Важность критериев была задана нечеткими числами с функциями принадлежности следующего вида:

ВАЖНЫЙ (В)- m B ={0,4; 1/0,7; 0/1};

ОЧЕНЬ ВАЖНЫЙ (OB) - m OB ={0/0,7; 1/1};

НЕ ОЧЕНЬ ВАЖНЫЙ (НОВ) - m HOB = {0/0,1; 1/0,4; 0/7}.

Для оценки альтернатив использовались лингвистические значения:

Альтернативы получили следующие оценки по критериям:

Взвешенные оценки альтернатив R i имеют следующие функции принадлежности:

Оценки предпочтительности альтернатив равны: m(a 1) = 0,90, m(a 2) = 0,62, m(a 3) = 1,0. Лучшей альтернативой является a 3 , a худшей – а 2 .

Решение задачи методом анализа иерархий

На заданном наборе критериев была построена трехуровневая иерархия, на верхнем уровне которой определена цель выбора (с G). На втором уровне находятся обобщенные критерии: прибыль (с P) к и риск (с R) . На третьем уровне иерархии расположены перечисленные выше критерии с 1 , ..., с 5 . При этом критерии c 1 , с 2 , с 3 , входят в группу критерия c P , а критерии с 4 , с 5 - в группу критерия c R . Экспертные предпочтения и полученные приоритеты приведены в матрицах попарных сравнений:

В результате иерархического синтеза получены векторы приоритетов альтернатив:

Альтернативой с наименьшим риском является а 1 , а наибольшую прибыль обеспечивает а 3 . Эта же альтернативаимеет максимальный приоритет относительно цели выбора.

Сравнение полученных результатов

На рис. 4.9 приведены результаты решения задачи выбора рационального инвестиционного проекта, полученные различными методами.

Несмотря на то, что исходная информация во всех рассмотренных примерах является последовательной и непротиворечивой, полученные результаты заметно отличаются. Кроме описанных выше нечетких методов принятия решений, для сравнения использовался метод анализа иерархий, который обычно дает результаты, хорошо согласующиеся с интуитивными представлениями экспертов при рациональном подходе к принятию решений.

Несовпадение результатов, полученных разными методами, объясняется, с одной стороны, разными способами представления экспертной информации, а с другой стороны - различием подходов к принятию решений. Так, в основу метода анализа иерархий и метода отношений предпочтения заложен рационально-взвешенный подход, основанный на попарных сравнениях объектов и нормированных весовых коэффициентах. Максиминная свертка и лингвистическая векторная оценка являются реализациями пессимистического подхода, игнорирующего хорошие стороны альтернатив, когда лучшей считается альтернатива, имеющая минимальные недостатки по всем критериям. Аддитивная свертка предполагает оптимистический подход, когда низкие оценки по критериям имеют одинаковый статус по сравнению с высокими. Нечеткий вывод на правилах реализует эвристический подход.

Анализ приведенных результатов позволяет сделать следующие выводы:

1. Методы принятия решений на нечетких моделях позволяют удобно и достаточно объективно производить оценку альтернатив по отдельным критериям. В отличие от других методов добавление новых альтернатив не изменяет порядок ранее ранжированных наборов. При оценке альтернатив по критериям возможна как лингвистическая оценка, так и оценка на основе точечных оценок с использованием функций принадлежности критериев.

2. Основной проблемой многокритериального выбора с применением нечетких моделей является представление информации о взаимоотношениях между критериями и способы вычисления интегральных оценок. Методы, базирующиеся на разных подходах, дают различные результаты. Каждый подход имеет свои ограничения и особенности, и пользователь должен получить о них представление, прежде чем применять тот или иной метод принятия решений. Наиболее широкие возможности для представления информации дает эвристический подход.

3. Большинство нечетких методов принятия решений показывает слабую устойчивость результатов относительно исходных данных. Исследование рассмотренных методов показало, что наибольшей устойчивостью обладает метод, основанный на правилах.

Анализ нечетких методов принятия решений позволяет сформулировать требования к дальнейшим разработкам в этой области. Это развитие теоретических подходов к описанию сложных взаимоотношений между критериями, более широкое применение интеллектуальных методов на основе нечеткой логики, а также развитие комбинированных методов принятия решений с использованием нечетких представлений.

Основные понятия

1. Нечеткие множества.

2. Нечеткие числа.

