Для обессоливания воды применяется Н/ОН-ионирование (химическое обессоливание) и обратный осмос. В общем виде установка химобессоливания включает катионитный фильтр, декарбонизатор, бак декарбонизованной воды, химический насос и анионитный фильтр. В качестве загрузок фильтров в небольших котельных в подавляющем большинстве случаев используются сильнокислотный катионит и сильноосновный анионит. При сравнительно небольшой щелочности (и/или производительности системы) возможна работа без декарбонизатора, но это влечет за собой увеличение объема анионита, который значительно дороже катионита. Вообще, в установках Н/ОН-ионирования объемы катионита и анионита как правило различны. Для минимизации стоимости установки целесообразно рассчитывать каждую ступень отдельно, чтобы они выходили в регенерацию не как единая система (сначала катионообменный фильтр, за ним сразу анионообменный), а независимо друг от друга; при этом фильтроциклы каждой ступени могут различаться в разы. Н-катионитные и ОН-анионитные фильтры конструктивно аналогичны фильтрам умягчения. При использовании современного аппаратурного оформления единственной ручной операцией при их эксплуатации является приготовление регенерационных растворов. По сравнению с установками умягчения, более строгие ограничения накладываются на материалы, соприкасающиеся с регенерационными растворами кислот и щелочей, т.е. не допускается применение деталей из капролона, латуни и т.п. Ионообменное обессоливание подразумевает использование для регенерации кислоты и щелочи, которые являются опасными веществами, в количествах в два-три раза превышающих стехиометрические, и, кроме того, образование кислотнощелочных стоков, которые требуется нейтрализовать перед сбросом в канализацию. Обратный осмос лишен этих недостатков, поэтому в настоящее время он находит все более широкое применение, несмотря на сравнительно высокие капитальные затраты.

Стандартная обратноосмотическая установка включает в себя: блок фильтров тонкой очистки; используются патронные фильтры с пятимикронными картриджами; блок насосов высокого давления; блок мембранных модулей; состоит из рулонных мембранных элементов, заключенных в корпуса из стеклопластика или нержавеющей стали; блок дозирования кислоты и ингибитора для предотвращения загрязнения мембран отложениями солей (необходимость дозирования кислоты и ингибитора и дозы определяются расчетным путем по величине индекса Ланжелье концентрата); блок промывки — промывки необходимы для продления срока службы мембран, т.к. в любом случае в процессе работы на их поверхности происходит отложение солей (частота промывок зависит от качества исходной воды и правильности расчета установки и может составлять не более одного раза в три-четыре месяца). Дополнительно в промышленных установках устанавливаются кондуктометры для слежения за качеством пермеата, шкаф автоматики с контроллером и многие другие устройства для автоматизации и контроля процесса.

Производительность же обратноосмотических установок по пермеату в среднем составляет 60-75 %. Стандартные установки ограничены рабочим давлением в 16 бар, т.к. это максимальное давление для труб ПВХ. Применение нержавеющих труб увеличивает стоимость установки. При солесодержании выше 2000-3000 мг/л рабочее давление становится выше 16 бар, и для его снижения, как правило, увеличивают сброс концентрата и соответственно снижают производительность по пермеату. Селективность обратноосмотических мембран — от 98 до 99,7 % по NaCl, рабочее давление — от 6 до 25 бар.

Как химобессоливание, так и обратный осмос позволяют получить воду с удельной электропроводностью на уровне 5-50 мкСм/см, в зависимости от солесодержания исходной воды. Более глубокое обессоливание проводится в две ступени. Каждая установка, будь то Н-катионирование, химобессоливание и особенно обратный осмос, должна рассчитываться и подбираться индивидуально для конкретного случая.

Коррекционная обработка воды
Традиционно для коррекционной обработки воды применяются: фосфаты (тринатрийфосфат, гексаметафосфат, триполифосфат и различные их смеси) для предупреждения появления кальциевой накипи и поддержания уровня рН воды, при котором обеспечивается защита стали от коррозии; сульфит натрия для химического обескислороживания воды после деаэратора или взамен деаэратора при небольшом расходе подпиточной воды (до 2 м3/ч); аммиак для связывания углекислоты в питательной воде и в паре с целью защиты от углекислотной коррозии питательного и пароконденсатного трактов.

