В дореволюционное время наша страна располагала 21 импортной кислородной установкой общей производительностью 530 кислорода в час. Первая отечественная кислородная установка производительностью 100 м3/час была изготовлена в 1932 г. Московским автогенным заводом.
В тридцатых годах в России был освоен выпуск стационарных установок производительностью 30 м3/час, установок жидкого кислорода производительностью 250 л/час, автомобильных установок жидкого кислорода производительностью 7 л/час. а в предвоенные годы были спроектированы, изготовлены и введены в эксплуатацию первые крупные установки, позволившие получать с каждого агрегата по 5000 м3/час воздуха, обогащенного кислородом до 60%.
Мощность всех установок по Советскому Союзу, построенных в послевоенный период, к 1960 г. намечено довести до 460 тыс. м3/час. Реализация этой программы позволит нашей стране выйти на первое место в мире по объему и технике производства кислорода, а также по количеству кислорода, применяемого в металлургии.
Уместно отметить, что ФРГ производит 350 000 м3/час кислорода, а общая производительность кислородных станций США в 1952 г. оценивалась в 200-250 тыс. м3/час, включая 4 установки фирмы «Стесси Дрессер» мощностью по 29 тыс. м3/час каждая, которые в дальнейшем были законсервированы вследствие их неработоспособности. В настоящее время, по литературным данным, в США эксплуатируются агрегаты производительностью до 5000 м3/час.
В России успешно завершена работа по созданию новых эффективных типов кислородных установок и тем обеспечена возможность широкого промышленного применения кислорода в ведущих отраслях производства.
Советским ученым и инженерам принадлежит приоритет получения кислорода методом разделения составных частей воздуха - глубоким охлаждением; это направление является в настоящее время основным в создании крупных кислородных и азотных установок как у нас, так и за границей. В частности, все мощные станции, сооружаемые для интенсификации процессов в нашей черной и цветной металлургии, будут работать по этому методу, основанному на различной температуре кипения жидкого кислорода (-182,9°) и жидкого азота (-195,8°). Процесс получения кислорода состоит в получении жидкого воздуха сжатием атмосферного воздуха компрессорами, последующего его расширения с отдачей производимой при этом работы в детандерах, ректификации с разделением на кислород и азот, причем первый может быть выдан в виде газа или жидкости.
При обогащении воздуха кислородом считается нецелесообразным получение сравнительно чистого, дорогого кислорода в связи с неизбежным при высокой степени компрессии уменьшением производительности установки. Но получение кислорода чистотою ниже 90% также считается нецелесообразным, так как в этом случае значительно увеличиваются размеры и стоимость оборудования установок. Изменение стоимости кислорода с увеличением степени его чистоты ориентировочно характеризуется следующими данными:

В России создана кислородная установка БР-1 производительностью 12-18 тыс. м3/час кислорода. Такой агрегат смонтирован на Ново-Тульском металлургическом заводе и действует безотказно, заменяя в отдельные периоды шесть установок типа КТ-3600 и КТ-2400. Он расходует на 60% меньше энергии, чем агрегат американской фирмы «Стесси Дрессер», и на 30% меньше, чем агрегаты фирмы «Линде»; штат обслуживающего персонала БР-1 в 5 раз, а расход металла на 40% меньше по сравнению с лучшими заграничными установками.

Установки БР-1 и БР-3 создали надежную базу для широкого внедрения кислорода в различные отрасли народного хозяйства и явились основой для дальнейшего проектирования еще более мощных агрегатов производительностью 30-50 и даже 100 тыс. кислорода в час.
Тенденция разработки и освоения все более крупных установок по выработке кислорода обусловлена тем, что удельные (на 1 м3) капитальные затраты и себестоимость продукции резко понижаются с повышением производительности агрегата. Считается, что при увеличении производительности установки в 3 раза удельные капиталовложения сокращаются в 1,5 раза, а себестоимость продукта - кислорода, аргона - снижается примерно в 1,4 раза (рис. 2 и табл. 1).

Краткая характеристика установок для получения технологического кислорода, сооружаемых в России, приведена в табл. 2.
В тех случаях, когда потребность в техническом кислороде не велика и сооружать кислородную станцию нецелесообразно, он доставляется к месту потребления в баллонах, танках, железнодорожных цистернах или, наконец, по трубопроводу с соседних станций. Известно, например, что кислород применяется в настоящее время в Швеции для интенсификации металлургических процессов на 10 заводах, в то время как кислородная станция имеется только на заводе «Домнарвет» и на небольшом заводе, где производительность кислородной установки составляет всего лишь 315 м3/час, а остальные заводы пользуются кислородом со стороны, получая его по трубопроводам, в танках и баллонах. 3 США примерно 75% всего производимого в стране кислорода поставляется в жидком виде. Транспортные танки, установленные на автомашинах, вмещают 1200 и 6000 л жидкого кислорода, что соответствует 1000 и 5100 газообразного кислорода; потери кислорода в танках составляют 0,1-0,3% в час. Железнодорожные кислородные цистерны изготовляются емкостью 10, 13,5 и 32 г жидкого кислорода; потери кислорода из цистерн составляют 3-5% в сутки.

Жидкий кислород, поступающий в танках или цистернах, переводят в газообразное состояние в специально сооружаемых испарительных станциях, состоящих из стационарных танков, газификаторов и приемников газообразного кислорода (газгольдеры) или газодувок для подачи кислорода непосредственно в технологический агрегат. При использовании кислорода, поступающего к месту потребления в баллонах, для удобства работы целесообразно применять рампу, к которой можно подключать, в зависимости от потребного количества кислорода, от нескольких штук до нескольких сот баллонов.

Имя:*
E-Mail:
Комментарий:

Добавить

23.03.2019

Правильное обустройство освещение во многом определяет красоту придомовой территории. Осветительных приборов для установки на улице в продаже предлагается очень много....

22.03.2019

Одна из самых больших проблем в квартире – узкие темные коридоры. Как визуально расширить « темный тоннель» и сделать его уютнее?...

22.03.2019

Со временем гидроизоляция бассейнов может обнаружить неисправности из-за постоянных внутренних и внешних сил, воздействующих на него. Хотя эти трещины часто начинаются с...