3. Лингвистические переменные.

4. Лингвистический критерий.

5. Лингвистическая оценка.

6. Нечеткие операции и отношения.

7. Нечеткие отношения предпочтения.

8. Максиминная свертка нечетких множеств.

9. Нечеткий логический вывод.

10. Композиционное правило вывода.

11. Методология применения методов теориинечетких множеств.

12. Сравнительный анализ методов.

13. Практические результаты применения методовпринятия решений.

Контрольные вопросы и задания

1. Перечислите и дайте определения основным элементам теории нечетких множеств.

2. Дайте определение нечетким операциям, отношениям и свойствам отношений.

3. Охарактеризуйте постановку задачи многокритериального выбора альтернатив на основе пересечения нечетких множеств.

4. Составьте алгоритмы и программы многокритериального выбора альтернатив методом максиминной свертки.

5. Постановка задачи выбора альтернатив на основе нечеткого отношения предпочтения.

6. Разработайте алгоритмы и программы для решения задачи многокритериального принятия решений на основе нечеткого отношения предпочтения.

7. Постановка задачи выбора альтернатив с аддитивным критерием.

8. Разработайте алгоритмы и программы для решения задачи многокритериального принятия решений на основе аддитивной свертки предпочтений, заданных нечеткими числами.

9. Постановка задачи принятия решений на основе лингвистической векторной оценки.

10. Разработайте алгоритмы и программы для решения задачи многокритериального выбора с использованием метода лингвистического векторного критерия.

11. Постановка задачи многокритериального выбора с использованием правила нечеткого вывода.

12. Разработайте алгоритмы и программы для решения задачи выбора рациональной альтернативы на основе математического аппарата нечеткого логического вывода.

13. Рассмотрите применение принципов пересечения нечетких множеств в экономических и управленческих задачах принятия решений.

14. Разработайте методику применения метода нечеткого отношения предпочтения для проектирования и выбора конкурентоспособных экономических, технических и управленческих решений.

15. Поставьте задачи из области экономики, наилучшим образом формализуемые математическим аппаратом нечеткого логического вывода.

16. Решите одну задачу различными методами принятия решений, основанными на теории нечетких множеств. Проведите сравнительный анализ полученных результатов. Сделайте вывод о том, какой из методов дает наиболее адекватные результаты в сравнении с вашими представлениями.

Литература

1. Заде Л. Понятие лингвистической переменной и его применение к принятию приближенных решений: Пер. с англ. - М.: Мир, 1976. - 165 с.

2. Нечеткие множества и теория возможностей. Последние достижения: Пер. с англ. - М.: Радио и связь, 1986. - 408 с.

3. Борисов А. П., Крумберг О. А., Федоров И. П . Принятиерешенийна основе нечетких моделей. - Рига: Зинатне, 1990. - 184 с.

4. Нечеткие множества в моделях управления и искусственного интеллекта/Под ред. Д. А. Поспелова. - М.: Наука, 1986. - 312 с.

Мультипликативные свёртки

Рассмотрим мультипликативную свёртку с нормирующими множителями:

где j - нормирующие множители.

Мультипликативная свёртка основывается на постулате: "низкая оценка хотя бы по одному критерию влечет за собой низкое значение функции полезности". Действительно, если вы выбираете торт, и он - несвежий, то это обстоятельство никак не может быть компенсировано его красотой или ценой.

Посмотрим, какие результаты даст мультипликативная свёртка с весовыми коэффициентами:

где j - нормирующие множители,

вj - весовые коэффициенты.

Итоги отражены в таблице:

Оптимальной стратегией снова является А3.

В конце еще раз напомним непременное правило: перед тем, как применять какую-либо свёртку нужно автоматически всегда выделять множество Парето. И именно для множества Парето применять свёртки. Иначе вы или ваша программа будете выполнять лишнюю ненужную работу.

Многокритериальный выбор на языке бинарных отношений

До этого были рассмотрены случаи, когда все критерии оценивали все альтернативы. Все альтернативы можно было сравнить друг с другом по каждому критерию. А что делать, если не все альтернативы будут оценены всеми критериями? В таком случае появятся альтернативы, не сравнимые между собой по некоторым критериям. Рассмотрим такой случай на нашем примере (уберем из него некоторые оценки):

При таком условии альтернативы можно сравнить между собой лишь попарно. Такие попарные сравнения называются бинарными отношениями . Обозначается бинарное отношение (на примере критерия Байеса из нашей таблицы) А1RА2 - альтернатива А1 лучше альтернативы А2.