Применение этих реагентов требует специального реагентного хозяйства. Фосфаты сначала растворяют в специальном растворном баке, затем фильтруют раствор на осветлительном фильтре для удаления загрязнений. При приготовлении раствора сульфита натрия необходимо применять меры по изоляции его от воздуха. Для растворения сульфита используется герметизированный бак, который перед подачей воды на растворение должен продуваться паром. Особые требования предъявляются к помещению и квалификации обслуживающего персонала при работе с аммиаком, который относится к классу опасных веществ. Кроме того, аммиак вызывает коррозию медьсодержащих сплавов. Для небольших котельных (в отличие от ТЭЦ) применять традиционные технологии коррекционной обработки воды просто нереально по вышеперечисленным причинам. Остается два пути: вообще не проводить коррекционную обработку, снижая эффективность работы и сроки службы основного оборудования, либо применять эффективные и удобные в использовании современные реагенты (хотя и довольно дорогостоящие), расходы которых при низких объемах подпитки могут оказаться не такими уж большими. Современные реагенты поставляются в жидком виде готовыми к использованию, могут разбавляться умягченной водой в любых пропорциях. При их применении не требуется специального реагентного хозяйства, достаточно только растворного бака и насосадозатора.

Вода совершенно необходима для жизни человека и всего живого в природе. Вода покрывает 70% земной поверхности, это: моря, реки, озёра и подземные воды. Во время своего определённого природными явлениями круговорота вода собирает в себя различные примеси и загрязнения, которые содержатся в атмосфере и на земной коре. В результате вода не бывает абсолютно чистой и беспримесной, но зачастую именно такая вода является основным источником как для хозяйственно-питьевого водоснабжения, так и для применения в различных отраслях промышленности (например, в качестве теплоносителя, рабочего тела в энергетике, растворителя, исходного сырья для получения продукции, продуктов питания и т. д.)

Природная вода является сложной дисперсной системой, в которой в большом количестве содержатся разнообразные минеральные и органические примеси. Из за того, что в большинстве случаев источниками водоснабжения являются поверхностные и подземные воды.

Состав обычной природной воды:

  • взвешенные вещества (коллоидные и грубодисперсные механические примеси неорганического и органического происхождения);
  • бактерии, микроорганизмы и водоросли;
  • растворённые газы;
  • растворённые неорганические и органические вещества (как диссоциированные на катионы и анионы, так и недиссоциированные).

При оценке свойств воды принято разделять параметры качества воды на:

  • физические,
  • химические
  • санитарно-бактериологические.

Под качеством понимают соответствие нормам, установленным для данного вида производства воды. Вода и водные растворы очень широко применяются в различных отраслях промышленности, коммунального и сельского хозяйства. Требования к качеству очищенной воды зависят от назначения и области применения очищенной воды.

Наиболее широко применяется вода для питьевых целей. Нормативы требований в данном случае определяются СанПиН 2.1.4.559-02. Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества» . Например, некоторые из них:

Таб. 1. Основные требования к ионному составу воды, используемой для хозяйственно-питьевого водоснабжения

Для коммерческих потребителей зачастую требования к качеству воды ужесточаются по некоторым параметрам. Так, например, для производства воды бутилированной разработан специальный стандарт с более жёсткими требованиями, предъявляемыми к воде - СанПиН 2.1.4.1116-02 «Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества». В частности, ужесточены требования к содержанию основных солей и вредных компонентов – нитратов, органики и т.п.

Вода технического и специального назначения – это вода для применения в промышленности или в коммерческих целях, для специальных технологических процессов - со специальными свойствами, регламентируемыми соответствующими стандартами РФ или технологическими требованиями Заказчика. Например, приготовление воды для энергетики (согласно РД, ПТЭ), для гальваники, приготовление воды для водки, приготовление воды для пива, лимонадов, медицины (фармакопейная статья) и т.п.

Зачастую требования к ионному составу данных вод значительно выше, чем к питьевой воде. Например, для теплоэнергетики, где вода используется как теплоноситель, подвергается нагреву, существуют соответствующие стандарты. Для электростанций существуют так называемые ПТЭ (Правила технической эксплуатации), для общей теплоэнергетики требования заданы так называемыми РД (Руководящим Документом). Например, согласно требований «Методических указаний по надзору за водно-химическим режимом паровых и водогрейных котлов РД 10-165-97», значение общей жёсткости воды для паровых котлов с рабочим давлением пара до 5 МПа (50 кгс/см2) должно быть не более 5 мкг-экв/кг. В то же время питьевой стандарт СанПиН 2.1.4.559-02 требует, чтобы Жо была не выше 7 мг-экв/кг.

