ДАТЧИКИ СИЛЫ, МЕХАНИЧЕСКОГО НАПРЯЖЕНИЯ И ПРИКОСНОВЕНИЯ

В системе СИ основными единицами счи­таются масса, длина и время, в то время как сила и ускорение – производными единицами. В Британской и американской системах единиц основными единицами счи­таются сила, длина и время. Единица измерения силы является одной из фундаменталь­ных физических величин. Измерение сил проводится и при проведении меха­нических исследований, и в гражданском строительстве, и при взвешивании объектов, и при изготовлении протезов и т.д. При определении давления также требуется измерение силы. Считается, что при работе с твердыми объектами измеряется сила, а при работе с жидкостями и газами определяется давление. Это значит, что сила рассматривается тогда, когда действие приложено к конк­ретной точке, а давление определяется тогда, когда сила распределена по срав­нительно большой площади.

Датчики силы можно разделить на два класса: количественные и качествен­ные. Количественные датчики измеряют силу и представляют ее значение в элек­трических единицах. Примерами таких датчиков являются динамометрические элементы и тензодатчики. Качественные датчики - это пороговые устройства, чья функция заключается не в количественном определении значения силы, а в де­тектировании превышения заданного уровня приложенной силы. Примером та­ких устройств является клавиатура компьютера, каждая клавиша которой замыкает соответствующий контакт только при нажатии на нее с определенной силой. Качественные датчики часто используются для детектирования движения и по­ложения объектов. Коврик у двери, реагирующий на давление, при­ложенное к нему, и пьезоэлектрический кабель также являются примерами каче­ственных датчиков давления.

Методы измерения силы можно разделить на следующие группы:

1. Уравновешивание неизвестной силы силой тяжести тела известной массы

2. Измерение ускорения тела известной массы, к которому приложена неизвес­тная сила

3. Уравновешивание неизвестной силы электромагнитной силой

4. Преобразование силы в давление жидкости и измерение этого давления

5. Измерение деформации упругого элемента системы, вызванной неизвестной силой

В современных датчиках наиболее часто применяется 5 метод, а методы 3 и 4 используются сравнительно редко.

В большинстве датчиков не происходит прямого преобразования силы в элек­трический сигнал. Для этого обычно требуется несколько промежуточных эта­пов. Поэтому, как правило, датчики силы являются составными устройствами. Например, датчик силы часто представляет собой комбинацию преобразователя сила-перемещение и детектора положения (перемещения). Это может быть про­стая спиральная пружина, уменьшение длины которой, вызванное приложен­ной силой сжатия, будет пропорционально ее коэффициенту упругости.


На рис.1А показан датчик, состоящий из пружины и детектора перемещений, реализованного на основе линейно регулируемого дифференциального трансфор­матора (ЛРДТ). В линейном диапазоне изменения длины пру­жины напряжение на выходе ЛРДТ пропорционально приложенной силе. На рис. 1Б представлен еще один вариант датчика силы, состоящий из гофрированной мембраны, заполненной жидкостью, непосредственно на которую и действует сила, и датчика давления. Гофрированная мембрана, распределяя силу на входе по поверхности чувствительного элемента датчика давления, играет роль преоб­разователя сила-давление.

Тензодатчик - это гибкий резистивный чувствительный элемент, сопротивление которого пропорционально приложенному механическому напряжению (вели­чине деформации). Все тензодатчики построены на основе ранее упоминавшегося пьезорезистивного эффекта. Проволочный тензодатчик представляет собой резистор, наклеенный на гиб­кую подложку, которая в свою очередь прикрепляется на объект, где измеряется сила или напряжение. При этом должна обеспечиваться надежная механическая связь между объектом и тензочувствительным элементом, в то время как провод резистора должен быть электрически изолирован от объекта. Коэффициенты теп­лового расширения подложки и провода должны быть согласованы. Для получения хорошей чувствительности датчик должен иметь длинные продольные участки и короткие поперечные (рис. 2). Это делается для того, чтобы чувстви­тельность в поперечном направлении не превышала 2% от продольной чувствительности. Для измерения напря­жeний в разных направлениях меняется конфигурация датчиков. Следует отме­тить, что полупроводниковые тензочувствительные эле­менты обладают довольно сильной чувствительностью к изменениям температу­ры, поэтому в интерфейсных схемах или в самих датчиках необходимо предус­матривать цепи температурной компенсации.

Тактильные датчики - это специальный класс преобразователей силы или давле­ния, кото­рые характеризуются небольшой толщиной. Эти датчики полезны в слу­чаях, когда сила или давление измеряются между двумя поверхностями, располо­женными близко друг к другу. Такие датчики часто используются в робототехнике, например, их устанавливают на «пальцы» механических приводов для обеспе­чения обратной связи при контакте с объектом - это напо­минает то, как работа­ют тактильные сенсоры кожи человека. Датчики касания используются в сенсор­ных дисплеях, клавиатурах и других устройствах, где необходимо реагировать на физи­ческое прикосновение. Тактильные датчики широко применяются в биоме­дицине, для опреде­ления прикуса зубов и правильности установки коронок в сто­матологической практике, а также при исследовании давления на ноги человека при ходьбе. Иногда при проведении операций протезирования их устанавливают в искусственные суставы для корректировки положения и т.д. В строительстве и на механических производствах тактильные датчики используются для определе­ния сил, действующих на закрепленные устройства.