Дадим математически точное определение бинарных отношений.

Бинарным отношением на множестве? называется произвольное подмножество R множества? Х? , где? Х? - это множество всех упорядоченных пар (ai ;aj) , где ai , aj ? . #

Бинарные отношения очень удобно изображать наглядно. Представим четыре стратегии из нашего примера в виде точек на плоскости. Если имеем, что какая-то альтернатива лучше другой, то проведем стрелку от лучшей альтернативы к худшей. На примере критерия Байеса из нашей таблицы имеем А1RА2 , поэтому на плоскости проведем стрелку от точки А1 к точке А2. Аналогичным образом поступим со всеми начальными данными из таблицы. Заметим, что бинарные отношения не исключают отношения элемента с самим собой. На рисунке такое бинарное отношение будет задаваться петлёй со стрелкой. В результате получим следующую картину:

Подобные фигуры называются ориентированными графами . Точки - это вершины графа, стрелки между точками - это дуги графа.

Дадим математически точное определение графа.

Графом называется пара (Е, е), где Е - непустое конечное множество элементов (вершин), е - конечное (возможно и пустое) множество пар элементов из Е (множество дуг). #

Две вершины, соединенные дугой, называются смежными вершинами. Дуга, соединяющая две вершины, называется инцидентной этим вершинам. Две вершины, соединенные дугой, называются инцидентными этой дуге.

Как же произвести выбор наилучшего элемента из имеющихся альтернатив (наилучшей вершины графа)? Для этого сначала необходимо определить, что же будет являться наилучшей вершины (наилучшими вершинами) графа. На этот счет имеются две исторически сложившиеся в теории графов точки зрения.

1)Максимальным элементом множества? по бинарному отношению R называется такой элемент х? , что у? выполняется отношение хRy .

Иначе говоря, максимальный элемент множества должен быть "лучше" каждого элемента этого множества. Не исключается и то, что он может быть "лучше" самого себя, кроме этого максимальный элемент может быть одновременно и "хуже" какого-либо элемента этого множества. Слова "лучше" и "хуже" не совсем верно передают смысл бинарных отношений.

Для графов понятие максимальный элемент - это вершина, из которой исходят стрелки во все остальные вершины графа. Например, на рис. 1 максимальным элементом будет вершина А1 - из неё выходят стрелки во все остальные вершины графа.

2)Оптимальным по Парето элементом множества? по бинарному отношению R называется такой элемент х? , что у? для которого выполнялось бы отношение уRх.

Иначе говоря, оптимальный по Парето элемент множества - это такой элемент, "лучше" которого в рассматриваемом множестве нет.

Для графов понятие оптимальный по Парето элемент - это вершина, в которую не входит ни одна стрелка. Например, на рис. 1 оптимальным по Парето элементом будет вершина А1 - в неё не входит ни одна стрелка.

Видим, что два разных подхода к определению наилучшего элемента в нашем примере дали одинаковый результат. Но такое бывает не всегда.

Рассмотрим несколько примеров.

У графа на рис. 2 максимальным элементом будет вершина А1 - из неё выходят стрелки во все остальные вершины графа. Оптимальных по Парето элементов у данного графа нет.

У графа на рис. 3 максимальным элементом будет также вершина А1 - из неё выходят стрелки во все остальные вершины графа. Заметим: то, что в неё входит стрелка из вершины А4 , по определению совершенно не важно. Оптимальных по Парето элементов у данного графа нет.

У графа на рис. 4 максимальными элементами будут вершины А1 и А4 - из них выходят стрелки во все остальные вершины графа. Оптимальных по Парето элементов у данного графа нет.

У графа на рис. 5 максимального элемента нет. Оптимальными по Парето элементами будут вершины А1 и А4 - в них не входит ни одна стрелка.

Отметим очевидные особенности.

У графа либо нет максимальных элементов, либо есть.

Оптимальными по Парето элементами могут быть несколько вершин графа, либо таковых может не быть.

В графе не может один (или одни) элемент быть максимальным, а другой (или другие) элемент быть оптимальным по Парето.