Поэтому задача химической водоочистки (ХВО) для котельных, электростанций и других объектов, требующих водоподготовки перед нагревом воды заключается в предотвращении образования накипи и последующего развития коррозии на внутренней поверхности котлов, трубопроводов и теплообменников. Такие отложения могут стать причиной энергопотерь, а развитие коррозии может привести к полной остановке работы котлов, теплообменников из-за образования осадков на внутренней части оборудования.

Следует иметь в виду, что технологии и оборудования водоподготовки и ХВО для электростанций значительно отличаются от соответствующего оборудования обычных водогрейных котельных.

В свою очередь, технологии и оборудования водоподготовки и ХВО для получения воды для других целей также разнообразны и диктуются как параметрами исходной воды, подлежащей очистке, так и требованиями к качеству очищенной воды.

ООО «СВТ-Инжиниринг», имея опыт работы в данной области, обладая квалифицированными кадрами и партнерскими отношениями со многими ведущими зарубежными и отечественными специалистами и фирмами, предлагает своим клиентам, как правило, те решения, которые целесообразны и оправданны для каждого конкретного случая, в частности, основанные на следующих базовых технологических процессах:

  • Применение ингибиторов и реагентов для обработки воды в различных системах ХВО (как для защиты мембран, так и теплоэнергетического оборудования)

Большинство технологических процессов обработки вод различных типов, в том числе и сточных, известны и используются сравнительно давно, постоянно видоизменяясь и совершенствуясь. Тем не менее, ведущими специалистами и организациями во всем мире проводятся работы по разработке и новых технологий.

ООО «СВТ-Инжиниринг» также имеет опыт проведения НИОКР по заказу клиентов с целью повышения эффективности существующих способов очистки воды, разработки и усовершенствованию новых технологических процессов.

Особо следует отметить, что интенсивное использование природных водных источников в хозяйственной деятельности обуславливает необходимость экологического совершенствования систем водопользования и технологических процессов водоподготовки. Требования охраны природной среды предполагают максимальное сокращение отходов водоподготовительных установок в естественные водоемы, почву и атмосферу, что также вызывает необходимость дополнять технологические схемы водоподготовки ступенями утилизации отходов, их переработки и переводу во вторично используемые вещества.

К настоящему времени разработано достаточно большое число способов, которые позволяют создавать малоотходные системы водоподготовки. В первую очередь к ним следует отнести усовершенствованные процессы предварительной очистки исходной воды реагентами в осветлителях с ламелями и рециркуляцией шлама, мембранные технологии, деминерализацию на основе испарителей и термохимических реакторов, коррекционную обработку воды ингибиторами солевых отложений и коррозионных процессов, технологии с противоточной регенерацией ионитных фильтров и более совершенными ионообменными материалами.

Каждый из этих способов имеет свои преимущества, недостатки и ограничения их применения по качеству исходной и очищенной воды, объёму стоков и сбросов, параметрам использования очищенной воды. Дополнительную информацию, необходимую для решения Ваших проблем и условиях сотрудничества, вы можете получить, сделав запрос или обратившись офис нашей фирмы.

Раздел второй.

экологическая оценка

2.2.1. Осветление и коагуляция воды

Особенностью отечественных водоподготовительных установок (ВПУ) является то, что в качестве исходной воды для них, как правило, используется вода из поверхностных водоемов. Природная вода, загрязненная техногенными примесями, содержит большое количество минеральных примесей, взвешенных и органических веществ.

Раздел второй. ОХРАНА ВОДНОГО БАССЕЙНА ОТ СБРОСОВ

2.2. Современные технологии водоподготовки на ТЭС и их экологическая оценка

2.2.2. Ионообменное обессоливание добавочной воды котлов

Шищенко В.В., институт ВНИПИэнергопром; Федосеев Б.С., ОАО «ВТИ»

В нашей стране подготовка обессоленной воды для котлов ТЭС и других технологических целей осуществляется в основном с использованием ионообменных технологий, включающих две-три ступени катионитных и анионитных фильтров. Опыт применения ионообменных технологий насчитывает более 60 лет. В настоящее время развитие технологий ионного обмена и повышение экономичности ионообменных установок осуществляются в направлении совершенствования конструкций ионообменных фильтров, предназначенных для противоточного ионирования и улучшения качества и свойств ионитов для водоподготовки.

