют заносы и т.д.

Манёвренность

Большой радиус поворота станет проблемой, если поблизости находится скала или расщелина, куда аппарат может сплозти при развороте.
Самые распространенное решение позаимствовано у гусеничных машин: делая различными скорости колес по левому и правому борту машины (в простейшем случае, с использованием тормозов), можно развернуть ее практически на месте.
Такой подход еще и упрощает конструкцию, повышает ее надежность, поскольку не нужно делать поворотных колес. Общеизвестный пример - "Луноход" (1970)

Опасность проваливания

Следующая проблема - необходимость преодолевать расщелины, не проваливаться на рыхлом грунте. Это может быть решено несколькими путями: колесами большой ширины и диаметра, большим количеством колес по каждому из бортов.

Так например, у Лунохода было 8 широких колес. Их полусферический профиль препятствует боковому сползанию (при движении вдоль склона).

Другой вариант решения (1989) предполагал использование больших (сопоставимых по размеру с самим планетоходом) надувных колес низкого давления с металлическим каркасом и грунтозацепами. Однако, такие колеса плохо выдерживают перепады температур, требуют обслуживания. Зато, они нашли применение на Земле - в тех местах, где необходимо движение по глубокому снегу.

Планетоходы испытывались в Средней Азии, на Камчатке (в зонах свежих извержений) - чтобы было большое разнообразие форм рельефа.. Ведь заранее не было известно, какой грунт, к примеру, на Луне. Были предположения, что грунт находится во взвешенном состоянии и Луноход может просто утонуть. Поэтому испытания проводили также и на снежниках - где снег засыпан вулканическим песком.

Преодоление камней, застревание

На планетах, куда сейчас возможна доставка планетоходов, встречается множество камней, скальных выступов, кратеров. То, что для шагающего аппарата будущего, наверное, не будет проблемой (согласитесь, человек легко преодолевает большинство препятствий, которые непреодолимы для колес) для сегодняшних планетоходов проблема весьма актуальная.
Представим ситуацию, когда обычная машина наезжает одним бортом на крупный камень. Возникает крен всей машины и аппарат рискует перевернуться. Для планетохода такое поведение недопустимо, потому подвеска устроена гораздо сложнее - когда одно из колес переезжает камень, остальные могут везти аппарат вполне горизонтально.

  • Луноход-1 >> СССР - Добро пожаловать на патриотический сайт, посвящённый стране, в которой мы родились - Союзу Советских Социалистических Республик (СССР)

16 января 1973 года автоматической станцией «Луна-21» был доставлен на Луну «Луноход-2» - второй из серии советских лунных дистанционно-управляемых самоходных аппаратов-планетоходов. «Луноход-2» стал последним аппаратом серии Е, которую разрабатывали в королевском ОКБ-1. Он предназначался для изучения механических свойств лунной поверхности, фотосъемки и телесъемки Луны. Аппарат прилунился всего в 172 километрах от места посадки американского «Аполлона-17», в южной части кратера Лемонье, находящегося на восточной окраине Моря Ясности. Мы решили рассказать десять интересных фактов об этом самоходном аппарате.

ПРОЙДЕННАЯ ДИСТАНЦИЯ

На стадии разработки лунохода конструкторы столкнулись с нелегкой задачей: разработать аппарат для передвижения по лунной поверхности, о которой на тот момент не было известно практически ничего. Тем не менее «Луноходу-2» принадлежат рекорды по пройденному расстоянию: за четыре месяца работы аппарат прошел 42 километра, в том числе участки с весьма сложным рельефом, сыпучим грунтом и каменными россыпями. Первоначально дистанцию оценивали в 37 километров, но ученые из МИИГАиК, изучая снимки с лунного орбитального зонда, вычислили, что она равна 42,1–42,2 километра. Это рекорд для роботов, работающих вне Земли.

НАВИГАЦИЯ
Во время прилунения навигационная система «Лунохода-2» была повреждена, и 11 офицерам наземного экипажа лунохода пришлось ориентироваться по окружающей обстановке, звездам и Солнцу. Положение же корпуса определялось косвенным путем по загрузкам на колесах. Есть неофициальное мнение, что передвигаться помогла и подробная фотокарта района, составленная для посадки «Аполлона-17», которая незадолго до полета попала в их распоряжение.

ФОТО- И ВИДЕОСЪЕМКА
За четыре месяца работы на Луне на Землю было передано 93 телефотометрических панорамы и около 89 тыс. снимков малокадрового телевидения. В ходе съемки получены данные наиболее интересных особенностей рельефа, позволяющие провести детальное изучение их строения.

ОБОРУДОВАНИЕ
«Луноход-2» был оборудован рентгеновским спектрометром «РИФМА-М» для измерения химического состава лунного грунта, магнитометром СГ-70А для изучения магнитного поля на поверхности Луны, астрофотометром для измерения светимости лунного неба, радиометром, фотоприемником «Рубин-1», а также лазерным уголковым отражателем. Также аппарат был оснащен третьей телекамерой, установленной по просьбе экипажа на уровне человеческих глаз, что существенно улучшало обзор во время движения по лунной поверхности.

МАССА
«Луноход-2» установил мировой рекорд максимальной массы автоматического самодвижущегося аппарата на поверхности - она составляла 836 килограммов.

ОФОРМЛЕНИЕ
На луноходе и посадочной ступени были установлены государственный флаг СССР, вымпелы с барельефом В.И. Ленина, изображением государственного герба СССР и надписью «50 лет СССР».

ВЫХОД ИЗ СТРОЯ
В последний раз телеметрическая информация была принята с «Лунохода-2» 10 мая 1973 года. Говорилось, что луноход начал движение от разлома Прямой на восток к мысу Дальний. Однако по пути луноход угодил в кратер, пытаясь выбраться из него задним ходом, зачерпнул тарелкой пыль со стенки кратера, которая налипла на солнечную батарею и на радиатор-охладитель. Из-за происшествия нарушился тепловой режим: за сутки температура в отсеке выросла до +47 °С. Аппаратура перегрелась и вышла из строя.

МЕСТОНАХОЖДЕНИЕ
Точное местонахождение «Лунохода-2» не удавалось установить в течение 37 лет, хотя отечественные специалисты заявляли, что аппарат потерян не был. Обнаружить луноход смогли после того, как НАСА обнародовало в 2010 году более 100 тыс. снимков лунной поверхности, сделанных камерой аппарата LRO. До их публикации канадскому ученому из Университета Западного Онтарио удалось найти следы пребывания лунохода и, как он думал, сам аппарат. Однако позже выяснилось, что темное пятно, которое исследователь принял за «Луноход-2», - это место около кратера, в который попал луноход незадолго до выхода из строя.

ПРОДАЖА ПРАВ СОБСТВЕННОСТИ
В 1973 году на аукционе Sotheby’s, посвященном космической тематике, «Луноход-2» был продан за 68 500 долларов Ричарду Гэрриотту, американскому коллекционеру космических артефактов и сыну астронавта НАСА. До сих пор неясным остается вопрос, каким образом НПО им. Лавочкина, создавшее «Луноход-2», смогло выставить его на торги.

РЕКОРДЫ
Помимо рекордов по массе самодвижущегося аппарата и по пройденному расстоянию, «Луноход-2» также превзошел все аппараты подобного плана по скорости движения и продолжительности активных действий. В 2013 году американскому марсоходу Opportunity почти удалось догнать советский «Луноход-2» по пройденному расстоянию: с 2004 года он проехал по Марсу 35,76 километра и пока продолжает двигаться.