Дрон среди ясного неба

Развитие беспилотной авиации в России находится на подъеме. Проанализировав опыт стран НАТО и привнеся в него свои ноу-хау, в Минобороны сумели добиться того, что опыт и тактику использования беспилотников теперь начали перенимать у нас. В России подготовкой специалистов и изучением теории и практики применения БПЛА занимается Государственный центр беспилотной авиации Минобороны России. Корреспондент «МК» пообщался с курсантами и преподавателями расположенного под Коломной центра.

Совершенствованию применения беспилотной авиации в Минобороны России уделяется пристальное внимание. Можно констатировать факт, что в этой области сделан существенный скачок. Если в 2011 году в Вооруженных силах было 180 беспилотных систем, то на конец 2015 года их стало почти в 10 раз больше. Кроме того, опыт выполнения боевых задач в Сирии показал, что они незаменимы в ходе боевых действий. На сегодня роты беспилотной авиации созданы в каждом военном округе, а уже к концу этого года будет сформировано аналогичное подразделение на Северном флоте. В Государственном центре беспилотной авиации готовят операторов дронов, изучают перспективные образцы техники и даже занимаются теорией применения БПЛА.

Жесткий отбор

Сейчас, с увеличением задач, которые выполняют беспилотники, очень остро стоит вопрос о подготовке грамотных операторов, знающих свои машины, что называется, от «а» до «я». Это и призван осуществлять центр. Кроме того, он выполняет задачи по воздушной разведке, ликвидации последствий чрезвычайных ситуаций, проведению войсковых испытаний комплексов с беспилотными летательными аппаратами до их принятия на вооружение, а также проводит научные исследования. В прошлом году центр подготовил более 1100 специалистов по применению комплексов с беспилотными летательными аппаратами. В ближайшей перспективе планируется оснащение центра автоматизированной информационно-обучающей системой и создание филиалов в военных округах. Вскоре помимо военнослужащих Минобороны за парты сядут специалисты из других ведомств - МВД, ФСБ, МЧС.

Учатся в Коломне только контрактники, имеющие образование не ниже среднего специального. Для того чтобы получить направление в центр, военнослужащий сначала проходит ряд квалификационных испытаний у себя в части. В начале учебы курсанты проходят курс теоретической подготовки, сдают зачеты, получают навыки управления БПЛА на тренажерах и после получения необходимых допусков уже приступают к практике.

Как рассказал «МК» начальник центра Валерий Фролов, сдают экзамены далеко не все: около 10–15 процентов курсантов отсеиваются уже в первые недели обучения.

Отбор жесткий: одна «двойка» на экзаменах - и права пересдачи уже нет, военнослужащий отправляется в ту часть, откуда прибыл.

Курс подготовки зависит от того, на какой тип беспилотников обучаются курсанты. Если это комплексы малой дальности и ближнего действия, типа беспилотников «Гранат» от первой до четвертой модификации, «Элерон», «Застава» и др., то учеба длится 2,5 месяца; на комплексы среднего действия, типа БПЛА «Форпост», учатся около четырех месяцев.

После окончания учебы военнослужащие отправляются в свои воинские части.


Лейтенант морской пехоты Александр Житенев рассказывает: для того чтобы попасть на учебу в центр, нужно пройти серьезный отбор в частях.

Операторы будущего

На площадке перед плацем стоят беспилотники, на которых сейчас обучаются курсанты. Вот линейка БПЛА «Гранат». Самый миниатюрный из них - «Гранат-1». Он собирается за пять минут, запускается с руки и может вести разведку на дальности до 15 км. Комплекс «Гранат-2» - уже побольше. Он может вести наблюдение на дальностях более 20 км. Оснащается как фото-, так и видеокамерой. Дальность «Граната-3» - более 40 километров, а комплекс «Гранат-4» может работать уже на дальностях более 100 км. Этот аппарат может использовать и тепловизор.

Чуть подальше стоят уже «большие» БПЛА - к примеру, комплекс «Орлан-10». Этот аппарат работает на дальности до 150 км. Предназначен для ведения разведки с фото- и видеофиксацией. Оснащен инфракрасной камерой и УКВ-пеленгаторами. Высота его полета - до 5 тысяч метров. Может выдавать корректировки и передавать данные в режиме реального времени на командный пункт. Способен находиться в воздухе до 10 часов.