Раздел второй. ОХРАНА ВОДНОГО БАССЕЙНА ОТ СБРОСОВ

2.2. Современные технологии водоподготовки на ТЭС и их экологическая оценка

2.2.3. Технология термической подготовки добавочной воды для подпитки энергетических котлов

Седлов А.С., МЭИ(ТУ); Шищенко В.В., институт ВНИПИэнергопром; Федосеев Б.С., ОАО «ВТИ»

Технология термической подготовки основана на дистилляции воды. В одном аппарате - испарителе - вода испаряется, в другом - конденсаторе - конденсируется. В испарителе в пар попадает минимальное количество солей, поступающих с исходной водой. Кроме того, пар перед поступлением в конденсатор с помощью специальных устройств очищается от примесей. Качество дистиллята, образующегося в конденсаторе, удовлетворяет нормам качества подпиточной воды энергетических котлов сверхвысокого давления.

Раздел второй. ОХРАНА ВОДНОГО БАССЕЙНА ОТ СБРОСОВ

2.2. Современные технологии водоподготовки на ТЭС и их экологическая оценка

2.2.4. Обратноосмотическое обессоливание воды

Шищенко В.В., институт ВНИПИэнергопром; Федосеев Б.С., ОАО «ВТИ»

В последние годы в отечественной практике обессоливания воды отмечается повышенный интерес к технологии обратного осмоса. Сооружен и успешно эксплуатируется целый ряд установок обратного осмоса (УОО): на ТЭЦ-23 ОАО «Мосэнерго» (разработка ВНИИАМ, производительность 50 м 3 /ч, обратноосмотические мембраны поставки DOW Chemical); на Нижнекамской ТЭЦ (разработка и поставка фирмы Hidronoutics, производительность 166 м 3 /ч).

Раздел второй. ОХРАНА ВОДНОГО БАССЕЙНА ОТ СБРОСОВ

2.2. Современные технологии водоподготовки на ТЭС и их экологическая оценка

Водоподгото́вка – процесс изменения состава воды путём удаления органических и минеральных примесей и микроорганизмов или добавления веществ для приведения её состава и свойств в соответствие с требованиями потребителей. По конечному назначению использования воды различают водоподготовку для питьевых (в т. ч. коммунально-бытовых) и промышленных нужд.

Вода для питьевых нужд должна удовлетворять требованиям санитарно-эпидемиологической и радиационной безопасности, быть безвредной по химическому составу и обладать благоприятными органолептическими свойствами. Это достигается путём удаления биогенных элементов, тяжёлых металлов, галогенопроизводных, бактерий и пр., а также, в случае необходимости, добавления недостающих микроэлементов.

При подготовке воды для промышленных нужд из воды удаляются грубодисперсные и коллоидные примеси, соли и микроорганизмы для предотвращения образования накипи, коррозии металлов, засорения трубопроводов и загрязнения обрабатываемых материалов при использовании воды в технологических процессах. Так, в теплоэнергетике, где вода является теплоносителем, важно удалить из воды соли жёсткости и другие примеси в ионной форме, т. к. повышение температуры в процессе нагревания приводит к образованию накипи в технических элементах системы – котлах, трубопроводах, градирнях. Технологические стадии водоподготовки для промышленных нужд и для питьевых целей нередко полностью совпадают.

История водоподготовки

Первое упоминание о применении методов подготовки питьевой воды для повышения её качества – улучшения вкуса и удаления запаха – датируется IV тысячелетием до н. э. Тогда применялись такие методы водоподготовки, как фильтрация через древесный уголь, отстаивание на солнце и кипячение. Для устранения мутности , т. е. удаления из воды взвешенных частиц, древние египтяне еще за 1,5 тыс. лет до н. э. использовали алюминиевые квасцы. В XVII в. для подготовки питьевой воды стал использоваться метод фильтрации, однако степень очистки воды была недостаточной. С начала XIX в. песчаные фильтры применялись в большинстве городов Европы. В 1806 г. в Париже была запущена в эксплуатацию первая крупная станция водоподготовки, где вода проходила стадии отстаивания и фильтрации через песчаные и угольные фильтры. В 1870 г. Р. Кохом и Д. Листером было доказано, что микроорганизмы, находящиеся в источниках водоснабжения , могут вызывать инфекционные заболевания. Впоследствии, в начале ХХ в. эти открытия привели к применению методов обеззараживания питьевой воды. В 1906 г. в Ницце для дезинфекции питьевой воды был использован метод озонирования, а в 1908 г. в США в качестве дезинфектанта стал применяться гипохлорит кальция. С 1926 г. для удаления взвешенных частиц начали применять метод коагуляции. В 1940-х гг. началось развитие ионообменных технологий обессоливания воды, а в 1957 г. появились первые мембранные фильтры, однако в широкую практику водоподготовки они вошли гораздо позднее. Во второй половине ХХ в. в большинстве развитых стран стали применяться комплексные схемы подготовки питьевой воды, включающие технологии отстаивания, фильтрации, коагуляции, обеззараживания и др.