22.03.2019

Для предотвращения разрушения несущих конструкций подвальных помещений, а также для устранения активных протеканий воды выполняется профессиональная гидроизоляция...

22.03.2019

Уход за приусадебным участком довольно хлопотное занятие. Но если не уделять ему должного внимания, газон быстро превратится в поле с сорняками....

22.03.2019

Респираторы являются надежной и простой защитой дыхательных органов от опасных газов, пыли и химических паров. Данные приспособления способны защитить дыхательные органы...

20.03.2019

Чтобы составить объективное заключение, касательно возможности осуществления намеченного строительного проекта и его безопасности в существующих геологических и...

20.03.2019

Наверняка большинство людей, проживающих на территории нашего государства, слышали о такой услуге, как приём металлолома в Москве, но далеко не все осознают, насколько...

Для получения технически чистого кислорода воздух подвергается глубокому охлаждению и сжижается (температура кипения жидкого воздуха при атмосферном давлении - 194,5°). Полученный жидкий воздух подвергается дробной перегонке или ректификации в ректификационных колоннах. Возможность успешной ректификации основывается на довольно значительной разности (около 13°) в температурах кипения жидких азота (-196°) и кислорода (-183°).

Воздух, засасываемый многоступенчатым компрессором, проходит сначала через воздушный фильтр, где очищается от пыли, затем проходит последовательно ступени компрессора (на фигуре изображён четырёхступенчатый компрессор). За каждой ступенью компрессора давление воздуха возрастает и доводится до 50-220 атм в зависимости от системы установки и стадии производства. После каждой ступени компрессора воздух проходит влагоотделитель, где осаждается вода, конденсирующаяся при сжатии воздуха, и водяной холодильник, охлаждающий воздух и отнимающий тепло, образующееся при сжатии. Между второй и третьей ступенями компрессора для поглощения углекислоты из воздуха включается аппарат - декарбонизатор, заполняемый водным раствором едкого натра. Сжатый воздух из компрессора проходит осушительную батарею из баллонов, заполненных кусковым едким натром, поглощающим влагу и остатки углекислоты. Возможно полное удаление влаги и углекислоты из воздуха имеет существенное значение, так как замерзающие при низких температурах вода и углекислота забивают трубки кислородного аппарата сравнительно малого сечения и заставляют прекращать работу установки, останавливая её на оттаивание и продувку кислородного аппарата.

Пройдя осушительную батарею, сжатый воздух поступает в так называемый кислородный аппарат, где происходит охлаждение и сжижение воздуха и его ректификация с разделением на кислород и азот. Нормальный кислородный аппарат включает две ректификационные колонны, испаритель, теплообменник, дроссельный вентиль. Сжатый воздух охлаждается в теплообменнике отходящими из аппарата кислородом и азотом, дополнительно охлаждается в змеевике испарителя, после чего проходит дроссельный вентиль, расширяясь и снижая давление. Вследствие эффекта Джоуля-Томсона температура воздуха при расширении резко падает и происходит его сжижение.

Жидкий воздух испаряется в процессе ректификации, процесс испарения и отходящие газообразные продукты ректификации - азот и кислород - охлаждают новые порции сжатого воздуха, поступающего из компрессора, и т.д. Газообразный азот чистотой 96-98% обычно не используется и из теплообменника выпускается в атмосферу. Газообразный кислород чистотой 99,0-99,5% направляется в резиновый газгольдер, откуда засасывается кислородным компрессором и подаётся для наполнения кислородных баллонов под давлением 150 атм.

Установка работает непрерывно круглосуточно до замерзания аппарата или появления каких-либо неисправностей, требующих остановки для ремонта. По замерзании аппарата работа прекращается и начинается период отогрева аппарата тёплым воздухом, подаваемым компрессором. По окончании отогрева производятся продувка аппарата, необходимый текущий ремонт, и установка готова к новому пуску.

Полный производственный цикл установки называется кампанией, нормальная продолжительность которой около 600 час, из них полезной работы с выдачей кислорода 550-560 час. В пусковой период, когда требуется интенсивное охлаждение аппарата и скорейшее создание запаса жидкого воздуха, компрессор подаёт воздух под давлением около 200 атм, когда же устанавливается нормальный ход процесса, расход холода уменьшается и рабочее давление компрессора снижается до 50-80 атм. Сказанное относится к получению из аппарата газообразного кислорода, который уносит с собой немного холода из аппарата, отдавая большую часть холода в испарителе и теплообменнике аппарата. В настоящее время часто значительная часть кислорода отбирается из аппарата в жидком виде. С жидким кислородом, имеющим температуру -183°, из аппарата уносится много холода, и для возможности нормальной работы установки необходимо усилить охлаждение системы. Это достигается двумя путями: 1) повышением рабочего давления воздушного компрессора; 2) совершением внешней работы при расширении воздуха.

При работе установки для получения жидкого кислорода рабочее давление воздушного компрессора поддерживается около 200 атм. на протяжении всей кампании, вместо 50-80 атм., достаточных для производства газообразного кислорода. При производстве жидкого кислорода сжатый воздух из компрессора разделяется на два примерно одинаковых потока, один из которых направляется непосредственно в кислородный аппарат, как было описано выше, другой же предварительно поступает в специальную поршневую машину, так называемую расширительную машину или детандер. В детандере поступающий сжатый воздух расширяется, совершая внешнюю работу, и снижает давление с 200 до 6 атм. Расширение в детандере с совершением внешней работы охлаждает воздух значительно сильнее, чем расширение в дроссельном вентиле кислородного аппарата за счёт эффекта Джоуля-Томсона. Воздух охлаждается на выходе из детандера примерно до -120° и поступает в кислородный аппарат, смешиваясь с частью воздуха, поступающего в кислородный аппарат помимо детандера. Указанные изменения позволяют непрерывно отбирать жидкий кислород из аппарата без нарушения процесса производства.