В учебных классах кипит работа. Возле мониторов сидят курсанты центра, а в середине класса - инструктор, который следит за выполнением поставленных задач.

При достижении высоты 100 - выпуск парашюта, - дает вводную инструктор. - На посадке ветер 120.

Принял, - отвечает курсант. - К посадке готов.

Лейтенант морской пехоты Александр Житенев обучается в центре уже давно. Он рассказывает, что его направили на учебу из части, которая находится неподалеку от озера Байкал. Сам он оканчивал Рязанское автомобильное училище и отправился по распределению в Центральный военный округ, однако, узнав о наборе в центр, решил сменить квалификацию и стать оператором БПЛА. Сейчас он осваивает «Орлан-10».

В войсках операторы беспилотников очень востребованы, - объясняет свой выбор офицер. - Вот решил переквалифицироваться. На самом деле у меня все родственники - военные летчики, я сам пытался поступить в авиационное училище, но не прошел по здоровью. Сейчас мне, можно сказать, предоставился второй шанс попасть в авиацию.

Александр говорит, что хотя учеба и непростая, но пока никаких замечаний у него не было.

После окончания учебы вернусь обратно к себе в часть, на Байкал, - делится планами офицер. - Большинство моих сослуживцев хотят понимать, что такое беспилотник, знать о них побольше. Это тоже побудило пойти в операторы дронов. Сейчас целое поколение новых машин появляется - считай, что я одним из первых освою эту профессию…

Житенев рассказывает: для того, чтобы попасть на учебу в центр, нужно пройти серьезный отбор в частях. Просто так, для «галочки», сюда учиться не отправляют. Кроме того, в центре тоже обучение идет в три этапа. Сначала проверяют знание компьютеров, профпригодность, а уже потом начинается изучение азов профессии.

В сухопутных подразделениях используют легкие беспилотники, поэтому я изучаю здесь их тактико-технические характеристики, - рассказывает Александр. - В дальнейшем я хочу освоить всю линейку беспилотной авиации, изучить в том числе и тяжелые дроны. Это очень интересно и перспективно.

В классах курсанты изучают топографию, тактико-специальную подготовку, связь; кроме этого, оператор БПЛА должен быть уверенным пользователем компьютера. Большое внимание уделяется технической составляющей дрона. Изучается работа всех типов двигателей - и бензиновых, и электрических.

В идеале оператор дрона должен знать свою машину, что называется, до винтика, - говорит офицер. - Он должен уметь устранить в ней мелкие неполадки. В принципе ничего сложного здесь нет.

Наверстать упущенное

На полигонах отрабатывается на практике то, что зазубривалось в классах. Курсанты под присмотром инструкторов самостоятельно запускают дроны в небо и выполняют учебные задачи. Причем непогода на практические занятия никак не влияет. Беспилотники поднимаются и в снегопад, и в дождь.

Действительно, сейчас нет отбоя от желающих направиться на учебу в центр. Здесь самая современная учебная база и опытные наставники. Для обмена опытом в центр приезжают даже из летных училищ. Помимо непосредственно обучения курсантов специалисты центра ведут разработку программных и уставных документов по применению комплексов с беспилотными летательными аппаратами и использованию воздушного пространства БПЛА. Причем российская тактика применения БПЛА признается сейчас лучшей в мире. Здесь огромная заслуга руководства центра, которое сумело почти с нуля создать уникальный объект, способный подготовить специалистов мирового уровня.

Конечно, отставание у России по созданию боевых дронов пока существует. Если в Советском Союзе это направление считалось одним из приоритетных, и мы были одними из лидеров, то в 90-е годы отрасль провалилась в яму, которая длилась около 20 лет. Сейчас промышленность активно наверстывает упущенное.

Появились перспективные тяжелые БПЛА, способные нести ударное вооружение, разрабатываются дроны вертолетного типа. Они не уступают передовым образцам иностранных государств по дальности и продолжительности полета, эффективности ведения воздушной разведки, выполнению специальных задач. Все эти машины в обязательном порядке будут проходить испытания в центре.