Для изготовления тактильных чувствительных элементов используются не­сколько мето­дов. В некоторых из них на поверхности объекта формируется специ­альный тонкий слой из ма­териала, чувствительного к механическим напряжениям. На рис. 3 показан простой тактильный датчик, обеспечиваю­щий функции вклю­че­ния-выключения, со­стоящий из двух листов фольги и прокладки. Внутри про­кладки сде­ланы круглые (или лю­бой другой необходимой формы) отверстия. Один из листов фольги зазем­лен, а второй подсоеди­нен к нагрузочному ре­зистору. Если требуется контро­лировать не­сколько чув­ствительных зон, исполь­зуется мультиплексор. Когда к верхнему про­воднику приклады­вается внешняя сила над отвер­стием в прокладке, он прогибается и соприкаса­ется с ниж­ним проводни­ком, тем самым устанав­ливая с ним электриче­ский контакт, заземляю­щий нагрузочный резистор. При этом выходной сигнал становится равным нулю, что свиде­тельствует о прило­женной силе. Верхний и нижний проводники могут изготавливаться мето­дом тра­фаретной печати проводя­щими чернилами на подложке. Чувствительные зоны таких датчиков определяются ря­дами и колонками проводников, нанесенных чер­нилами. Прикосно­вение в опре­деленному участку чувствительной поверхности приводит к замыканию соответ­ст­вующих ряда и колонки, что по­казывает локализацию приложен­ной силы. Хорошие тактиль­ные датчики получаются на основе пьезоэлектрических пленок, которые используются как в пассивном, так и в активном режимах. Многие тактильные датчики выполняют функции сен­сорных переключателей. В отличие от традиционных переключателей, надежность контактов которых сильно снижается при попадании на них влаги и пыли, пьезоэлектрические ключи, благодаря своему монолитному исполнению, могут работать в неблагоприятных условиях окружающей среды.



Другой разновидностью тактильных датчиков является пьезорезистивный чув­ствительный элемент. Он изготавливается из материалов, чье электрическое сопро­тивление зависит от приложенного механического напряжения или давления. К таким материалам относятся проводящие эластомеры или пасты, чувствительные изменению давления. Проводящие эластомеры изготавливаются из силиконовой резины, полиуретана и других материалов, в состав которых входят проводящие час­тицы или волокна. Например, проводящая резина получается при введении в обыч­ную резину угольного порошка. Принцип действия эластомерных датчиков основан либо на изменении площади контактов при сдавливании эластомера между двумя проводящими пластинами, либо на изменении толщины эластомерного слоя. В зависимости от величины внешней силы, действующей на датчик, меняется площадь контактной зоны между прижимным устройством и эластомером, в резуль­тате чего изменяется электрическое сопротивление.

Более тонкие пьезорезистивные тактильные датчики получаются из полупро­водниковых полимеров, сопротивление которых также зависит от давления. Конст­рукция таких датчиков напоминает мембранный переключатель. По срав­нению с тензодатчиками пьезорезистивные чувствительные элементы обладают бо­лее широким динамическим диапазоном.

Пьезоэлектрические датчики силы

Рассмотренные пьезоэлектрические тактильные датчики не предназначены для проведения точных измерений силы. Однако на основе того же пьезоэлектрического эффекта можно реализовать и прецизионные датчики силы, как активные, так и пассивные. При разработке таких датчиков всегда следует помнить, что пьезоэлектрические устройства не могут измерять стационарные процессы. Это означает, что пьезоэлектрические датчики силы преобразуют изменения силы в пе­ременный электрический сигнал, но при этом они никак не реагируют на постоян­ное значение внешней силы. Поскольку приложенные силы могут изменять некото­рые свойства материалов, при разработке активных датчиков необходимо учитывать всестороннее влияние сигналов возбуждения. На рис. 4 показан вариант активного датчика силы. При проведении количественных измерений при помощи таких дат­чиков следует помнить, что его диапазон измерения зависит от частоты механическо­го резонанса применяемого пьезоэлектрического кристалла. Принцип действия та­ких датчиков основан на том, что при механической нагрузке кварцевых кристаллов определенных срезов, используемых в качестве резонаторов в электронных генера­торах, происходит сдвиг их резонансной частоты.

Емкостной датчик прикосновений

Основным элементом, необходимым для реализации системы емкостных датчиков является конденсатор переменной емкости. Он должен иметь простую конструкцию и чувствительность к прикосновениям. Так как чувствительный элемент построен как «открытый» конденсатор, электрическое поле может взаимодействовать с внешним емкостным объектом, в нашем случае — пальцем. На рисунке 1 показан вид сверху и сбоку емкостного датчика, реализованного непосредственно на плате.

Рис. 1.

Как показано на рисунке 1, конденсатор образуется между проводящим слоем и заземлением. Взаимодействие проводящего слоя и окружающих его проводников создают базовую емкость, величина которой может быть измерена. Базовая емкость такого датчика составляет около 10 пФ. Когда проводник, т.е. палец, приближается к открытому конденсатору, в результате интерференции электрического поля, изменяется емкость конденсатора. Из-за емкости пальца, емкость датчика увеличивается даже без прикосновения. С помощью измерения емкости датчика и сравнивания каждого результата с базовой емкостью, микроконтроллер может определить не только факт нажатия кнопки, но и последовательность включений, что используется для реализации более сложных интерфейсов, таких как слайдеры.

Чувствительность датчика зависит от расстояния между проводящим и заземляющим слоем. Рекомендованное расстояние — 0,5 мм. Кроме этого, общая чувствительность системы зависит от толщины платы: при уменьшении толщины платы уменьшается чувствительность. Рекомендованная толщина платы 1…1,5 мм.

Емкость датчика без емкости пальца составляет около 5…10 пФ.

Заземляющий слой под датчиком экранирует его от других электронных компонентов системы. Он также способствует поддержанию постоянной базовой емкости, которая требуется как опорная при каждом измерении.

Конструкция датчика и интерфейса с пользователем

Полный интерфейс состоит из самого емкостного датчика (реализованного на плате), а также из диэлектрика между датчиком и пальцем при его прикосновении.

Реализация емкостного датчика на печатной плате

Зависимости емкостного датчика могут быть отображены на примере обычного плоского конденсатора. Рисунок 2 отображает его ключевые элементы.