Транспортирование и хранение кислорода

Производство кислорода из воздуха ведётся непрерывно круглосуточно, в малых масштабах оно нерентабельно. Обычно лишь предприятия с большим потреблением кислорода, не менее 400 - 500 м 3 в сутки, могут иметь собственные кислородные установки, основная же масса потребителей со средним и малым потреблением кислорода получает его со специальных кислородных заводов. Поэтому существенное значение приобретает транспорт и хранение кислорода, часто обходящиеся дороже его производства. Кислород обычно хранится и транспортируется в газообразном виде в стальных баллонах под давлением 150 атм.

Кислородный баллон представляет собой цилиндр со сферическим днищем и горловиной для крепления запорного вентиля. На нижнюю часть баллона насаживается башмак, позволяющий ставить баллон вертикально. На горловину насаживается кольцо с резьбой для навёртывания защитного колпака. Горловина имеет внутреннюю коническую резьбу для ввёртывания вентиля.

По ГОСТ баллоны изготовляются из стальных цельнотянутых труб углеродистой стали с пределом прочности не ниже 65 кг/мм2, пределом текучести не ниже 38 кг/мм2 и относительным удлинением не ниже 12%. Кислородные баллоны изготовляются для разных целей ёмкостью от 0,4 до 50 л. В сварочной технике применяются главным образом баллоны ёмкостью 40 л. Такой баллон имеет наружный диаметр 219 мм, длину корпуса 1390 мм, толщину стенки 8 мм; весит баллон без кислорода около 67 кг.

Баллоны из углеродистой стали для рабочего давление 150 атм имеют вес тары 1,6-1,7 кг! л ёмкости, В последнее время начато освоение баллонов из легированных сталей с пределом прочности 100-120 кг/мм2, что даёт возможность повысить рабочее давление баллонов и снизить их вес в 2-2,5 раза для той же ёмкости и рабочего давления. Чтобы избежать опасных ошибок при наполнении и использовании, баллоны для разных газов окрашиваются в различные цвета, кроме того, присоединительный штуцер запорного вентиля имеет различные размеры и устройство. Кислородные баллоны окрашиваются снаружи в голубой цвет и имеют надпись чёрными буквами кислород. Через каждые пять лет кислородный баллон подвергается обязательному испытанию в присутствии инспектора Котлонадзора, что отмечается клеймом, насекаемым на верхней сферической части баллона. Производится также гидравлическое испытание на полуторное рабочее давление, т.е. на 225 атм. Вентиль кислородного баллона изготовляется из латуни. Присоединительный штуцер вентиля имеет правую трубную резьбу 3/4, Во время хранения вентиль защищается предохранительным колпаком, который навёртывается на наружное кольцо горловины баллона. Баллон, заполненный кислородом под давлением 150 атм, при нарушении правил обращения с ним может дать взрыв значительной разрушительной силы. Поэтому при обращении с кислородными баллонами необходимо строго соблюдать установленные правила безопасности. В особо ответственные или опасные цехи рекомендуется вообще не вносить кислородных баллонов, а располагать их вне цеха в отдельной пристройке, и подавать в цех по трубопроводу редуцированный кислород пониженного давления, обычно 10 атм.

Простейшая пристройка в форме железного шкафа у наружной стены. Обычно в цехе не должно находиться одновременно более 10 баллонов. В цехе баллоны должны прикрепляться хомутом или цепью к стене, колонне, стойке и т.п. для устранения возможности падения. На территории завода баллоны нужно переносить на носилках или лучше перевозить на специальных тележках; переносить баллоны на руках или на плечах запрещается. При перевозке баллонов на автомашинах или подводах необходимо обязательно применять деревянные подкладки, устраняющие перекатывание и соударения баллонов. Погрузка и выгрузка баллонов должны производиться осторожно, без толчков и ударов. Баллоны необходимо защищать от нагревания, например от печей, вызывающего опасное повышение давления газа в баллонах.

Для возможности пользования жидким кислородом необходимы: 1) транспортный танк для перевозки жидкого кислорода, установленный на автомашине, обычно принадлежащий кислородному заводу; 2) газификатор, служащий для превращения жидкого кислорода в газообразный и устанавливаемый обычно у потребителя кислорода.

поликристаллический кислород полупроводниковый кремний

Введение




в) доменное производство;

д) прокатное производство.


Требования по выполнению режимов труда и отдыха.

1.3.1. Режим труда и отдыха апратчиков производится согласно графику, «4-х бригадный 2-х сменный при непрерывной производственной неделе с 12-ти часовыми сменами, утвержденному директором по персоналу и общим вопросам.

1.3.2. Вступление на дежурство и уход с дежурства аппаратчика производится по утвержденному графику. Меняться дежурством только с разрешения администрации отделения.

1.3.3. Для приемки смены нужно явиться на рабочее место не менее чем за 30 минут до начала дежурства.

1.3.4. В случае невыхода на работу сменщика необходимо сообщить сменному мастеру участка разделения воздуха. Уход с дежурства в данном случае, до сдачи смены, запрещается.

1.3.5. Сдачу дежурства разрешает начальник смены.

1.3.6. Во всех случаях приемка смены производится после разрешения сменного мастера участка разделения воздуха.

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ВО ВРЕМЯ РАБОТЫ.

Требования к использованию средств защиты работников.

2.3.1. Аппаратчик должен работать в спецо­дежде, застегнутой на все пуговицы. На одежде не должно быть развеваю­щихся частей, которые могут быть захвачены движущимися (вращающимися) частями механизмов. Засучивать рукава спецодежды запрещается.

При нахождении в помещениях с действующим энергетическим оборудо­ванием, камерах, каналах, тоннелях и в ремонтной зоне аппаратчик должен надевать застегнутую подбородным ремнем за­щитную каску. Волосы должны убираться под каску.

2.3.2. При выходе в рабочую зону с повышенным уровнем шума необходимо пользоваться берушами.

2.3.3. При авариях в газовом хозяйстве необходимо использовать газозащитную аппаратуру (ГЗА) – кислородные изолирующие противогазы.

2.3.4. При обслуживании мазутных форсунок пользоваться светозащитными очками.

2.3.5. При производстве работ по продувке водоуказательных колонок и при проверке СПУ, если аппаратчик выполняет обязанности обходчика, использовать защитные очки или прозрачную маску для лица.