Как устроен дрон? По какому принципу работает? Для всех, кто хоть немного интересуется робототехникой, - это актуальные вопросы. В свою очередь, предлагаем на них максимально подробные ответы. Итак, начнем с самого начала.

Что такое дрон?

Так называют летательные аппараты, управляемые либо человеком дистанционно с помощью пульта, либо посредством бортового компьютера (последние обычно предназначены для выполнения военных или других специальных задач). Термин «дрон» изначально возник, скорее, как шутливое прозвище и не являлся полноценным научным понятием. Дронами (в переводе с английского «трутень») еще в прошлом веке называли авиационную технику из-за специфического шума двигателей, напоминавшего гул пчелиного улья. Сейчас данный термин используется в основном в публицистике; в профессиональных кругах более популярны понятия «беспилотный летательный аппарат» или просто «беспилотник».

Виды дронов

Современные модели беспилотников очень разнообразны. Между собой они отличаются в первую очередь своим предназначением. К примеру, бывают коммерческие дроны (еще их называют гражданскими). Эти летательные аппараты выполняют общественно полезные функции - перевозят грузы, удобряют поля, помогают в строительстве зданий, в научных исследованиях и т.д. Другая крупная категория дронов - потребительские. Сюда входят различные игрушечные дроны. Они предназначены для развлечения на досуге, с их помощью можно, например, устроить настоящие гонки или снимать интересные видео с высоты птичьего полета. Третья крупная группа включает в себя военные или боевые беспилотники. Они характеризуются более сложной конструкцией и способны выполнять куда больше функций по сравнению с другими своими «собратьями». Отметим, что далее в этой статье будут рассматриваться дроны именно первых двух категорий. Как уже говорилось выше, военные модели сильно отличаются и их лучше рассматривать отдельно.

В 2014 году Федеральное управление гражданской авиации США разделило дроны по классам. Каждый класс соответствует классу воздушного пространства, в котором беспилотник способен летать. Так, класс G включает в себя аппараты, способные подняться на высоту до 360 метров. К классам В, С, D относятся дроны, летающие на высоте до 3000 метров. Класс А - это беспилотники, покорившие высоту от 5400 до 18 000 метров над землей.

Из каких элементов состоит дрон?

Конечно, каждый беспилотник по-своему уникален, но все же есть несколько основных элементов, которые присутствуют в конструкции любого такого устройства. Среди них:

  • рама;
  • полетный контроллер;
  • двигатели;
  • пропеллеры;
  • регуляторы оборотов;
  • аккумуляторы.

Рама - это основа любого беспилотника. К ней крепятся все остальные элементы. От того, насколько она прочна и надежна, зависит общий срок эксплуатации дрона. Изготавливают раму из полимеров или сплавов легких металлов. Также могут использовать карбон или другие материалы, отличающиеся легкостью и прочностью одновременно.

Полетный контроллер является, по сути, «мозгом» дрона. Он принимает сигналы, исходящие от пульта управления (или бортового компьютера) и перенаправляет их в двигатели или другие элементы конструкции. Чем больше сигналов способен принять контроллер, тем больше функций способен выполнить дрон в целом. В свою очередь, на количество принимаемых сигналов влияет количество датчиков, встроенных в полетный контроллер.

У разных дронов полетный контроллер может состоять из разных элементов, но все же есть определенный базовый набор, обязательный для любого беспилотника. Он включает в себя:

  • главный процессор - принимает и обрабатывает команды;
  • барометр (датчик, определяющий высоту полета аппарата);
  • акселерометр (устройство, измеряющее ускорение аппарата);
  • гироскоп (датчик, определяющий положение дрона в пространстве);
  • стрелка направления (указывает направление, в котором должен лететь дрон);
  • GPS-навигатор (определяет географическое положение дрона);
  • Wi-Fi;

Двигатели, пропеллеры и регуляторы оборотов. Элементы конструкции, отвечающие за полет дрона. Обычно конструкцией предусмотрено четыре двигателя, каждый из которых присоединен к пропеллерам. Регуляторы оборотов задают скорость дрона, исходя из данных, полученных от полетного контроллера.