Рис. 2.

Под термином «базовая емкость» понимается результат измерения емкости датчика, который не был подвержен никакому воздействию. Для простоты в качестве базовой емкости возьмем емкость конденсатора, образованного проводящим слоем в верхней части печатной платы и заземляющим — в нижней (нижняя и верхняя пластины на рисунке 2).

Расстояние d определяется самой печатной платой. Как сказано ранее, при уменьшении d, увеличивается базовая емкость и уменьшается чувствительность. Удельные емкости пространства (e 0) и материала (e r) определяют диэлектрическую постоянную платы.

Площадь датчика A обычно ограничена размерами пальца, рассчитывается как среднее между пальцем ребенка и взрослого. Нужно обратить внимание, что площадь датчика, которую не перекрывает палец, является бесполезной.

Таким образом, в процессе разработки нужно минимизировать базовую емкость датчика. Условием хорошей чувствительности и надежности системы является максимизация изменения емкости при приближении пальца к датчику. Конечно, эти две цели взаимоисключающие: при увеличении площади датчика до размеров пальца увеличивается базовая емкость, так как она пропорциональна А.

Рис. 3.

На рисунке 3 показано расположение кнопок и слайдера, используемое в качестве примера в этом документе.

Рис. 4. Построение слоев (красный — верхний сигнальный слой, синий — нижний заземляющий слой)

На рисунке 4 показаны четыре варианта размещения датчика на печатной плате, отличающиеся по построению заземляющего слоя.

Вверху слева отображен только верхний сигнальный слой: четыре прокладки датчика, окруженные верхним заземляющим слоем; нижний слой не используется. В верхней правой части рисунка показан такой же дизайн платы с заполнением заземляющего слоя 25%. Внизу слева — версия с 50% и справа — 100% заполнением.

Рекомендуется использовать несколько заземляющих слоев под каждым датчиком для изоляции элементов датчика от шума и других внешних изменений, способных вызвать изменение базовой емкости. Очевидно, что 100% заполнение, как показано в левом нижнем углу рисунка 4, обеспечивает максимальную шумовую изоляцию, а также увеличивает базовую емкость. Для получения оптимального соотношения шумовой изоляции и базовой емкости, принято использовать заполнение от 50% до 75%.

Изоляционный слой датчика

В этом типе приложения изоляционный слой датчика выполняется из пластика. Благодаря этому слою, пальцы не контактируют непосредственно с датчиком. Модель, представленная на рисунке 2, может быть использована для визуализации интерфейса взаимодействия пальца и конденсатора. При этом нижняя обкладка выступает в роли датчика, а верхняя — палец пользователя. Становится ясным, что при увеличении площади взаимодействия до размеров пальца, увеличивается А, максимизируется изменение емкости. При увеличении слоя изоляции d, изменение емкости уменьшается обратнопропорционально. Ключевой момент, который нельзя игнорировать, это материал из которого выполняется изоляция. Диэлектрическая постоянная изоляционного материала, а так же его толщина очень сильно влияют на чувствительность и простоту использования емкостного датчика прикосновений. В таблице 1 представлены диэлектрические постоянные некоторых материалов.

Таблица 1. Диэлектрические постоянные материалов

Кроме самого изолятора, важным моментом является соединение датчика и изолятора. Если соединение не плотное и имеются промежутки, емкость датчика изменится. Поэтому часто используются клейкие изоляторы.

Использование MSP430 для измерения емкости датчика прикосновений

Теперь рассмотрим два метода измерения емкости датчика прикосновений.

Метод измерения на основе осциллятора

Первый метод основан на использовании осциллятора. Реализовать этот метод можно на базе MSP430, с использованием его компаратора и емкостного датчика в качестве элемента настройки. Любые изменения емкости датчика приведут к изменению частоты, которая может быть измерена с помощью таймера Timer_A микроконтроллера MSP430. На рисунке 5 показан пример такой системы.

Рис. 5.

Резисторы R создают опору для компаратора, когда на Px.y установлен высокий уровень. Этот сигнал противоположен по полярности сигналу зарядки или разрядки емкости датчика (C sensor), что приводит к длительным осцилляциям. При равных значениях сопротивления R граничные значения составляют 1/3 V cc и 2/3 V cc , частота осцилляций вычисляется по формуле:

f OSC = 1/

Подсчитав число периодов осцилляций в течение заданного промежутка времени, можно вычислить частоту и измерить емкость. В рассматриваемом приложении сопротивление резистора R C составляет 100 кОм. В результате частота осцилляций равна приблизительно 600 кГц при емкости датчика 10 пФ.

В качестве источника тактового сигнала используется интегрированный 12 килогерцовый VLO. Этот сигнал подается на сторожевой таймер WDT. С каждым прерыванием сторожевого таймера ядро анализирует состояние регистра таймера Timer_A, TAR. Вычисляется разница двух последних значений регистра. В реальности абсолютное значение емкости не нужно, интересно только ее изменение.

Возможно построение системы с несколькими емкостными датчиками. Для этого требуется построение мультиплексора на компараторе Comparator_A+ (рисунок 6).

Рис. 6.

Для реализации системы требуется по одному резистору на каждый датчик и три резистора для компаратора.

Метод измерения емкости на основе резистора

Второй метод измерения емкости датчика прикосновений основан на использовании внешнего резистора для зарядки или разрядки емкостного датчика. Для зарядки или разрядки используется один из портов MSP430, время заряда или разряда измеряется с помощью встроенного таймера Timer_A. На рисунке 7 изображен пример системы с использованием микроконтроллера MSP430 для измерения времени разряда конденсатора.

Рис. 7.

При значении емкости C sensor = 10 пФ и R = 5,1 М время разрядки составляет около 250 мкс. Px.y конфигурируется как выход с высоким уровнем для зарядки конденсатора. Он может быть переконфигурирован как вход, для разряда C sensor через R. Максимальный ток через порт MSP430 составляет ±50 нА.