2.3.6. При производстве одноразовых работ по уборке рабочей зоны, покраске закрепленного оборудования пользоваться респираторами и защитными очками.

2.3.7. Производство всех видов работ, кроме уборки вращающихся механизмов, производить в рукавицах.

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ПО ОКОНЧАНИИ РАБОТЫ.

Порядок безопасного отключения, остановки, разборки, очистки и смазки оборудования, приспособлений, машин, механизмов и аппаратуры, а при непрерывном процессе – порядок передачи их по смене, порядок сдачи рабочего места.

3.1.1. Аппаратчик по окончании работы обязан произвести тща­тельную уборку рабочего места.

3.1.2. Проверить состояние техники безопасности и противопожарное состояние рабочего места.

3.1.3. Привести в порядок инструмент, инвентарь, приспособления и сложить в специально отведенные места.

Порядок сдачи рабочего места, в том числе порядок и безопасные меры по удалению опасных и вредных веществ и материалов из рабочей зоны, а также меры по удалению и обезвреживанию отходов производства, являющихся источниками опасных и вредных производственных факторов.

3.2.1. Аппаратчик обязан дать сменщику полные сведения о состоянии и режиме работы оборудования, обо всех не­исправностях, неполадках, имевших место во время смены.

Дать все замечания по технике безопасности, принятых мерах по ус­транению замечаний.

3.2.2. Аппаратчик оформляет сдачу смены росписью в суточной ведомости.

3.2.3. Использованная ветошь складируется в специальные ящики для использованной ветоши.

3.2.4. Мусор и бытовые отходы, строительные отходы, лом черных металлов убираются в контейнеры с соответствующей маркировкой.

Ректификация воздуха.

Ректификация – разделение смесей на составляющие вещества в результате взаимодействия потоков жидкости и пара, которые обычно движутся навстречу друг другу.

Рис.3


Библиографический список

1. Д.Л. Глизманенко “Получение Кислорода”. Изд. 5-е М.”Химия” 1972, 752с., 46табл;

2. http://www2.spiraxsarco.com/esc/SSW_Properties.aspx?country_id=ru&lang_id=rus

3. http://docs.cntd.ru/document/1200080702

Введение

Атмосферный осушенный воздух представляет собой смесь, содержащую по объему кислорода 20,95 % и азота 78,09 %, остальное – аргон 0,93%, криптон 1,14 , ксенон 8,6 и другие инертные газы, углекислый газ и пр. Содержание водяных паров в воздухе может меняться в широких пределах в зависимости от температуры и степени насыщения. Для получения технически чистого кислорода воздух подвергают глубокому охлаждению и сжижают (температура кипения жидкого воздуха при атмосферном давлении – 194,5 °С). Полученный жидкий воздух подвергают дробной перегонке или ректификации в ректификационных колоннах. Возможность успешной ректификации основывается на довольно значительной разности (около 13 °С) температур кипения жидких азота (– 196 °С) и кислорода (– 183 °С).

Применение кислорода способствует прогрессу во многих областях техники, повышению производительности труда в промышленности, увели­чению выработки продукции, улучшению ее качества и снижению себестоимости.

В нашей стране большое количество домен, мартеновских печей и конверторов переведено на работу с применением кислорода, что позволяет получать дополнительно десятки миллионов тонн чугуна и стали. Значительные количества кислорода и азота рас­ходуются также в химической промышленности для производства удобрений и органических продуктов из новых источников сырья – природных и нефтяных газов.

Были созданы научно – иссле­довательские и проектные институты кислородной промышленно­сти, заводы по изготовлению воздухоразделительных установок, построены мощные кислородные станции на крупнейших металлур­гических и химических комбинатах, машиностроительных пред­приятиях; введены в строй районные заводы для производства то­варного газообразного и жидкого кислорода, азота, аргона; освоено серийное производство новых мощных установок для получения технологического и технического кислорода, чистого азота и редких газов.

В 2009 году на Новолипецком металлургическом комбинате (НЛМК) введена в промышленную эксплуатацию воздухоразделительная установка с комплексным извлечением продуктов разделения воздуха немецкой фирмы Linde.

Новолипецкий металлургический комбинат занимает первое место в России, среди предприятий по производству стали и проката. Производственные мощности компании считаются одними из самых технологически оснащенных в стране. Компания специализируется на производстве листового проката широкого сортамента.

НЛМК расположен в центре европейской части России, городе Липецке, вблизи крупнейшего железно – рудного бассейна Европы – Курской магнитной аномалии. Комбинат находится в регионе с наиболее развитой в России транспортной сетью и имеет стратегически выгодное местоположение для потребителей. Компания имеет удобный доступ к экспортным рынкам, выходы к портам на Балтийском и Черном морях.

НЛМК – предприятие полного металлургического цикла. В состав производственных мощностей входят горно – обогатительное, агломерационное, коксохимическое производство, доменное производство, сталеплавильное производство, производство горячекатаного и холоднокатаного проката, проката с цинковым и полимерным покрытием. Компания имеет наиболее современную производственную базу в российской металлургии. Производство всей стали осуществляется кислородно - конвертерным способом с разливкой на машинах непрерывного литья заготовок

НЛМК производит 14% российской стали, 24% плоского проката. Компания является крупнейшим в Европе производителем электротехнических сталей. НЛМК крупнейший в России производитель товарных слябов и один из крупнейших производителей штрипсов (заготовки для производства труб).

Кислородный цех входит в состав Энергетического производства на ряду с Теплоэлектроцентралью (ТЭЦ), Центром электроснабжения (ЦЭлС), Газовым цехом, Теплосиловым цехом (ТСЦ), Цехом водоснабжения (ЦВС), Цехом технологической диспетчеризации (ЦТД), Энергоремонтным цехом (ЭнРЦ), Электроремонтным цехом (ЭлРЦ).

Новолипецкий металлургический комбинат является предприятием с полным металлургическим циклом, а это значит, что на промышленной площадке комбината располагаются все производства, необходимые для того, чтобы железная руда, пройдя все технологические этапы, превратилась в конечный продукт – холоднокатаный прокат.