Итак, если имеется задача многокритериального выбора, описанная на языке бинарных отношений, то её удобно представить наглядно в виде графа. Однако такое удобство хорошо для небольшого количества вершин (альтернатив). Если вершин довольно много, то вся наглядность пропадает и легко можно запутаться. В таком случае граф удобно представить в виде матрицы смежности или матрицы инцидентности.

Матрица смежности вершин графа - это квадратная матрица размера m x m (m - это количество вершин) с элементами:

По матрицам смежности искать максимальные элементы и элементы, оптимальные по Парето - одно удовольствие! Максимальные элементы - это те, чьи строки состоят из всех единиц (кроме себя самих - там может быть как нуль, так и единица). А оптимальные по Парето элементы - это те, чьи столбцы состоят из всех нулей.

Матрица инцидентности графа - это матрица, строки которой соответствуют вершинам, а столбцы - дугам. При этом предполагается, что граф не должен иметь петель.

Элементы матрицы инцидентности будут такими:

Видим, что каждый столбец должен содержать одну единицу и одну минус единицу, остальные элементы столбцов - нули. То есть каждая дуга из одной вершины выходит и в другую вершину входит.

Налицо также очевидна закономерность: максимальные элементы - это те, чьи строки содержат единиц на одну меньше, чем количество строк (вершин), а оптимальные по Парето элементы - это те, чьи строки не содержат минус единиц.

Используя замечательные особенности матриц смежности и инцидентности графов, не составит большого труда разрабатывать компьютерные программы по принятию решений для задач выбора, описанных на языке бинарных отношений.

Целью изучения данной темы является ознакомление студентов с методами многокритериального выбора.

Задачи:

Ознакомить студентов с методами измерения показателей, используемых в качестве критериев при принятии управленческих решений.

Описать подходы к формированию системы показателей, используемых при многокритериальном выборе.

Дать представление о методах многокритериального выбора и особенностях их применения.

1. Шкалы измерения

Наиболее «простой», точнее говоря, слабой является номинальная шкала. “Nome на латыни – имя, то есть речь идёт о шкале наименований. В этой шкале различаются только классы объектов, например, резиденты и нерезиденты. Разумеется, шкала может содержать и больше классов (отраслевой классификатор и т.п.), хотя дихотомическое деление является важным частным случаем.

Номинальная шкала используется, в основном, для решения двух задач:

  • определение принадлежности к классу на основании некоторого признака (например, пол),
  • выявление количества проявлений признака.

Во втором случае накопленная статистика подвергается обработке численными методами с целью анализа того или иного явления.

Более «сильной» является ординальная (порядковая) шкала. Её также часто называют шкалой рангов. Задача, решаемая с помощью ординальной шкалы, - это упорядочивание объектов (альтернатив, с точки зрения процесса принятия управленческого решения) по предпочтению. Различают отношения нестрогого предпочтения (этот объект не хуже того) и строгого («больше – меньше»).

Измерения в ранговой шкале не отвечают на вопрос «насколько больше?». Отчасти эта проблема решается увеличением числа рангов. Общая рекомендация при конструировании ранговых шкал состоит в составлении не слишком дробной шкалы, так как в противном случае затрудняется экспертное оценивание, однако количество рангов должно быть достаточным, чтобы улавливать все существенные различия.

Типичным примером измерений в ранговых шкалах являются различные рейтинги. Определённую роль играет использование этой шкалы в микроэкономике, так как позволяет снять некоторые спорные постулаты о природе ценностей.

Следует учесть, что расстояние в ранговых шкалах задаются не так, как в привычной, абсолютной. Например, один из способов введения расстояния в ранговой шкале – определение количества попарных перестановок соседних рангов, которое необходимо для получения нормативного упорядочивания.

Следующая «по силе» - интервальная шкала. Эта шкала классифицирует объекты по принципу «больше на определённое количество единиц – меньше на определённое количество единиц». Следует различать абсолютную и относительную величину интервалов. Например, если студент А решил задачу за 2 сек., а студент Б за 22 сек., то в абсолютном выражении интервал будет таким же, как и в том случае, когда студент В решает задачу за 222 сек., а Г - за 242 сек. Понятно, что «значимость» интервала в 20 сек. в рассмотренных случаях может быть различной.