Если порт Px.y поддерживает работу с прерываниями (у MSP430 это порты P1.x и P2.x), внутренний сигнал низкого уровня может использоваться как порог, при достижении которого они генерируются. При получении этого прерывания, ядро анализирует содержимое регистра таймера Timer_A. Таймер может использовать в качестве источника тактового сигнала внутренний DCO. Частота генерируемого сигнала при этом составляет 8 или 16 МГц (в зависимости от семейства MSP430).

Рис. 8.

На рисунке 8 показан один измерительный цикл. Таймер начинает отсчет с нуля и в момент, когда напряжение на датчике достигает порога V IT , значение таймера считывается. Также таймер может работать в режиме постоянного счета, при этом нужно производить считывание его значений в момент начала и конца разряда конденсатора и вычислять их разницу. При увеличении емкости датчика возрастает время разряда конденсатора и увеличивается число циклов таймера за время измерения.

Выше говорилось, что для каждого порта нужен один резистор. Схему можно упростить, если использовать один резистор для двух портов. Во время измерения емкости одного из датчиков порт, подключенный ко второму должен иметь низкий уровень сигнала, т.е. служит заземлением для разрядки емкости. Другое достоинство такой схемы в том, что емкость каждого датчика может быть измерена в двух направлениях: зарядка от нуля до высокого уровня и разрядка от V cc до порога низкого уровня. На рисунке 9 показан этот метод.

Рис. 9.

Подсчет тактов нужно производить два раза: во время заряда и разряда. При этом шум 50/60 МГц оказывает меньше влияния на результат измерения.

Программное обеспечение

После того как результат измерения получен, его нужно программно интерпретировать. Шум источника питания, сдвиг частоты синхронизации, внешние 50/60 МГц шумы могут привести к неправильному принятию решения.

Иногда для эффективности можно отбросить несколько младших битов результата. Это приемлемо, если нужно отслеживать только факт нажатия кнопки. Но если требуется более высокое разрешение, этого себе позволить уже нельзя. Низкочастотная фильтрация и простое усреднение нескольких полученных результатов может помочь сгладить шумы. Но для достижения низкого энергопотребления наличие младших битов результата измерения более критично.

Отслеживание базовой емкости датчика

Без возможности динамически отслеживать изменения емкости датчика, всякого рода нестабильности могут привести к ложному обнаружению нажатия кнопки или ее «залипания». Рассмотрим вариант с простой кнопкой, которая имеет два состояния: включена/выключена. В случае если результат смещается, он может приблизиться к порогу, при достижении которого кнопка считается нажатой, то есть произойдет ложное срабатывание.

Один из методов отслеживания и подстройки базовой емкости показан на рисунке 10.

Нужно обратить внимание на то, что эти действия выполняются для каждого датчика отдельно. Вычисление переменной "Delta" и подстройка "base" производится по-разному в RO- и RC-алгоритмах. В RO измеренное значение уменьшается, когда емкость конденсатора увеличивается; а в RC измеренное значение увеличивается.

После завершения измерения, в первую очередь, нужно определить, произошло ли прикосновение. Это может быть произведено путем сравнения полученного значения с порогом, соответствующим самому легкому прикосновению, которое может быть распознано. Если определено, что прикосновения не было, базовое значение подстраивается. Каким образом происходит подстройка, зависит от того, в какую сторону произошло изменение.

При увеличении результата измерения емкости рекомендуется подстраивать базовое значение более медленно. Увеличение результата может означать не только сдвиг в результате ошибок, но и в результате движения пальца в направлении датчика. И если базовое значение подстраивается быстро, реальное прикосновение пальца может быть не замечено. Для этого рекомендуется подстраивать базовое значение только на единицу каждый цикл измерения (рисунок 10).

Рис. 10.

Реализация функции обычной кнопки

Построение кнопок является самым распространенным вариантом использования емкостных датчиков. На рисунке 11 дан пример построения системы с четырьмя кнопками.

Рис. 11.

Порог, при котором принимается решение, что кнопка нажата, должен быть выше шумов.

Реализация функции слайдера

Более сложная функция, организуемая на емкостных датчиках, слайдер. При этом нужно отслеживать превышение уже нескольких порогов.

Самый простой вариант построения слайдера можно организовать, если для каждого датчика определить несколько позиций. В примере, приведенном ниже (рисунок 12), рассматривается система, в которой для каждого датчика определено 16 позиций. В результате получается 64-позиционная система.

Рис. 12.

В качестве DELTAMAX выбирается максимальное значение емкости, которое может быть достигнуто. Затем производится деление диапазона от 0 до DELTAMAX на определенное число шагов Steps. Ноль соответствует случаю, когда кнопка не нажата. По максимальному значению определяется положение пальца. Более линейная передаточная характеристика системы достигается с помощью интерполяции значений всех датчиков.

Мультиплексирование датчиков для построения слайдера

При построении слайдера расширить число датчиков при ограниченном числе портов ввода/вывода можно посредствам мультиплексирования. При этом к одному выводу подключается несколько датчиков. Дополнительный датчик приводит только к увеличению базовой емкости. Однако, при увеличении базовой емкости, в момент воздействия только на один из датчиков, отклик датчика меньше. Поэтому, обычно вместе не соединяют более двух датчиков.

Для того, чтобы определить, какой из мультиплексированных датчиков подвергается воздействию, их нужно разнести в пространстве. Пример расположения датчиков в такой системе показан на рисунке 13.

Рис. 13.

Заключение

В статье рассмотрены два метода реализации емкостных датчиков прикосновения с использованием MSP430. Каждый из методов имеет свои достоинства и недостатки. Рассмотрим основные из них.