Целевые компоненты поверхностных и подземных вод при водоподготовке

При подготовке воды для питьевых или промышленных нужд в зависимости от направления конечного применения до нормативных значений доводится содержание представителей следующих групп веществ:

Химический и биологический состав воды определяет выбор применяемых технологий водоподготовки и используемых технологических схем.

Технологии водоподготовки

При водозаборе из поверхностного водного объекта (река , водохранилище , озеро и т.д.), первый этап подготовки воды – предварительная очистка, включающая, как правило, следующие методы:

  • процеживание – процесс пропускания воды через водопроницаемые перегородки различных конструкций для удаления крупных плавающих загрязнений и взвешенных примесей. Осуществляется через решетки и сита с размером ячеек от 0,005 мм до 1 см;
  • первичное отстаивание – процесс осаждения взвешенных веществ под действием силы тяжести, также приводящий к осветлению воды. Зависит от скорости течения, относительной плотности и диаметра частиц. Из воды удаляются частицы размером более 100 мкм (10 -4 м);
  • коагуляция – процесс укрупнения коллоидных и диспергированных частиц при введении реагентов – коагулянтов, происходящий вследствие слипания частиц под действием сил молекулярного притяжения. Слипшиеся частицы в дальнейшем осаждаются. Из воды удаляются взвешенные вещества и значительная часть микроорганизмов, что приводит к ее глубокому осветлению.

Умягчение воды – процесс удаления из воды растворённых солей щёлочноземельных металлов (Сa 2+ и Mg 2+), обусловливающих жёсткость воды. Соли жёсткости могут удаляться четырьмя способами:

  • реагентное умягчение – добавление реагентов, увеличивающих концентрацию анионов; в результате образуются малорастворимые соли с ионами Сa 2+ и Mg 2+ , впоследствии выпадающие в осадок. Процессы осаждения осуществляются в отстойниках и осветлителях. Осаждение образующихся хлопьев происходит очень медленно, поэтому оборудование имеет низкую производительность. Реагентные методы используются только в подготовке воды для технических нужд, т. к. вода в результате приобретает сильнощелочную реакцию;
  • ионный обмен – процесс, при котором присутствующие в воде анионы и катионы замещаются другими ионами при прохождении через слой ионообменного материала. Обмен катионов Ca 2+ и Mg 2+ на Na + приводит к умягчению воды. Анионный состав воды при этом не меняется, и раствор остается нейтральным;
  • электрохимическая обработка – прохождение воды через межэлектродное пространство, при котором вследствие электролиза образуются менее растворимые формы солей жёсткости;
  • мембранная фильтрация – пропускание воды через нанофильтрационные и обратноосмотические мембраны под высоким давлением, в результате чего происходит селективное удержание многозарядных и крупных ионов. Удаляются также взвешенные вещества, коллоиды, бактерии, вирусы и пр. Содержание солей жёсткости уменьшается в 10–50 раз.

Обезжелезивание воды. В воде поверхностных источников железо, как правило, находится обычно в форме органоминеральных коллоидных комплексов, в подземных водоисточниках – в форме растворённого бикарбоната двухвалентного железа. Для обезжелезивания воды из поверхностных источников используются реагентные методы с последующей фильтрацией в сочетании с предварительной обработкой воды:

  • аэрация окисляет двухвалентное железо кислородом воздуха, при этом из воды удаляется углекислота, что ускоряет процесс образования гидроксида железа;
  • коагуляция и осветление используются для железа, находящегося в форме взвесей и коллоидно-дисперсного вещества (см. выше);
  • обработка реагентами-окислителями (хлор, гипохлорит натрия или кальция, озон, перманганат калия) приводит к разрушению гуматов и других железосодержащих органических соединений. В результате формируются легко гидролизующиеся неорганические соли трёхвалентного железа.

Обезжелезивание подземных вод осуществляются также путем мембранной фильтрации (микро-, ультра-, нанофильтрации или обратного осмоса).