Интервальная шкала даёт точное представление об отношении длин отрезков, однако в ней даже зная расстояние между 1-ой и 2-ой и 2-ой и 3-ей точкой нельзя точно указать расстояние между 1-ой и 3-ей точками, так как их взаимное расположение не определено однозначно. В интервальной шкале в этой ситуации можно делать однозначные заключения только о соотношении длин отрезков, но не их удалённости от какой-либо точки.

Абсолютная шкала получается из интервальной введением точки отсчёта. Это решает обсуждавшиеся выше проблемы. Именно для абсолютной шкалы справедливы обычно используемые на практике операции с расстояниями.

2. Требования к построению системы критериев

Наряду с проблемой измерения важной проблемой является построение системы показателей, отражающих генеральную цель. В литературе 1 сформулирован целый ряд требований, которые необходимо соблюдать, чтобы использование системы показателей было оправданным. Это требования полноты, действенности, разложимости, неизбыточности и минимальной размерности.

Полнота

Система показателей должна включать критерии, характеризующие все основные аспекты деятельности хозяйственной системы. Смысл этого требования сводится к тому, чтобы дать возможность ЛПР принять управленческое решение.

Действенность (операционность)

Используемые показатели должны быть однозначно понимаемы, измеримы и доступны оценке.

Разложимость

Это требование связано с ограниченными возможностями человека. Исследования показали, что одновременная работа с числом объектов более семи неоправданна. Таким образом, при большом числе критериев система может разбиваться на более мелкие группы показателей. Например, системы, оценивающие качество продукции, разбиваются на группы показателей, характеризующие функциональные свойства изделий, их надёжность, эргономичность, а также показатели стандартизации и унификации. Получается «дерево критериев», и ЛПР одновременно работает только с одной «веткой».

Неизбыточность

Дублирование показателей «засоряет» информационные каналы, снижает как скорость, так и качество сбора и обработки информации.

Минимальная размерность

Смысл этого требования также заключается в повышении эффективности работы ЛПР. В систему показателей должно входить минимально возможное число критериев. В данном случае это достигается за счёт снижения количества показателей благодаря агрегированию информации, отсечению не принципиальных характеристик и т.п.

3. Методы многокритериального выбора

Метод свёртки критериев

Стандартный приём «борьбы» с многокритериальным выбором это переход к однокритериальной задаче с использованием метода свёртки критериев.

Свёртка критериев означает построение интегрального показателя на основе частных критериев. Интегральный показатель I рассчитывается или как взвешенная сумма частных показателей (выражение (1) - аддитивная форма) или как их произведение (выражение (2) – мультипликативная форма), опять же нормированное на соответствующие веса (важность критериев).

K – частный критерий,

a – вес критерия, причём ,

N – количество критериев,

v - номер критерия.

Использование такого метода как свёртка критериев предполагает, что частные критерии измеряются в абсолютной шкале. Кроме того, критерии должны быть независимы друг от друга. Это означает, что справедливы выражения (3) и (4), то есть отношение предпочтения определяется либо критерием «2» - выражение (3), - либо критерием «1» - выражение (4).

(xi1, xi2) < (xi1,xj2) => (xj1, xi2) < (xj1, xj2) (3)

(xi1, xi2) < (xj1,xi2) => (xi1, xj2) < (xj1, xj2) (4)

Вес критериев, как правило, определяется экспертным методом.

Типичным примером использования метода свёртки критериев является построение интегрального показателя качества продукции.

В литературе встречается утверждение, что мультипликативная и аддитивная формы интегрального показателя эквивалентны. В подтверждение этого ссылаются на взаимную однозначность преобразования интегрального показателя из одной формы в другую, например, с использованием перехода в логарифмическую шкалу и обратно. Следует отметить, что такой переход в общем случае не сохраняет тех же самых отношений предпочтения, то есть может привести к разным выборам. Эквивалентный в смысле сохранения отношения предпочтения переход от мультипликативной формы к аддитивной требует применения весовых коэффициентов, зависящих от значения критерия 2 .

Лексикографический метод

Лексикографический метод предполагает, что имеющийся ряд критериев упорядочен по важности.

Для сравниваемых объектов сначала измеряются значения наиболее важного критерия. Предпочтительным оказывается тот объект, для которого значение этого критерия лучше.

В том случае, когда значения сравниваемых объектов по наиболее важному критерию совпадают, то переходят к сравнению на основании следующего по важности критерия.

Процедура заканчивается на той итерации, на которой удаётся упорядочить объекты по предпочтительности, или когда проведены сравнения по всем критериям.