  • Метод на основе осциллятора:

— Требуется микроконтроллер с компаратором Comp_A+;
— Число независимых датчиков ограничено количеством входов Comp_A+;
— Требуется один внешний резистор R на каждый датчик, а также цепь из трех R;
— Чувствительность ограничена потреблением мощности (программируемое время измерения);

  • Метод на основе резистора:

— Может быть реализован на любом микроконтроллере MSP430;
— До 16 независимых датчиков (16 портов ввода/вывода, работающих с прерываниями);
— Один внешний резистор R на каждые два датчика;
— Чувствительность ограничена максимальной частотой микроконтроллера (фиксированное время измерения);
— Минимальное потребление энергии;

Приложение может быть расширено и оптимизировано пользователем для реализации конечного устройства.

Полное описание различных примеров применений MSP430, исходные тексты программ, дополнительную информацию можно найти на сайте www.сайт в разделе, посвященном микроконтроллерам.

Получение технической информации, заказ образцов, поставка —
e-mail:

Новое семейство тактовых генераторов

Компания Texas Instruments представила семейство программируемых тактовых генераторов, имеющих от 1 до 4 схем ФАПЧ. ИС позволяют генерировать до 9 тактовых сигналов, синтезируемых из одной входной частоты. Каждый выход поддерживает внутрисистемное программирование частоты до 230 МГц. Перечисленные особенности предоставляют ряд преимуществ. В их числе — пониженное потребление, более быстрый процесс проектирования и простота изменения тактовых частот без необходимости повторного проектирования системы. Эти преимущества позволят существенно снизить стоимость потребительских приложений, в т.ч. IP ТВ-приставок, IP-телефонов, цифровых медиасистем (цифровые телевизоры, устройства с потоковыми медиаданными, принтеры, навигационные системы и портативные устройства).

Новые тактовые генераторы оптимизированы на работу совместно с процессорами DaVinci TM (TI) для генерации тактовых сигналов цифровых процессоров, аудио АЦП или кодеков, а также контроллеров Ethernet или USB. Встроенный кварцевый генератор, управляемый напряжением (VCXO) позволяет выполнить частотную синхронизацию различных потоков данных.

Состав нового семейства тактовых
генераторов
Наименование ФАПЧ Выход, В
CDCE949 4 2,5/3,3
CDCE937 3 2,5/3,3
CDCE925 2 2,5/3,3
CDCE913 1 2,5/3,3
CDCEL949 4 1,8
CDCEL937 3 1,8
CDCEL925 2 1,8
CDCEL913 1 1,8
О компании Texas Instruments

Робототехник (Чешск. robot, от robota - подневольный труд и rob - раб) — специалист по разработке роботов и их обслуживанию. Профессия подходит тем, кого интересует физика, математика, черчение и информатика (см. выбор профессии по интересу к школьным предметам).

Особенности профессии

Робототехника (роботехника) - это прикладная научная отрасль, посвященная созданию роботов и автоматизированных технических систем. Такие системы также называют робототехническими системами (РТС). Ещё одно название - роботостроение. Так называют процесс создания роботов, по аналогии с машиностроением. Роботы особенно нужны там, где человеку работать слишком тяжело или опасно, и там, где каждое действие должно выполняться с нечеловеческой точностью. Например, робот может взять пробы грунта на Марсе, обезвредить взрывное устройство или провести точную сборку прибора.

Конечно, для каждого вида работы нужен специальный робот. Роботов-универсалов пока не существует. Всю робототехнику можно разделить на промышленную, строительную, авиационную, космическую, подводную, военную. Кроме этого существуют роботы-помощники, роботы для игр и т.д.

Робот может работать по заранее разработанной программе либо под управлением оператора. Роботов с самостоятельным мышлением и мотивацией, со своим эмоциональным миром и мировоззрением пока тоже нет. Оно и к лучшему.

Робототехника находится в родстве с мехатроникой.

Мехатроника - это дисциплина, посвящённая созданию и эксплуатации машин и систем с программным управлением. Часто мехатроникой называют электромеханику и наоборот.

К мехатронике относятся заводские станки с программным управлением, беспилотные транспортные средства, современная офисная техника и пр. Иными словами, приборы и системы, предназначенные для выполнения какой-то конкретной задачи. Например, задача офисного принтера - печать документов.

А что такое робот по своей сути?

Как видно из самого названия, робот изначально представлялся как подобие человека. Но прагматизм берёт верх. И чаще всего роботу отводится роль технического приспособления, для которого внешность не имеет большого значения. По крайней мере, промышленные роботы на людей совсем не похожи.

Однако у роботов есть признак, который объединяет их со всеми живыми существами - движение. И способ движения порой довольно чётко копирует то, что встречается в природе. Например, робот может летать, подобно стрекозе, бегать по стене, словно ящерица, ходить по земле, словно человек и пр.

(См. ролик внизу страницы.)

С другой стороны, некоторые роботы специально рассчитаны на душевный отклик людей. Например, роботы-собаки скрашивают жизнь людям, у которых нет времени на настоящую собаку. А плюшевые «младенцы» облегчают депрессию.

Не за горами то время, когда среди прочей бытовой техники у нас появятся роботы, помогающие по хозяйству. Лично я предпочла бы слугу в виде улыбчивого пластикового кокона на колёсах. Но кому-то наверняка захочется, чтобы их роботы-мажордомы были как настоящие люди. В этом направлении уже сделаны потрясающие успехи.

Создание робота - это то, чем занимается робототехник . Точнее, инженер-робототехник . Он исходит из того, какие задачи робот будет решать, продумывает механику, электронную часть, программирует его действия. Такая работа - не для одиночки-изобретателя, инженеры-робототехники работают в команде.

Но робота нужно не только изобрести и разработать. Его нужно обслуживать: управлять работой, следить за «самочувствием» и ремонтировать. Этим также занимается робототехник, но специализирующийся на обслуживании.