Обеззараживание – процесс уничтожения вирусов и патогенных микроорганизмов (бактерий, простейших) дезинфицирующими агентами или/и физическими воздействиями. Эффективность обеззараживания воды напрямую зависит от степени её предварительной очистки, т. к. удаление из воды коллоидных и диспергированных частиц увеличивает подвод дезинфицирующего вещества к целевым объектам обеззараживания – бактериям, вирусам, простейшим. Для обеззараживания применяются следующие методы:

На практике чаще всего используется сочетание различных методов обеззараживания, позволяющих снизить отрицательный эффект одних и усилить достоинство других.

Дегазация воды . Присутствие в воде растворённых газов – кислорода, свободной углекислоты и сероводорода обусловливает её коррозионные свойства. Используются следующие способы дегазации воды:

  • химические способы заключаются в добавлении реагентов, которые связывают растворённые в воде газы, или в пропускании воды через фильтры, загруженные стальными стружками;
  • физические способы дегазации – наиболее распространены аэрация и кипячение воды. Для удаления из воды кислорода используют кипячение, для удаления свободной углекислоты и сероводорода – аэрацию.

Коррекция качества питьевой воды . Ряд важных для организма макро- и микроэлементов (йод, фтор, кальций, магний и т.д.) поступает в организм человека вместе с питьевой водой. Однако часто вода из водоисточника не содержит такие вещества в необходимом количестве. Для корректировки состава питьевой воды применяются следующие методы:

  • обогащение фтором (фторирование) – доступный и безопасный метод профилактики заболевания кариесом путём повышения концентрации фтора до 0,6–1,1 мг/л;
  • обогащение йодом (йодирование). Недостаток йода в ряде случаев является причиной развития врождённых аномалий, повышенной перинатальной смертности, снижения умственных способностей у детей и взрослых, глухонемоты. Содержание йода в питьевой воде должно находиться на уровне 40–60 мкг/л;
  • обогащение селеном. Селен является антиоксидантом, усиливает иммунитет и процессы обмена веществ в организме. Добавление селена в питьевую воду применяется как сопутствующий фактор снижения риска развития онкологических заболеваний, сердечно-сосудистых патологий, артрита, преждевременного старения населения;
  • обогащение кальцием. Недостаток кальция приводит к кардиоваскулярным заболеваниям (гипертонии, коронарной и ишемической болезней сердца, инсульта), рахиту у детей, остеомаляции, нарушению процессов свертываемости крови;
  • обогащение магнием. Недостаток магния проводит к повышению тяжести течения сердечно-сосудистых заболеваний и младенческой смертности;
  • обогащение гидрокарбонат-ионами применяется для коррекции водородного показателя воды (рН) и повышения её щёлочности.

Активное развитие промышленности и рост урбанизации привели за несколько столетий к современному состоянию экологии, при котором не рискнешь выпить воду даже из колодца, не говоря о каком-то поверхностном источнике. При строительстве новых домов за городом люди предпочитают бурить скважины. Приспосабливают и другие ближайшие источники, но непременно используют фильтрующие установки, а порой и целые станции. В «сыром» виде вода всегда имеет различные примеси, особенно если она добыта из глубин. Там могут присутствовать даже ядовитые вещества: естественный сероводород или фенолы, нитраты и прочие загрязнения, попавшие в грунтовые воды из отходов промышленности. Если дом подключен к муниципальной системе снабжения, то купить водоочистку придется и туда. В городских фильтровальных станциях активно используется хлор, который после применения остается в составе жидкости. Другие качественные характеристики воды также доводятся лишь до соответствия требованиям СанПиН. То есть многие вещества не устраняются полностью, а лишь сокращается их концентрация.

использование мембраны или других малопроницаемых материалов;

ионный обмен;

магнитное и электромагнитное воздействие;

ультрафиолетовое излучение.

Применение каждой из этих технологий должно быть обосновано характеристиками объекта, требуемыми параметрами очистки, доступностью покупки, обслуживания и прочими нюансами. Современная водоподготовка имеет серьезный подход и несколько стадий. Профессионалы первым делом осуществляют лабораторный анализ источника, а под его результаты уже подбираются конкретные методы очистки и оборудование, наилучшим образом подходящее к индивидуальным особенностям каждого объекта. Обратившись в ООО "НТК Солтек" можно получить полный комплекс услуг: от проектных расчетов до монтажа и дальнейшего обслуживание очистных установок.