Наверное, наиболее известный пример использования лексикографического метода – определение места команды в спортивном состязании, например, чемпионате по футболу. В этом случае победитель определяется по количеству набранных очков. В случае их равенства последовательно используются дополнительные показатели - количество побед, разность мячей, результаты очных встреч и т.п.

Выделение множества Парето

В наибольшей степени идеологии многокритериального выбора соответствует процедура выделения множества Парето (ядра графа).

Множество Парето образует набор таких объектов, что переход от одного к другому обязательно повысит значение хотя бы одного критерия и ухудшит значение минимум одного критерия. Предполагается, что каждый из критериев характеризует качественно отличный от других аспект, свойство объекта и т.п. Так как сравнение разнокачественных вещей не имеет смысла, то упорядочиванию подлежат только те пары объектов, в которых один не хуже другого по всем параметрам. Если при этом по одному или нескольким критериям один объект будет лучше другого, то говорят, что он доминирует. В множестве Парето ни один объект не доминирует над другим. Собственно, процедура нахождения множества Парето и заключается в нахождении доминирующих объектов и их исключении из рассмотрения.

В таблице 1 приведены значения двух важнейших критериев, характеризующих инвестиционные проекты: прибыль и сумма капитальных вложений для семи проектов.

Таблица 1.

Характеристика инвестиционных проектов

Показатель

Проект №1

Проект №2

Проект №3

Проект №4

Проект №5

Проект №6

Проект №7

Прибыль, млн. руб.

Кап. вложения, млн. руб.

Попарное сравнение проектов показывает, что проект №5 доминирует проект №2, а проект №1 доминирует проект №3. Эти проекты должны быть исключены из рассмотрения. Каждый из остальных проектов в каком-то смысле лучше другого оставшегося, а в каком-то хуже: или он даёт больше прибыли, но требует больших капитальных вложений, или наоборот. Проекты 1, 4, 5, 6 и 7 оптимальны по Парето. Выбор одного из них требует дополнительных соображений.

ВЫВОДЫ

Для оценки достижения цели организации используется целый ряд показателей – критериев, так как цель хозяйственной системы носит многомерный характер. Каждый из критериев должен быть количественно измерим, определён на одной из шкал измерений.

При принятии управленческих решений могут быть использованы все известные виды шкал: номинальная, ранговая, интервальная и абсолютная.

Важной задачей является построение системы показателей, отражающих генеральную цель ЛПР. В литературе сформулирован целый ряд требований, которые необходимо соблюдать, чтобы использование системы показателей было оправданным. Это требования полноты, действенности, разложимости, неизбыточности и минимальной размерности.

Наиболее распространённым методом решения многокритериальных задач является построение интегральных показателей на основе метода свёртки критериев.

Для использования метода свёртки критериев необходимо измерение значений критериев в абсолютной шкале, а также соблюдение требования независимости критериев.

Лексикографический метод решения многокритериальных задач заключается в последовательном применении упорядоченных по важности критериев.

В случае, когда разнокачественность сравниваемых объектов принципиальна, единственным адекватным подходом является выделение множества Парето.

Множество Парето образует набор таких объектов, что переход от одного к другому обязательно повысит значение хотя бы одного критерия и ухудшит значение минимум одного критерия. Выбор одного из объектов требует дополнительных соображений.

Вопросы для самопроверки

  1. Какие шкалы используются для измерения значений показателей – критериев при принятии управленческих решений?
  2. В каких целях используются номинальная шкала?
  3. Каковы особенности измерения в ранговой шкале?
  4. Какие требования предъявляются к системе показателей, являющихся критериями при принятии управленческого решения?
  5. Какие существуют методы многокритериального выбора?
  6. Каковы особенности процедуры свёртки критериев?
  7. Практикумы

    Название практикума Аннотация

    Презентации

    Название презентации Аннотация

Метод свёртки критериев

Стандартный приём «борьбы» с многокритериальным выбором это переход к однокритериальной задаче с использованием метода свёртки критериев.

Свёртка критериев означает построение интегрального показателя на основе частных критериев. Интегральный показатель I рассчитывается или как взвешенная сумма частных показателей (выражение (1) - аддитивная форма) или как их произведение (выражение (2) – мультипликативная форма), опять же нормированное на соответствующие веса (важность критериев).