Общая схема производства включает:

а) агломерационное производство;

б) коксохимическое производство;

в) доменное производство;

г) сталеплавильное производство;

д) прокатное производство.

Практически все перечисленные производственные процессы связаны с потреблением кислорода.


Структура Кислородного цеха ПАО «НЛМК»

Токарев В.С.

Министерство образования науки Российской Федерации.

ГОУ ВПО «Магнитогорский государственный университет имени Г. Н. Носова»

Кафедра теплоэнергетических систем.

Доклад по ознакомительной практике.

Выполнил: студент группы

ЭТБ-11.Токарев В.С.

Магнитогорск 2011

Кислородно-компресорный цех.

1)История развития.

15 декабря 1941 директором ММК подписан приказ № 587 о создании кислородно-компрессорного цеха. Он обеспечивал все цехи комбината кислородом в баллонах и сжатым воздухом, вырабатываемым поршневыми компрессорами. Но кислород и сжатый воздух на комбинате начали получать намного раньше. В 1933 в районе доменного цеха был смонтирован воздушный поршневой компрессор с ременной передачей производительностью 25 куб. м в мин. 15 августа 1936 была смонтирована кислородная установка высокого давления (200 кг/см2) фирмы "МЕССЕР" производительностью 30 куб. м в час кислорода (5 баллонов в час). В 1933-36 строились компрессорная станция № 1 с 8-ю компрессорами фирмы "БОРЗИГ и компрессорная станция № 2 - в районе прокатных цехов с двумя компрессорами фирмы "БОРЗИГ". В 1939 началось строительство кислородной станции № 1, где в 1941 была пущена первая советская кислородная установка "ВАТ". Одновременно была построена и наполнительная станция. Кислородная станция находилась в подчинении котельно-ремонтного цеха, компрессорные - паросилового цеха. Руководил коллективом кислородной станции В.Я. Хлюпин. На кислородной станции в 1941-42 были смонтированы эвакуированные установки фирмы "ГЕЙЛАНДТ" и фирмы "ЭРЛИКИД". Начальником кислородно-компрессорного цеха был назначен Блесткин. В послевоенное время кислородно-компрессорный цех получил свое дальнейшее развитие. Смонтированы отечественные установки типа КГ-300-2Д, КГ-1000 производительностью от 300 до 1000 куб. м кислорода в час. Цехи комбината стали получать автогенный кислород по трубам. Кислородный цех вошел в состав паро-кислородного производства, которое возглавлял А.А. Тверской. Начальником кислородного цеха был назначен М.А. Петров. В 1963-64 началось строительство первой очереди 4-й кислородной станции. Были пущены в эксплуатацию новые отечественные кислородные блоки типа БР-2М производительностью 13 тыс. куб. м кислорода в час. Кислород стал подаваться на новые двухванные печи мартеновского цеха № 1 и машины огневой зачистки заготовок в обжимных цехах. В 1969 начинается строительство второй очереди кислородной станции № 4, где уже в 1970 в строй была введена новая мощная установка. В 1971 парокислородное производство приказом директора комбината разделено на два отдельных цеха: паросиловой и кислородный. Кислородный цех возглавил М.А. Петров. С 1970 по 1975 смонтированы новые воздушные компрессоры К-300 с приводом от паровых турбин. Сжатый воздух предназначался для вновь смонтированных пяти кислородных установок производительностью до 35 тыс. куб. м в час каждый. В это же время построена компрессорная станция № 2. Сжатым воздухом обеспечиваются печи мартеновских цехов. В 1979-80 построена 5-я кислородная станция с монтажом двух современных установок производительностью по 30 тыс. куб. в час. В 1986 здесь вводится в эксплуатацию третья и в 1990 - четвертая установка. Цехи комбината получили дополнительные продукты разделения воздуха - аргон и азот. В 1979 создано кислородно-компрессорное производство, которое возглавил М.А. Петров. В состав кислородно-компрессорного производства вошли кислородно-компрессорный цех № 1 (начальник Ю.Г. Щербак) и кислородно-компрессорный цех № 2 (начальник Л.Г. Середа). В 1982 начальником ККП назначается Л.Г. Середа, начальником ККЦ № 1 - Л.Г. Гримберг, начальником ККЦ № 2 - В.Ф. Герасимов. В 1992 начальником ККЦ-1 назначается В.М. Ярошевич. Начальником ККЦ-2 в 1989 назначается А.В. Семенов, а в августе того же года - А.И. Точилкин. В 1998 образован кислородный цех во главе с А.В. Семеновым.

Описание способов получения и производства промышленных газов (азот, аргон, водород, гелий, кислород, пропан, углекислота).

Получение и производство промышленных газов.

В настоящее время основным способом получения атмосферных промышленных газов – кислорода, азота, аргона является разделение воздуха. Различают три способа разделения воздуха — криогенный, адсорбционный и мембранный.

Криогенное разделение воздуха

Атмосферный осушенный воздух представляет собой смесь, содержащую по объему кислород 21 % и азот 78 %, аргон 0,9% и другие инертные газы, углекислый газ, водяной пар и пр. Для получения технически чистых атмосферных газов воздух подвергают глубокому охлаждению и сжижают (температура кипения жидкого воздуха при атмосферном давлении -194,5° С.)

Процесс выглядит так: воздух, засасываемый многоступенчатым компрессором, проходит сначала через воздушный фильтр, где очищается от пыли, проходит влагоотделитель, где отделяется вода, конденсирующаяся при сжатии воздуха, и водяной холодильник, охлаждающий воздух и отнимающий тепло, образующееся при сжатии. Для поглощения углекислоты из воздуха включается аппарат — декарбонизатор, заполняемый водным раствором едкого натра. Полное удаление влаги и углекислоты из воздуха имеет существенное значение, так как замерзающие при низких температурах вода и углекислота забивают трубопроводы и приходится останавливать установку для оттаивания и продувки.