В основе современной робототехники находятся механика, электроника и программирование. Но, как подсказывают фантасты, со временем для изготовления роботов будут широко использовать био- и нанотехнологи. В результате получится киборг, т.е. кибернетический организм - что-то среднее между живым человеком и роботом. Чтобы не слишком радоваться по этому поводу, можно посмотреть фильм «Терминатор», любую его часть.

Начало истории роботов

Слово «робот» придумал Карел Чапек в 1920 г. и использовал его в своей пьесе «R.U.R.» («Россумские Универсальные Роботы»). Позже, в 1941 г., Айзек Азимов использовал слово «робототехника» в научно-фантастическом рассказе «Лжец».

Но видимо, одним из первых робототехников в истории человечества можно считать арабского изобретателя Аль-Джазари, жившего в XII веке. Остались свидетельства, что он создал механических музыкантов, которые развлекали публику, играя на арфе, флейте и бубнах. Леонардо да Винчи, живший в XV-XVI веках, оставил после себя чертежи механического рыцаря, способного двигать руками и ногами, открывать забрало своего шлема. Но эти выдающиеся изобретатели вряд ли могли представить, каких вершин достигнут технологии через несколько столетий.

Обучение на Робототехника

Чтобы стать робототехником, нужно получить высшее образование по направлению «мехатроника и робототехника». В частности, к этому направлению относится специальность «роботы и робототехнические системы». Высшее образование даёт квалификацию «инженер».

На этом курсе можно получить профессию специалиста по мехатронике и робототехнике за 3 месяца и 10 000 руб.
— Одна из самых доступных цен в России;
— Диплом о профессиональной переподготовке установленного образца;
— Обучение в полностью дистанционном формате;
— Сертификат соответствия профстандарту стоимостью 10 000 руб. в подарок!;
— Крупнейшее образовательное учреждение дополнительного проф. образования в России.

Рабочее место

Робототехники работают в конструкторских бюро авиации и космонавтики. Например, в НПО им. С.А.Лавочкина. В научно-исследовательских центрах разной направленности (космос, медицина, нефтедобыча и пр.). В компаниях, специализирующихся на роботостроении.

Оплата труда

Важные качества

Профессия робототехник предполагает интерес к точным наукам и инженерному делу, аналитический склад ума, хорошо структурированное мышление в сочетании с богатым воображением.

Знания и навыки

По существу, робототехник - это универсальный специалист: инженер, программист, кибернетик в одном лице. Ему необходимо знание механики, программирования, теории автоматического управления, теории проектирования автоматических систем. Очень важны навыки конструирования, умение работать руками, например, пользоваться паяльником.

ХХ век был очень плодотворным на возникновение новых наук, одной из которых является мехатроника. Кем работать после освоения данной дисциплины? Что она представляет собой и чем занимается? Насколько она важна в современной жизни? Какие она открывает нам перспективы? Кем работают люди, которые изучают данную дисциплину в университетах и самостоятельно? Вот неполный список вопросов, на которые будет дан ответ в статье.

Что такое мехатроника?

Данный термин был получен при соединении слов «механика» и «электроника». Впервые он был применён в 1969 году. На данный момент времени мехатроника - это наука, которая посвящена созданию и целенаправленной эксплуатации машин и систем, движение которых определяется электронно-вычислительной техникой. Она базируется на знаниях механики, информатики, электроники и компьютерном управлении движения агрегатов и машин. Изучить основы мехатроники можно при желании, поскольку научно-образовательной литературы по этому направлению достаточно. Для большего придётся приложить значительные усилия, чтобы найти необходимый материал. Хотя можно, теоретически, и самому додуматься, что представляет собой мехатроника. Что это такое мы уже выяснили, давайте перейдём к отдельным аспектам.

Связь с робототехникой

Очень часто их можно встретить вместе. Почему так? Дело в том, что робототехника - это самое перспективное направление мехатроники, которое может развиваться исключительно в её рамках. Здесь необходимо сделать небольшое отступление. Дело в том, что сейчас мехатроника занимается автомобильной, авиационной, космической, бытовой, медицинской и спортивной техникой. Но чтобы изготавливать предметы этого типа существуют отдельные специальности. И специально, чтобы акцентировать внимание на том, что студенты будут заниматься проектированием роботов, станков с численно-программным управлением и подобных устройств, а также их созданием, направление подготовки и называется «мехатроника и робототехника».

Общее описание практической составляющей

Что нам даёт мехатроника? Что это такое с точки зрения практики создания? Давайте рассмотрим общую схему построения машин, которые имеют компьютерное управление и ориентированы на то, чтобы автоматизировать производственные и бытовые задачи. Внешней средой для них является технологическое окружение, с которым будет происходить взаимодействие. Когда мехатронная система выполняет свои функции, то это происходит благодаря рабочим органам. Следует отметить, что данное научное направление является довольно молодым, в нём много неточностей и расплывчатых формулировок даже в научной литературе, поэтому со временем некоторые теоретические принципы могут поменяться. Мехатронные системы формируются из трех частей, которые связаны между собой информационными и энергетическими потоками:

  1. Электромеханической. Сюда относят механические звенья, передачи, электродвигатели, сенсоры, рабочий орган, дополнительные электротехнические элементы, сенсоры. Все составляющие применяются для того, чтобы обеспечить необходимые движения. Особую важность для корректного выполнения поставленных задач имеют сенсоры. Они собирают данные про состояние объекта работ и внешней среды, непосредственно мехатронного устройства и его составляющих.
  2. Электронный. Сюда относят микроэлектронные устройства, силовые преобразователи и измерительные цепи.
  3. Компьютерной. Сюда относятся микроконтроллеры и высшего уровня.