Аккумуляторы. Очевидно, что этот элемент конструкции обеспечивает функционирование всех элементов дрона. От емкости аккумуляторной батареи также зависит максимальная высота, на которую способен подняться беспилотник. Большинство коммерческих и потребительских дронов не отличается большими размерами, аккумуляторы, встроенные в них, также невелики. Из-за этого не удается обеспечить значительную продолжительность их полета. Решение этой проблемы является одной из приоритетных на данных момент.

Как летает дрон?

Коммерческие и потребительские дроны в подавляющем большинстве управляются посредством пульта (среди военных встречаются и полностью автоматизированные). Пульт настроен на определенные каналы (минимальное их количество - четыре), через которые направляет сигналы в полетный контроллер дрона. Последний, обработав сигнал, перенаправляет его на регулятор оборотов, который задает дрону нужную скорость путем вращения пропеллеров.

Кстати, все пропеллеры дрона вращаются в разных направлениях (одна пара по часовой стрелке, другая - против нее). Только так можно обеспечить максимальную стабильность полета. Параметры вращения пропеллеров также определяют специфику полета. Например, если все винты работают с одинаковой скоростью - аппарат взлетает. Если один из пропеллеров работает быстрее - дрон слегка наклоняется и двигается в заданном направлении. Если же сразу два пропеллера заработали быстрее - дрон поворачивается в заданную ими сторону.

В качестве послесловия

Из описанного выше становится понятно, что принцип работы дрона довольно прост. Имея достаточные познания в инженерии, можно сконструировать собственный беспилотник в домашних условиях. Опять же, подчеркнем, что только человек с хорошими инженерными навыками сможет справиться с этой задачей. Для таких специалистов, кстати, есть даже специальный ресурс (ecalc.ch), позволяющий спроектировать макет дрона и продумать принцип его действия в режиме онлайн.

Рассказать друзьям

Голландский дизайнер Рубен Патер создал и опубликовал в интернете инструкцию по распознаванию беспилотных летательных аппаратов. Мануал, получивший название Drone Survival Guide можно загрузить на сайте проекта.

Все дроны изображены в одном масштабе.

Кликабельно

Наши предки могли издалека узнать естественных хищников по их силуэтам. Хорошо ли мы знаем сегодняшних хищников? Беспилотники это самолёты с дистанционным управлением, которые могут использоваться для чего угодно: от спасательных операций и научных исследований до военной разведки и нанесения смертоносных ударов. Сегодня большая часть беспилотников используется военными державами для дистанционной разведки и нанесения ударов, и их число растет. По прогнозу Федерального управления авиации США 2012 года, через 20 лет только в США будет летать до 30 тысяч беспилотников. По мере того, как в ближайшем будущем повсеместно распространяется птицы-роботы, нам следует быть готовыми опознать их. Это руководство по выживанию – попытка ознакомить нас самих и следующие поколения с меняющейся технологической средой.

В руководстве показаны силуэты беспилотников, наиболее распространённых на сегодня и в ближайшем будущем типов. Для каждого указана страна и используются ли он только для разведки или также и для нанесения смертоносных ударов. Все беспилотники изображены в масштабе, чтобы был понятен их реальный размер – от самых маленьких коммерческих беспилотников величиной менее 1 метра, до Global Hawk длиной 39,9 метра.

Беспилотники имеют чрезвычайно мощную камеру, которая может различить людей и автомобили с высоты в несколько километров. Большинство беспилотников оборудованы инфракрасной камерой ночного видения, или так называемой ИК-системой переднего обзора. Они могут издалека увидеть тепло человеческого тела, днём или ночью. Однако есть способы укрыться от беспилотников.