Пройдя осушительную батарею, сжатый воздух поступает в так называемый детандер, где происходит резкое расширение и соответственно его охлаждение и сжижение. Полученный жидкий воздух подвергают дробной перегонке или ректификации в ректификационных колоннах. При постепенном испарении жидкого воздуха сначала выпаривается преимущественно азот, а остающаяся жидкость всё более обогащается кислородом. Повторяя подобный процесс многократно на ректификационных тарелках воздухоразделительных колонн, получают жидкий кислород, азот и аргон нужной чистоты. Возможность успешной ректификации основывается на довольно значительной разности (около 13°) температур кипения жидких азота (-196° С) и кислорода (-183° С). Несколько сложнее отделить аргон от кислорода (-185° С). Далее разделенные газы отводятся для накопления в специальные криогенные емкости, из которых поступают для собственного использования либо на продажу.

Криогенный способ разделения воздуха позволяет получить газы самого высокого качества – кислород до 99.9%, аргон и азот до 99, 9995%. Производительность может составлять до 70000 м.куб./час.

Метод короткоцикловой адсорбции (КЦА).

Криогенное разделение воздуха при всех его качественных параметрах является довольно дорогостоящим способом получения промышленных газов. Адсорбционный метод разделения воздуха, основанный на избирательном поглощении того или иного газа адсорбентами, является некриогенным способом, и широкое применение получил из-за следующих преимуществ:

  • высокая разделительная способность по адсорбируемым компонентам в зависимости от выбора адсорбента;
  • быстрый пуск и остановка по сравнению с криогенными установками;
  • большая гибкость установок, т.е. возможность быстрого изменения режима работы, производительности и чистоты в зависимости от потребности;
  • автоматическое регулирование режима;
  • возможность дистанционного управления;
  • низкие энергетические затраты по сравнению с криогенными блоками;
  • простое аппаратурное оформление;
  • низкие затраты на обслуживание;
  • низкая стоимость установок по сравнению с криогенными технологиями;

Адсорбционный способ используется для получения азота и кислорода, так как он обеспечивает при низкой себестоимости отличные параметры качества.

Принцип получения азота при помощи КЦА прост, но эффективен. Воздух подается в адсорбер — углеродные молекулярные сита при повышенном давлении и температуре внешней среды. В ходе процесса кислород (О 2) поглощается адсорбентом, в то время как азот (N 2) проходит через аппарат. Адсорбент поглощает газ до состояния равновесия между адсорбцией и десорбцией, после чего адсорбент необходимо регенерировать, т.е. удалить с поверхности адсорбента поглощённые компоненты. Это можно сделать либо путём повышения температуры, либо путём сброса давления. Обычно в короткоцикловой адсорбции используют регенерацию посредством сброса давления. Небольшая длительность циклов адсорбции и регенерации, обычно в пределах нескольких минут, и дала собственно название процесса — «короткоцикловая адсорбция». Чистота азота по этой технологии 99,999%.

В установках для производства кислорода используется известный факт, что азот адсорбируетсяалюмосиликатными молекулярными ситами существенно быстрее, чем кислород. Для отделения азота от кислорода воздух сначала сжимают, а затем пропускают через адсорбер, получая на выходе относительно чистый кислород. Чистота кислорода как продукта, получаемого по этой технологии, составляет до 95 %. Основной загрязняющей его примесью является главным образом аргон. Регенерацию адсорбента проводят при атмосферном давлении или вакууме.

Установки короткоцикловой адсорбции обычно полностью собираются и испытываются на заводе-изготовителе, т.е. поступают к потребителю в состоянии полной заводской готовности, что обеспечивает быстрый монтаж, и имеют диапазон производительности от 10 до 6000 нм 3/ч.

Мембранная технология

Промышленное использование технологии мембранного разделения газов началось в 70-х годах и произвело настоящую революцию в индустрии разделения газов. Вплоть до сегодняшних дней эта технология активно развивается и получает все большее распространения благодаря своей высокой экономической эффективности. В случаях, когда не требуется очень чистый газ, в основном азот, при сравнительно больших объемах потребления, эта технология практически полностью вытеснила альтернативные способы получения газов — криогенный и адсорбционный. При производстве азота чистоте до 99.9% и производительностью до 5000 нм³/ч мембранные установки оказываются существенно выгоднее остальных. Устройство современных мембранных газоразделительных и воздухоразделительных установок исключительно надежно. В первую очередь это обеспечивается тем, что в них нет никаких подвижных элементов, поэтому механические поломки почти исключены. Современная газоразделительная мембрана, основной элемент установки, представляет собой уже не плоскую мембрану или пленку, а полое волокно. Половолоконная мембрана состоит из пористого полимерного волокна с нанесенным на его внешнюю поверхность газоразделительным слоем. Суть работы мембранной установки заключается в селективной проницаемости материала мембраны различными компонентами газа. Разделение воздуха с использованием селективных мембран основано на том, что молекулы компонентов воздуха имеют разную проницаемость через полимерные мембраны. Воздух фильтруется, сжимается до желаемого давления, осушается и затем подается через мембранный модуль. Более «быстрые» молекулы кислорода и аргона проходят через мембрану и удаляются наружу. Чем через большее количество модулей проходит воздух, тем больше становится концентрация азота N 2 . Наиболее эффективно по затратам получать азот с содержанием основного вещества 93-99,5%.

Ниже приведены графики по выбору применения тех или иных видов получения промышленных газов в зависимости от объемов потребления и необходимой чистоты.

Получение гелия

Гелий — прозрачный газ, без вкуса и запаха, следующий по величине атомного веса после водорода элемент. Он абсолютно инертен, т. е. не вступает ни в какие реакции. Из всех веществ гелий имеет самую низкую температуру кипения -269°С. Жидкий гелий — самая холодная жидкость. «Замерзает» гелий при — 272° С. Эта температура всего на один градус выше температуры абсолютного нуля. В промышленных масштабах гелий можно получать двумя способами – либо из недр земли, либо разделением воздуха. Это газ на Земле встречается мало: 1 м 3 воздуха содержит всего 5,2 см 3 гелия, т.е. всего 0,00052%., а каждый килограмм земного материала — 0,003 мг гелия. По распространенности же во Вселенной гелий занимает второе место после водорода: на долю гелия приходится около 23% космической массы.