K – частный критерий,

a – вес критерия, причём ,

N – количество критериев,

v - номер критерия.

Использование такого метода как свёртка критериев предполагает, что частные критерии измеряются в абсолютной шкале. Кроме того, критерии должны быть независимы друг от друга. Это означает, что справедливы выражения (3) и (4), то есть отношение предпочтения определяется либо критерием «2» - выражение (3), - либо критерием «1» - выражение (4).

(xi1, xi2) < (xi1,xj2) => (xj1, xi2) < (xj1, xj2) (3)

(xi1, xi2) < (xj1,xi2) => (xi1, xj2) < (xj1, xj2) (4)

Вес критериев, как правило, определяется экспертным методом.

Типичным примером использования метода свёртки критериев является построение интегрального показателя качества продукции.

В литературе встречается утверждение, что мультипликативная и аддитивная формы интегрального показателя эквивалентны. В подтверждение этого ссылаются на взаимную однозначность преобразования интегрального показателя из одной формы в другую, например, с использованием перехода в логарифмическую шкалу и обратно. Следует отметить, что такой переход в общем случае не сохраняет тех же самых отношений предпочтения, то есть может привести к разным выборам. Эквивалентный в смысле сохранения отношения предпочтения переход от мультипликативной формы к аддитивной требует применения весовых коэффициентов, зависящих от значения критерия 2 .

Схемы компромиссов, метод свертывания критериев

Схемы компромиссов смотреть здесь.

Метод свёртывания критериев

Локальные критерии свёртываются в глобальный в соответствии с какой-то функцией.

Линейная аддитивная свёртка:

Линейная мультипликативная свёртка: , где - вес критерия,

Нелинейная свёртка:

Эффективность-стоимость:

После операции свёртки, альтернативы упорядочиваются по значению глобального критерия: .

Основные проблемы применения метода свёртывания критерия:

· Сложно обосновать значения «весов» критериев;

· Недостатки по одним критериям могут компенсироваться большими значениями других критериев;

· Сложно обосновать вид функции свёртки критериев.

ВЫВОДЫ

Для оценки достижения цели организации используется целый ряд показателей – критериев, так как цель хозяйственной системы носит многомерный характер. Каждый из критериев должен быть количественно измерим, определён на одной из шкал измерений.

При принятии управленческих решений могут быть использованы все известные виды шкал: номинальная, ранговая, интервальная и абсолютная.

Важной задачей является построение системы показателей, отражающих генеральную цель ЛПР. В литературе сформулирован целый ряд требований, которые необходимо соблюдать, чтобы использование системы показателей было оправданным. Это требования полноты, действенности, разложимости, неизбыточности и минимальной размерности.

Наиболее распространённым методом решения многокритериальных задач является построение интегральных показателей на основе метода свёртки критериев.

Для использования метода свёртки критериев необходимо измерение значений критериев в абсолютной шкале, а также соблюдение требования независимости критериев.

Лексикографический метод решения многокритериальных задач заключается в последовательном применении упорядоченных по важности критериев.

В случае, когда разнокачественность сравниваемых объектов принципиальна, единственным адекватным подходом является выделение множества Парето.

Множество Парето образует набор таких объектов, что переход от одного к другому обязательно повысит значение хотя бы одного критерия и ухудшит значение минимум одного критерия. Выбор одного из объектов требует дополнительных соображений.

Из презентаций

здесь x – альтернатива из множества Парето

fi (x ) – оценка альтернативы x по i -му критерию

Ci – коэффициенты относительной важности критериев

Использование линейной свертки

Это задачи, связанные с критериями

суммарного ущерба или прибыли ,

дохода ,

денежных или временных затрат

по годам планирования или по этапам

жизненного цикла экономических информационных систем и т. п.,

т.е. там, где допускается, что низкая ценность одной частной характеристики результата компенсируется высокой ценностью другой

Квадратичная свертка

При решении практических задач ЛПР, как правило, ранжирует критерии в соответствии со своими предпочтениями. В этом случае в качестве интегрального критерия используются различные виды сверток

, линейная свертка ,

здесь x – альтернатива из множества W;

f i (x) – оценка альтернативы x по i-му критерию;

с i – весовые коэффициенты, с которыми оценки альтернатив входят в интегральный критерий. с i – коэффициенты значимости, или коэффициенты относительной важности критериев.