Основные функции мехатронных систем

На данный момент времени их выделяют 4:

  1. Управление процессом механического движения в режиме реального времени с одновременной обработкой информации, что поступают с их сенсоров.
  2. Соорганизация своих действий с внешними источниками влияния.
  3. Взаимодействие с человеком посредством специального интерфейса в или в реальном времени.
  4. Организация обмена данными между сенсорами, и другими составляющими элементами системы.

Задача мехатроники

Они должна решать проблему преобразования входной информации, что поступает с верхнего уровня управления в необходимые При этом, как правило, используется принцип обратной связи. В проектировании эта задача выражается в том, что происходит интеграция в один функциональный модуль нескольких элементов, что имеют разную природу - в этом специфичность, которую имеет мехатроника. Специальность людей, которые занимаются выполнением данных целей может быть самой разной. В идеале при предоставлении планируемой информации будет получаться желаемый результат. Помочь в этой аппаратной составляющей должно программное обеспечение.

Преимущество мехатронного подхода при решении реальных задач

Сравнение будет проводиться с традиционными средствами автоматизации:

  1. Относительно низкая стоимость систем, что достигается благодаря значительной интеграции, стандартизации и унификации всех составляющих интерфейсов и элементов.
  2. Возможность реализации точных и сложных движений благодаря методам интеллектуального управления.
  3. Высокий уровень надежности, долговечности и помехозащищенности.
  4. Компактность используемых модулей, что позволяет обходиться меньшей площадью. Также их можно относительно легко совмещать для достижения возможности выполнения конкретных задач.
  5. Благодаря упрощению кинематических цепей машины обладают хорошими динамическими и массогабаритными характеристиками.

Вот благодаря чему развивается мехатроника и робототехника. Специальность в данном случае позволяет получить уже отобранные и готовые у изучению данные, тогда как при самообразовании придётся всё искать самому.

Примеры мехатроники в реальной жизни

Где можно найти подобные системы около нас? Для этого предлагаю взглянуть на такие области людской деятельности:

  1. Станкостроение и изготовление оборудования для проведения автоматизации технологических процессов.
  2. Робототехника.
  3. Военная, космическая и
  4. Автомобилестроение (так, мехатронными системами является стабилизация движения, автоматическая парковка и подобные разработки).
  5. Различные нестандартные средства передвижения и транспортировки (электророллеры, грузовые тележки, электровелосипеды).
  6. Контрольно-измерительные машины и устройства.
  7. Офисная техника (факсимильные и копировальные аппараты).
  8. Медицинское оборудование (реанимационное, реабилитационное, клиническое).
  9. Бытовая техника (швейные, посудомоечные, стиральные и иные машины подобного типа).
  10. Тренажеры для подготовки операторов, водителей, пилотов.
  11. Системы светового и звукового оформления.
  12. Микромашины (активно применяются в медицине, биотехнологиях, средствах телекоммуникации).

Продолжать этот список можно ещё очень долго.

Высшее образование: мехатроника и робототехника

Вузы предлагают возможность обучения широкому спектру профессиональных умений. Этот список может быть очень длинным, но постараемся сделать его как можно короче:

  1. Проводить оценку актуальности, перспективности и значимости проектов.
  2. Разрабатывать информационные, электромеханические, электрогидравлические, электронные и микропроцессорные макеты модулей систем.
  3. Создавать программное обеспечение, чтобы при необходимости осуществлять управление мехатронными приборами.
  4. Составлять проектные документы, в которых будет описываться конструкция и процесс изготовления отдельных деталей.
  5. Контролировать разработки на предмет соответствия стандартам.
  6. Изготавливать, собирать и испытывать проектируемую технику.
  7. Составлять патентные и лицензионные паспорта.
  8. Делать модернизацию и отладку мехатронных систем.
  9. Подготавливают инструкцию по использованию устройства.

Вот что может предоставить своим студентам любой лицензированный министерством образования факультет мехатроники и робототехники. Их мало, в основном существуют отдельные кафедры, но и на них можно получить необходимое образование.

Самореализация человека, которому известна мехатроника и робототехника: кем работать?

Где можно будет трудоустроиться после получения образования? Специалисты данного профиля создают и конструируют робототехнические системы промышленного и бытового использования. Также они могут разрабатывать программное обеспечение, чтобы обеспечить управление ими и удобную эксплуатациею. После получения образования обычно начинают работать на должности помощников конструкторов, программистов и техников, хотя перспективы дальнейшего места работы очень широкие, ведь облегчение труда человека и улучшение его результата - вот конечная задача, которую имеет мехатроника. Что это такое, мы уже изучили. И напоследок хотим сообщить, что потенциально можно будет заниматься одним из таких видов деятельности:

  1. Научно-исследовательской.
  2. Проектно-конструкторской.
  3. Эксплуатационной.
  4. Организационно-управленческой.

Особенностью данной специальности является то, что ощущается значительная нехватка кадров. Поэтому не редкостью являются факты трудоустройства даже самоучек, которые смогли продемонстрировать значительный уровень умений и практических навыков.

Заключение

Все профессии важны, все они нужны. Не преувеличивая, можно сказать, что описанная нами - одна из специальностей будущего. Спрос на работников умственного труда такого профиля постоянно растёт. Этот факт, а также хороший уровень денежного обеспечения позволяет говорить нам о том, что в это направление станет значительно популярней в ближайших десятилетиях. Возможно, что специальности юристов, экономистов и управленцев отойдут на задний план, и вперёд выйдет мехатроника. Что это такое, мы уже знаем, а с пониманием важности данной научной дисциплины будет приходить и согласие с данными словами.

Национальный фонд образовательной робототехники в 2015 году опросил руководителей высшего звена: 81% опрошенных отметили роботизацию главной причиной роста занятости. Во всем мире растет спрос на “интеллектуальные” фабрики и появляется потребность в роботах.