  1. Дневная маскировка: прячьтесь в тени от зданий или деревьев. Используйте густой лес как естественное укрытие или применяйте маскировочные сети.
  2. Ночная маскировка: прячьтесь внутри зданий или под укрытием деревьев и листвы. Не включайте ручные фонарики или автомобильные фары. Ночью они могут быть легко замечены беспилотниками.
  3. Тепловая маскировка: спасательные одеяла (так называемые космические одеяла) изготовленные из майлара не пропускают инфракрасное излучение. Ночью оденьте спасательное одеяло как пончо, это поможет вам спрятаться от обнаружения инфракрасной камерой. В жаркую погоду, когда температура воздуха 36°-40°C, инфракрасная камера не может различить человека.
  4. Подождите плохой погоды. Беспилотники не могут работать при сильном ветре, дыме или грозах.
  5. Никакой беспроводной связи. Использование мобильного телефона или GPS-устройств может выдать ваше местоположение.
  6. Раскладка отражающих кусков стекла или других зеркальных материалов на крышах домов и автомобилей создаст помехи для камеры беспилотника.
  7. Ложные цели. Используйте манекены или чучела в человеческий рост, чтобы обмануть воздушную разведку.

Взлом беспилотников

Беспилотники управляются дистанционно. Их пилоты могут находиться за тысячи километров в наземных пунктах управления. Пилот управляет самолётом через спутниковый канал передачи данных. Заглушив или перехватив канал связи, можно вмешаться в управление беспилотником. Канал связи может быть зашифрован, но часто и нет.

  1. Перехват. Более сложный метод заключается в использовании спутниковой тарелки, ТВ-тюнера и программы skygrabber, чтобы перехватить частоты беспилотника. Могут быть перехвачены как данные отправляемые со спутника на беспилотник, так и идущие в обратном направлении.
  2. Создание помех. Вещанием на частотах, используемых беспилотником, может быть оборвана связь с его оператором.
  3. Подделка сигналов GPS. Портативные GPS передатчики могут посылать ложные GPS сигналы и нарушить систему навигации беспилотника. Это можно использовать для направления беспилотника по траектории, на которой он разобьется или даже для перехвата и посадки на взлетно-посадочной полосе.

В прошлом году, учитывая возрастающее значение беспилотной авиации в американских боевых операциях, правительство США учредило медаль «За особые боевые заслуги» (Distinguished Warfare Medal) специально для операторов военных БПЛА и специалистов кибервойны. Реакция ветеранов настоящих боевых действий последовала незамедлительно: как можно приравнивать к боевым заслугам сидение за экраном компьютера за тысячи миль от тех мест, где грохочут взрывы и стучат автоматные очереди?! Аргумент был услышан, медаль по‑тихому отменили.

Экипаж робота

Это событие очень ярко продемонстрировало двойственность положения человека в «дистанционной войне». С одной стороны, одна из главных задач БПЛА состоит в том, чтобы не подвергать опасности жизнь пилота, с другой, даже сидя в безопасном месте, на командном пункте БПЛА, оператор решает вопросы жизни и смерти и зачастую подвергает свою психику серьезным нагрузкам. Как на войне. Исследования медиков и психологов показывают, что, несмотря на удаленность от поля боя, операторы БПЛА могут порой страдать посттравматическим синдромом, подобно ветеранам горячих точек.

Конечно, человека можно просто «исключить из игры». К 2030−2035 годам американские ВВС хотят получить полностью автономный робот-автомат, который будет делать все сам без участия человека и даже принимать решения на пуск ракет. Однако вполне вероятно, что главным препятствием на пути к появлению такого оружия могут стать не технические проблемы, а вопросы морально-юридического характера. Согласно принятой практике пока все-таки ответственность за действия БПЛА берет на себя человек.


Аппаратура рабочего места оператора, помимо функций управления, позволяет формировать и затем вводить на борт БПЛА полетное задание, пополнять банк данных, проводить предполетные тренировки. В своей работе операторы взаимодействуют с помощью речевого обмена, а также интерактивного обмена информационными форматами своих многофункциональных дисплеев. Для целей управления также прорабатывается использование нашлемных систем целеуказания.