Коэффициенты с i можно найти, например, из специально организованной экспертизы: m экспертов должны расставить (ранжировать) критерии по важности:ранг 1 присвоить самому важному критерию и т.д. Пусть r ij – ранг, который присвоил j-ый экперт i-му критерию. Чтобы получить числовую оценку, введем новый коэффициент

.

Тогда коэффициент значимости i-го критерия с точки зрения j-го эксперта:

Обобщенные коэффициенты получим, усреднив оценки экспертов.

Пусть g j – компетентность j-го эксперта, тогда

.

Еще один метод назначения коэффициентов относительной важности основан на внесении предпочтений во множество критериев. Он состоит в следующем.

Пусть удается количественно выразить отношения предпочтения между критериями: критерий f i предпочтительнее критерия f j в h раз: . Тогда коэффициенты относительной важности этих критериев связаны между собой линейным уравнением C i =hC j . Это следует из теоремы:

Th. Если , то C i =hC j , C i >0, åC i =1.

Решая систему линейных уравнений, получим искомые коэффициенты.

Пример. Пусть варианты некоторой системы оцениваются по четырем критериям с пятибалльной шкалой. Значения критериевf i (х) даны в табл.13.

Пусть известно, что , f 2 ~ f 3 , .

Решение . Составим систему линейных уравнений для определения коэффициентов C i :

C 1 =1,5C 2 ; C 2 =C 3 ; C 3 =C 4 ; C 1 +C 2 +C 3 +C 4 =1;

Отсюда следует, что C 1 =3/8; C 2 =2/8; C 3 =2/8; C 4 =1/8.

В табл. 13 приведены значения интегрального критерия «Линейная свертка ».

Таблица 13

Оценки вариантов по критериям

f 1 f 2 f 3 f 4
Х1 Х2 Х3 Х4 Х5 Х6 2 5 4 5 5 3 4 3 3 2 5 5 4 3 4 4 3 4 4 4 4 3 3 4 3/8*2+2/8*5+2/8*4+1/8*5=29/8 32/8 28/8 30/8 29/8 28/8

По этому критерию лучшая альтернатива – Х 2 .

Задачи, в которых выполняются условия для использования линейной свертки, часто встречаются в практике. Это задачи, связанные с критериями суммарного ущерба или прибыли, дохода, денежных или временных затрат по годам планирования или по этапам жизненного цикла экономических информационных систем и т. п., т.е. там, где допускается, что низкая ценность одной частной характеристики результата компенсируется высокой ценностью другой.

Свертка может быть не только линейной , но и квадратичной :

,

сверткой порядка t :

,

Величина t, стоящая в показателе степени, отражает допустимую степень компенсации малых значений одних равноценных критериев большими значениями других. Чем больше значение t, тем больше степень возможной компенсации.

Например, при , т.е. когда недопустима никакая компенсация и требуется выравнивание значений всех критериев (равномерное «подтягивание» значение всех критериев к их наилучшему уровню), интегральный критерий приобретает вид

.

Если t →0, т.е. требуется обеспечение примерно одинаковых уровней значений отдельных частных критериев, то интегральный критерий имеет вид

мультипликативная функция.

При t=1 имеем линейную свертку, при t=2 – квадратичную.

В задачах планирования ударов «по узкому месту» допустима компенсация увеличения одного из критериев сколь угодно большим уменьшением остальных, т.е. , тогда интегральный критерий можно использовать в виде

.

Используя в качестве интегрального критерия свертку, выбирают в качестве лучшей ту альтернативу, для которой F(x) имеет максимальное значение .

Замечание . Входящие в интегральный критерий целевые функции имеют разную размерность и выражены в разных шкалах. Поэтому необходимо предварительно выразить все оценки в одной однородной шкале. Целесообразно использовать для этого следующий прием

,

где f i * (x) оценка альтернативы x по i-му критерию в «родной» шкале, f i max и f i min максимальное и минимальное значения альтернатив по i -му критерию. Полученные оценки принадлежат отрезку и являются дробными, что не всегда удобно для расчетов. Поэтому можно, умножив все оценки по соответствующим критериям на наименьшее общее кратное, перейти в целочисленную шкалу. Сдвиг по шкале на общую для каждого из критериев величину позволит избавиться от отрицательных оценок.


Вариант8,19 Методы решения МКЗ при равнозначных критериях