По данным интернет-издания Nearshore Americas, в 2017 году “умное” производство привнесет в мировую экономику около 500 миллиардов долларов. В опросе, проведенном технологической консалтинговой фирмой Capgemini, более половины респондентов заявили, что инвестировали 100 миллионов долларов или более в инициативы, связанные с “умными” заводами в течение последних пяти лет. В исследовании делается вывод о том, что к 2022 году по меньшей мере 21% производственных предприятий станут интеллектуальными.

Бюро статистики США (BLS) сообщает, что за последние 7 лет компании внедрили 136 748 роботов на производственные линии. BLS также определило, что в результате автоматизации было создано 894 000 новых рабочих мест. Авторы книги «Что делать, когда машины делают все» Малкольм Френк, Пол Рериг и Бен Принг предполагают схожую тенденцию: в течение следующих 10-15 лет 19 миллионов рабочих мест будут потеряны из-за автоматизации, но 19 миллионов новых рабочих мест будут созданы также благодаря автоматизации.

Короче говоря, для инженеров-робототехников прямо сейчас открываются новые возможности, а вместе с ними и новые горизонты в образовании и самообразовании.

Потенциал профессий, связанных с робототехникой

В апреле этого года Ассоциация по развитию автоматизации (A3) , в котором говорится, что 80% производителей сообщают о нехватке квалифицированных кадров, что станет причиной потери 11% годового дохода. Однако новые технологии автоматизации повышают производительность и помогают создавать более качественные продукты. А это в свою очередь позволяет предпринимателям развивать свой бизнес и увеличивать рабочие места.

В докладе A3 было отмечено, что роботы увеличивают производительность труда с той же скоростью, что и паровой двигатель: 0,35% в год. Amazon — отличный пример того, как роботы увеличивают рабочие места. В 2014 году на компанию Amazon Robotics работало 45 000 штатных сотрудников. А три года спустя это число удвоилось до 90 000.

Производства оснащают робототехникой, однако робот может автоматизировать задачи, но не полный процесс — управлять роботами в любом случае должны люди. Если количество машин на заводах увеличивается, то и число квалифицированных специалистов, необходимых для программирования, эксплуатации и обслуживания этих роботов, также будет расти.

Для студентов

Для молодого инженера, который хочет войти в робототехнику, есть ключевые области исследований, на которых следует сосредоточиться. Робототехника — это междисциплинарное направление, которое объединяет в себе несколько областей техники, включая машиностроение, компьютерное программирование и электротехнику.

В средней школе будущему инженеру-робототехнику необходимо глубоко изучить математику и физику. Эти базовые предметы составляют основу многих роботизированных курсов. Также уже в средней школе следует пройти курсы по программированию, дизайну и познакомиться с производственными станками.

На университетском уровне многие учебные заведения предлагают робототехнику в качестве самостоятельной области обучения. Выделяют три ключевых направления:

  1. Тело (машиностроение). Инженер-механик отвечает за физическую систему: части роботов (например, двигатели и приводы). Меры безопасности и операционные протоколы также относятся к этой отрасли техники.
  2. Нервная система (электротехника). Это электронная основа робота включает встроенные системы, низкоуровневое программирование схем, электрическое сопротивление и теорию управления.
  3. Мозг (компьютерная инженерия). В этой группе основное внимание уделяется программному языку, а не аппаратным средствам, охватывающим такие темы, как искусственный интеллект (ИИ) и машинное обучение.

В России многие вузы готовят бакалавров по направлению “Мехатроника и робототехника”, а также по смежным дисциплинам. Вот некоторые из них:

  • МГТУ им. Н.Э. Баумана
  • ТПУ — Национальный исследовательский Томский политехнический университет
  • ТГУ — Национальный исследовательский Томский государственный университет
  • СПбГПУ — Санкт-Петербургский государственный политехнический университет
  • УрФУ — Уральский федеральный университет имени первого Президента России Б.Н. Ельцина
  • СПбНИУ ИТМО — Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики
  • ДВФУ — Дальневосточный федеральный университет
  • НИУ МЭИ — Национальный исследовательский университет «МЭИ»
  • БГТУ им. В. Г. Шухова — Белгородский государственный технологический университет им. В. Г. Шухова
  • МГТУ СТАНКИН — Московский государственный технологический университет «СТАНКИН»

Российские производители робототехники заинтересованы в качественном обучении будущих инженеров. Компания Promobot разработала несколько курсов по робототехнике для школьников. Сейчас компания развивает универсальную робототехническую платформу Promobot на базе собственной разработки Software Developer Kit (SDK). Платформа позволяет инженерам со всего мира писать для робота новые функциональные модули, обучать Promobot новым сценариям работы и настраивать его под потребности своего бизнеса. На базе Promobot SDK разрабатываются и внедряются образовательные программы для российских и зарубежных школ и технических вузов.

Для профессионалов

В последние годы многие роботостроительные компании создали собственные сертификационные программы для содействия обучению специалистов. Некоторые из них создали университеты и учебные программы на собственных роботизированных платформах.

Universal Robots является одним из основных продавцов роботов. Компания имеет собственную платформу обучения — Universal Robot Academy. Крупные производители роботов, такие как Kuka и FANUC, предлагают программы сертификации. Программа Kooka Official Robotics Education (KORE) предназначена для преподавания в средних школах, колледжах, университетах и профессионально-технических училищах.

Онлайн-курсы от таких компаний, как Bosch, Kuka, iRobot и Lockheed Martin, представлены платформой онлайн-обучения Udacity . Udacity — это новая онлайн-платформа обучения, цель которой — предоставить доступное образование в Интернете. Курсы созданы профессионалами в области образования и спонсируются крупными компаниями отрасли.

Одна из самых крупных платформ — EdX . Тут, например, можно прослушать курс от Колумбийского университета по робототехнике или курсы от MIT. Также существуют платформы в русскоязычными курсами, например, Coursera,