Мировой опыт эксплуатации беспилотных авиационных комплексов (БАК) оперативно-тактического назначения типа Shadow, Hunter, Hermes, Predator показал, что наиболее эффективна команда операторов трех специализаций. Во‑первых, это оператор-пилот БПЛА, тот, кто непосредственно управляет полетом. Во‑вторых, оператор бортовых целевых нагрузок. Он работает с сенсорными системами различного спектрального диапазона круглосуточного применения — они служат для наблюдения поля боя, поиска, обнаружения и идентификации объектов интереса. Этот же оператор принимает решение о прицеливании и пуске оружия. В-третьих, оператор интеллектуальной поддержки с опытом управления БПЛА, владеющий технологией экспертных систем типа «в помощь летчику» и имеющий быструю реакцию для принятия решений.

Рабочие места операторов объединены в локальную вычислительную сеть и строятся на основе многофункциональных мониторов-дисплеев, многофункциональных пультов управления, а также ручных органов управления по типу кистевых самолетных ручек с технологией HOTAS, а также флайтстиков. Командные пункты БАК оперативно-тактического назначения создаются в мобильном варианте на шасси автомобиля. Помимо основного оборудования, пункты также оснащены унифицированными вынесенными терминалами, которые дают дополнительные возможности и гибкость в управлении.


Одна из проблем — перегрузки операторов полезных нагрузок и интеллектуальной поддержки информацией, получаемой с БПЛА, на которую нужно реагировать в реальном времени и объемы которой сегодня растут лавинообразно. В том числе, по мере появления на дронах многоспектральных многоапертурных бортовых сенсоров.

Ас против мастера консоли

Однако какой бы сложной и совершенной ни была аппаратура управления, в пилотировании летательного аппарата с земли есть один нюанс, который можно назвать «сенсорным голодом». Пилоты говорят, что чувствуют самолет «пятой точкой», и это не шутка: ощущение перегрузки дает немало информации об изменении положения ЛА в пространстве. Задействован и слух — звук двигателя тоже весьма информативен. Гораздо больше данных получает зрение: пилот может, например, посмотреть в боковое окно самолета. Вся эта гамма сенсорных сигналов позволяет пилоту стремительно осознать изменение ситуации и мгновенно среагировать.

Перед оператором БПЛА в основном лишь зрительная информация: крупнозернистая картинка, как правило, с носовой камеры БПЛА, которая транслируется с задержкой в несколько секунд, если управление идет через спутник, плюс карта и различные цифровые данные на дисплеях, которые нуждаются в интерпретации. Поэтому, разумеется, реакция оператора БПЛА будет чаще всего отставать от реакции летчика в пилотируемом самолете.


Одним из решений этой проблемы могло бы стать использование так называемых мультимодальных дисплеев — систем, в которых зрительная информация дополняется другими сенсорными данными. Как, например, оператору БПЛА почувствовать турбулентность? Непосредственно — только в виде дрожания картинки, поступающей с камеры. Но если дополнить картинку, например, вибрацией флайтстика, оператор гораздо быстрее среагирует на неблагоприятную ситуацию в воздухе. Такой эффект хорошо известен владельцам игровых консолей и даже смартфонов!

Кто является лучшим кандидатом на должность оператора БПЛА? Первое, что приходит на ум, — бывший или действующий пилот ВВС. И именно из этой категории в основном набирались операторы больших БПЛА, эксплуатируемых американскими вооруженными силами. Однако по мере повышения спроса на «беспилотных пилотов» выяснилось, что, во‑первых, ВВС просто не в состоянии утолять кадровый голод в экипажах БПЛА, а во-вторых, молодые люди, поднаторевшие в боях на Playstation и XBoх, подходят на роль операторов лучше летчиков. Все дело как раз в том, что пилоту ВВС сложно управлять самолетом без привычных «подсказок» (звук, перегрузка и т. д.), а те, кто поднаторел в общении с виртуальной реальностью, спокойно обходятся без ощущений «пятой точкой». Еще в 2004 году группа американских исследователей во главе с Кайсаром Вараичем выяснила, что операторы с опытом пилотирования обычных самолетов делали больше ошибок при управлении БПЛА, чем те, кто осваивали аппаратуру управления с нуля. Авторы доклада считали, что управление БПЛА должно быть унифицировано не с привычными органами управления самолетом, а с традиционными компьютерными интерфейсами.