На Земле гелий постоянно образуется при распаде урана, тория и других радиоактивных элементов. Гелий накапливается в свободных газовых скоплениях недр и в нефти; такие месторождения достигают промышленного масштабов. Максимальные концентрации гелия (10-13%) выявлены в свободных газовых скоплениях и газах урановых рудников и (20-25%) в газах, спонтанно выделяющихся из подземных вод. Чем древнее возраст газоносных осадочных пород и чем выше в них содержание радиоактивных элементов, тем больше гелия в составе природных газов.

Добыча гелия в промышленных масштабах производится из природных и нефтяных газов как углеводородного, так и азотного состава. По качеству сырья гелиевые месторождения подразделяются: на богатые (содержание Не > 0,5% по объему); рядовые (0,10-0,50) и бедные (<0,10). Месторождения таких газов имеются в России, США, Канаде, Китае, Алжире, Польше и Катаре.

Для отделения от прочих газов используют исключительную летучесть гелия, связанную с его низкой температурой сжижения. После того как все прочие компоненты природного газа сконденсируются при глубоком охлаждении, газообразный гелий откачивают. Затем его очищают от примесей. Чистота заводского гелия достигает 99,995%. Крупнейший производитель гелия в Европе – Оренбургский гелиевый завод (10 млн литров жидкого гелий в год).

При получении гелия путем разделения воздуха крупные воздухоразделительные установки (1000 – 3000 т кислорода в день) оборудуют специальными концентраторами и аппаратами колонного типа, которые выделяют и накапливают смеси криптона и ксенона в кислороде, неона и гелия в азоте. Неочищенные смеси затем перерабатываются для получения чистого продукта. Чистота гелия может доходить до 99,9999%. Одним из крупнейших производителей гелия из воздуха является компания «Айсблик».

Получение углекислого газа

Различают следующие промышленные способы получения углекислого газа:

— путем рекуперации двуокиси углерода из газов брожения на спиртовых и пивоваренных заводах;
— путем рекуперации двуокиси углерода из отбросных газов различных производственных процессов;

— путем добычи из подземных естественных источников;
из дымовых газов и продуктов сгорания;
— путем производства двуокиси углерода методом прямого сжигания газообразного или жидкого топлива.

Соответственно, в зависимости от концентрации углекислого газа источники его условно можно разделить на три группы.

Первую группу составляют источники сырья, из которых можно производить чистый диоксид углерода без специального оборудования для повышения его концентрации. В эту группу входят:

а) газы химических и нефтехимических производств (производства аммиака, водорода и др. продуктов) с содержанием 98-99 % СО 2 ; б) газы спиртового брожения на пивоваренных, спиртовых и гидролизных заводах с 98-99 % СО 2 ; в) газы из естественных источников с 92-99 % СО 2 .

Вторую группу формируют источники сырья, использование которых обеспечивает получение чистого диоксида углерода методом фракционной конденсации.

К этой группе относят газы некоторых химических производств с содержанием 80-95 % СО 2 .

Установки рекуперации CO 2 предназначены для извлечения углекислоты из газов первой и второй группы. Газы, получаемые в процессах брожения при производстве спирта или пива, представляют собой практически чистый углекислый газ, содержащий водяные пары и следы органических соединений (сернистый ангидрид, сероводород, сивушные масла и альдегиды), легко отмываемые водой. Содержание двуокиси углерода в т.н. экспанзерных газах зависит от типа технологических процессов химических производств и может составлять до 99,9 %. Остальной объем занимают пары воды и низкокипящие примеси, преимущественно водород. Для доведения двуокиси углерода до пищевого качества (99,995 % СО 2 и 0,0005% О 2) эти установки оснащаются системой ректификационной (дистилляционной) очистки.

В третью группу включены источники сырья, использование которых даёт возможность производить чистый диоксид углерода только с помощью специального оборудования. В эту группу входят источники:

а) состоящие в основном из азота и диоксида углерода (продукты сгорания углеродсодержащих веществ, например, природного газа, жидкого топлива, кокса в котельных, газо-поршневых и газотурбинных установках с содержанием 8-20 % СО 2 ; от-

ходящие газы известковых и цементных заводов с 30-40 % СО 2 ; колошниковые газы доменных печей с 21-23 % СО 2);

б) состоящие в основном из метана и диоксида углерода и содержащие значительные примеси других газов (биогаз и свалочный газ из биореакторов с 30-45 % СО2; сопутствующие газы при добыче природного газа и нефти с содержанием 20-40 % СО 2).

При использовании источников сырья третьей группы чаще всего применяются углекислотные станции абсорбционно-десорбционного типа с жидкими химическими абсорбентами. Это - один из основных промышленных способов получения чистого СО 2 . Наиболее распространенным сырьем для производства двуокиси углерода являются дымовые газы, а природный газ считается оптимальным источником сырья. При сжигании природного газа в дыме отсутствуют соединения серы и механические примеси.

Типичная схема получения СО 2 выглядит так: обогащенный СО 2 пар поступает в скрубберы, где оделяются механические примеси и тяжелые углеводороды. Газ сжимается и прогоняется через очиститель, в котором удаляются влага и нежелательные газы.

Произведенная двуокись углерода может накапливаться в резервуарах длительного хранения, подаваться на станцию зарядки баллонов и огнетушителей, транспортные цистерны, установки для производства «сухого» льда, непосредственно на производственные газирующие линии.

Получение водорода

Существует две основные схемы получения водорода.

Электролизные заводы . Для небольших потребителей водорода предлагаются электролизеры производительностью от 0,5 до 1000 м.куб./час. Чистота 99,9% и выше может удовлетворить требованиям предприятий пищевой, химической отраслей, электроники. Производство технического водорода путем электролиза включает в себя следующие основные последовательно реализуемые стадии: электролитическое разложение воды на водород и кислород 2Н2О→2Н2+О2; каталитическая очистка полученного водорода от кислорода; его сжатие в поршневых компрессорах; адсорбционная осушка; заполнение в баллоны или контейнеры.