Наземные командные пункты (НКП) выполняются в мобильном варианте на шасси автомобиля. В настоящее время наметилась тенденция перехода на мобильные унифицированные НКП с открытой архитектурой, которая позволяет наращивать возможности использовать БПЛА различных типов, включая их совместное применение, а также применение групп смешанного состава из БПЛА и пилотируемых ЛА. Подобные НКП позволят одному оператору управлять сразу несколькими БПЛА, например, четырьмя.

Что скажет дрон?

Но чем больше инструменты управления БПЛА будут напоминать джойстики виртуальной реальности, чем чаще среди операторов боевых дронов будут появляться люди без пилотажного опыта, тем острее станет тема психологической и моральной ответственности операторов за отдачу команды «огонь». В стандарте НАТО STANAG-4586, регламентирующем взаимодействие оператора с БПЛА, рекомендовано десять уровней автоматизации, в диапазоне от полного подчинения БПЛА оператору до полной автономности. Иными словами, далеко не всегда оператор может нести ответственность за то или иное действие дрона. И именно в этой области возникает психологическая, моральная и правовая проблема, решить которую непросто. Если все действия оставить за человеком, то на него же ложится и вся ответственность за нанесенный беспилотником удар. Если же большой простор действия оставить автоматике, то ее сбой или ошибка могут привести к бессмысленным жертвам. Как раз тот факт, что оператор БПЛА вынужден убивать, не подвергая ни малейшему риску собственную жизнь, становится источником серьезных психологических страданий, того самого посттравматического синдрома.


Операторы склонны сажать беспилотник по более крутым, чем стандартные, глиссадам. Но это посадка с увеличенной вертикальной скоростью касания ВПП и, следовательно, с увеличенной ударной перегрузкой, отчего БПЛА может просто сломаться. Ясно, что такие условия будут лучше «восприниматься» БПЛА с усиленными шасси и корпусом, и именно с такими БПЛА оператору будет проще справляться.


На ближайшее время общим правилом будет снижение степени автономности БПЛА при большой определенности задачи или когда имеется запас времени на расширение ситуационной осведомленности. Естественно, при увеличении роли оператора в управлении. Один из показательных случаев — посадка БПЛА.

Опыт эксплуатации БПЛА типа Predator и Reaper показывает, что во время посадок в автоматическом режиме они склонны заходить на ВПП с увеличенным креном, сильно опущенным вниз носом, иметь первый контакт с землей передним колесом, а при вторичном касании основными шасси совершать подскоки. В результате могут лопаться колесные стойки и происходить другие неприятности. В этом случае непосредственное вмешательство оператора крайне желательно. По сути, это стало правилом — очень дорогие БПЛА (стоимостью в десятки миллионов долларов), операторы американских авиабаз часто сажают вручную.

Что такое беспилотный летательный аппарат и как работают дроны? Ответы на эти вопросы вы найдете в данной статье.

Сразу стоит сказать, что дроны постоянно эволюционируют: новые технологии и инвестиции в этот сегмент приводят к тому, что каждый месяц появляются продвинутые модели.

Технология БПЛА охватывает все: от аэродинамики аппарата и материалов для его изготовления до печатных плат, микросхем, программного обеспечения, которые в совокупности составляют мозг беспилотника.

Одной из самых популярных моделей на рынке является DJI Phantom 3. Этот дрон пользуется спросом среди людей, занимающихся воздушной съемкой. Несмотря на то, что сегодня он слегка устарел, в нем используется множество передовых технологий, присутствующих и в самых свежих моделях БПЛА. Этот аппарат идеально подходит в качества образца для объяснения как работает данный класс устройств.

Сейчас на рынке появились новые высокотехнологичные дроны, такие как и Inspire 2. Темп развития технологии просто поражает.

Как работают БПЛА

Типичный беспилотный летательный аппарат изготовлен из легких композитных материалов: это способствует снижению веса корпуса и увеличению маневренности устройства. Свойства таких материалов позволяют военным дронам совершать полеты на чрезвычайно больших высотах.