Паровой реформинг . Используя источник углеводородов и процесс реформинга, можно произвести водород в малых, средних, больших объемах и того качества, которое нужно потребителю. Обычно предлагаются установки от 100 до 5000 м.куб./час, нефтеперерабатывающие заводы используют установки производительность более 20000 м.куб./час.Процесс выглядит так: у глеводороды (метанол, пропан, природный газ, нефть), используемые в качестве топлива, смешиваются в процессным паром, нагреваются до 480 град.С и разделяются в реакторе, используя основанный на никеле катализатор, по простой формуле СН 4 +Н 2 О+230 кДж=СО+3Н 2

Водородная адсорбционная установка интегрируется в существующую систему контроля и полностью автоматизируется.

Получение ацетилена

Ацетилен впервые был получен в 1836 году Эдмондом Дэви путем обработки водой карбида калия К 2 С 2 и был назван так химиком Бертло в 1860 г.

Промышленное получение ацетилена началось с момента массового производства карбида кальция. В свою очередь карбид кальция получают путем спекания известняка и кокса (угля) СаО+3С=СаС 2 +СО. В Украине сколько-нибудь значительного производства карбида кальция нет.

При обработке карбида кальция водой и образуется ацетилен:

СаС 2 +2Н 2 О=С 2 Н 2 +Са(ОН) 2

Большая часть ацетилена, производимого в Украине, получается из карбида кальция . Для этого используются специальные промышленные генераторы, в которых ацетилен проходит очистку от примесей серы, аммиака и фосфора, от влаги, и далее компрессорами закачивается в баллоны.

Для бытового использования применяются небольшие переносные генераторы, но ацетилен, получаемый в них, обычно влажный и с примесями. Кроме того, невозможно остановить процесс образования ацетилена, что может быть неудобно для небольших работ. В морозы также проблематично использование малых генераторов из-за опасности замерзания воды.

Второй способ получения ацетилена – окислительный пиролиз метана и других углеводородов по формуле 2СН 4 →С 2 Н 2 +3Н 2 , осуществляемый при повышенной температуре 1200-1500 град. с последующим быстрым охлаждением. Ацетилен здесь является промежуточным продуктом при дальнейшем производстве продуктов органического синтеза. Способ пиролиза экономически невыгоден только для получения ацетилена, поэтому применяется на заводах, производящих его дальнейшую переработку в синтетический каучук, винилацетат, винилхлорид, этилен, бутадиен, стирол и другие продукты. В Украине это «Северодонецкий Азот».

Получение пропана.

Под пропаном обычно понимают сжиженную смесь углеводородов, куда входят следующие газы:

Этан – С 2 Н 6 — газ, по плотности близкий к воздуху. Входит в состав сжиженных газов в незначительном количестве. Самая главная причина ограничения его содержания в том, что при температуре 45°С этан не может находится в сжиженном состоянии. При 30 °С упругость его паров достигает 4,8 МПа, тогда как рабочее давления надземных систем газоснабжения сжиженным газом составляет 1,6 МПа, а подземных – 1,0МПа. В то же время незначительное количество этана в пропан-бутановой смеси повышает общее давление насыщенных паров газовой смеси, что обеспечивает в зимнее время избыточное давление, необходимое для нормального газоснабжения.
Пропан – С 3 Н 8 — тяжелый газ (плотность по воздуху 1,52). Технический пропан является основной составляющей сжиженных газов, его процентное соотношение в зимней смеси должно быть не менее 75%. Температура кипения – 42,1°С.

Бутан – С 4 Н 10 — тяжелый газ (плотность по воздуху 2,06). Температура кипения –0,5°С.
Пентан – С 5 Н 12 — тяжелый газ (плотность по воздуху 2,49). Температура кипения +36°С. Содержание в смеси 1-2% от обьема.

Сжиженный газ получают обычно двумя способами – при переработке природного газа на газоперерабатывающих заводах ГПЗ и на нефтеперерабатывающих заводах НПЗ, что определяет доступную цену для потребителя.
Технологическая цепочка производства сжиженных газов начинается с добычи «сырой» нефти или «влажного» природного газа и заканчивается хранением жидких пропана и бутана, полностью свободных от легких газов, тяжелой нефти и очищенных от следов сернистых соединений и воды.
На газовых месторождениях добыча богатого метаном природного газа нередко сопровождается выходом небольших количеств смеси тяжелых углеводородов: от этана и основных компонентов сжиженного газа до соединений компонентов дистиллята («естественного бензина»). Если они присутствуют в значительных количествах, то сжиженные газы и дистиллят удаляют из природного газа во избежание технологических осложнений от конденсата при компримировании газа перед подачей его в трубопровод, а также для получения необходимых химических веществ или дополнительного топлива. Полученная смесь сжиженных газов и дистиллята имеет невысокое качество, но тем не менее имеет спрос в силу невысокой цены.

При добыче нефти непосредственно на месте добычи «сырая» нефть стабилизируется для подготовки ее к дальнейшей транспортировке по трубопроводам или в танкерах к месту потребления. Степень стабилизации, эффективность которой зависит от условий на головке скважины (температура и давление), в свою очередь, определяет количество удаляемых легких газов. Эти газы иногда сжигаются, но в настоящее время все чаще используются как дополнительная продукция, и называется «попутным природным газом». Количество сжиженных газов, остающихся в «сырой» нефти, зависит от степени стабилизации на месте ее добычи. Некоторые сорта нефти перед транспортировкой иногда могут быть специально дополнены сжиженным газом. Содержащиеся в нефти, поступившей на нефтеочистительное предприятие, сжиженные газы улавливают в процессе дистилляции. Их выход колеблется от 2 до 3 % от объема перерабатываемой нефти. Полученные при фракционной разгонке сжиженные газы подвергаются последующей конверсии, которая осуществляется, прежде всего, для увеличения выхода и повышения качества бензина, но также она отделяет примеси из самого сжиженного газа.

Таким образом, предпочтительнее использовать сжиженный газ, полученный в процессе переработки нефти, так как он имеет более стабильный состав, в нем отсутствуют влага, примеси азота, углекислого газа, которые обычно имеются в сжиженном газе, получаемом на газовых месторождениях.