Дроны оснащаются различными технологиями, такими как инфракрасные камеры, GPS и лазеры (в большей мере, это относится именно к военным образцам). Беспилотники могут быть управляемы дистанционной системой, которую иногда еще называют наземной кабиной. То есть можно говорить, что БПЛА состоит из 2-х частей: самого дрона и его системы управления.

« Нос» беспилотника – это то место, где расположены его датчики и навигационная система. Все остальное размещается в «теле» устройства. Композитный материал, из которого изготавливаются аппараты, помимо своей легкости еще и способен поглощать вибрацию.

Типы и размеры дронов

БПЛА бывают самых разных размеров, причем самые большие из них используются чаще всего в военных целях, например, Predator. Следом за ними идут средние беспилотники с фиксированными крыльями, которым для взлета требуется небольшая взлетно-посадочная полоса. Такие модели используются для охвата обширных территорий, например, для географической съемки или борьбы с браконьерами.

Еще меньше по размерам модели, называемые VTOL дроны. Большинство из них – это квадрокоптеры. Эти беспилотники способны взлетать и приземляться вертикально. Аббревиатура VTOL означает «вертикальный взлет и посадка». К примеру, такой маленький дрон как DJI Spark вовсе можно запускать с ладони.

Определение местоположения и возвращение домой

Многие из последних БПЛА оснащены двумя глобальными навигационными системами (GNSS), включающими в себя GPS и ГЛОНАСС. Дроны могут совершать полеты как используя GNSS, так и без помощи спутников. Например, устройства DJI могут летать в режиме P-Mode (GPS и GLONASS) или ATTI, который не использует спутниковую навигацию.

Высокоточная навигация очень важна для дронов занимающихся картографической съёмкой, а также для беспилотников, выполняющих поисково-спасательные миссии.

При первом включении квадрокоптера происходит поиск и обнаружение спутников GNSS. Система GNSS использует технологию Satellite Constellation (спутниковая группировка). Принцип ее работы заключается в координации и синхронизации всех спутников, что позволяет ей охватывать всю зону покрытия, не оставляя «слепых пятен».

Радиолокационная технология БПЛА при включении устройства отобразит на пульте дистанционного управления (ПДУ) следующую информацию:

  • Сигнал об обнаружении достаточного количества спутников GNSS и готовность к полету.
  • Текущую позицию дрона относительно пилота.
  • Запись исходной точки для функции «Возращение домой».

Большинство современных беспилотных летательных аппаратов имеют три типа этой функции:

  • «Возвращение домой» по приказу пилота, нажавшего соответствующую кнопку на ПДУ или в приложении.
  • Низкий уровень заряда батареи, который приводит к автоматическому возврату дрона.
  • Потеря сигнала между БПЛА и ПДУ: в этом случае устройство также возвращается на исходную позицию.

Например, дрон при использовании опции RTH (Return to Home) будет обнаруживать все препятствия на обратном пути и активно их избегать. В условиях недостаточного освещения функция RTH будет работать так:

  • При обнаружении препятствия беспилотник замедляется.
  • Он останавливается и начинает парить из стороны в сторону и вверх-вниз до тех пор, пока не найдет способ обойти препятствие.
  • Затем БПЛА возвращается на исходную позицию.

Гиростабилизация, IMU и контроллер полета

Технология гиростабилизации позволяет дронам летать плавно и без рывков. Гироскоп должен работать молниеносно, чтобы обеспечивать стабильный полет устройства. Кроме того, он предоставляет всю необходимую навигационную информацию пилоту, т.е. вам.

Инерциальный измерительный блок (IMU) служит для отслеживания текущего ускорения устройства, используя для этого сочетание нескольких акселерометров. Некоторые блоки IMU включают в себя еще и магнитометр, служащий для дополнительной стабилизации аппарата.

Гироскоп является составной частью IMU, а тот в свою очередь – важный компонент контрольно-измерительной системы БПЛА. Контроллер полета (Flight Controller) – это, по сути, центральный мозг беспилотника.

Двигатель дрона и конструкция пропеллеров

Благодаря своим двигателям и пропеллерам дроны способны летать в любых направлениях. На квадрокоптерах они работают парами: 2 двигателя и 2 пропеллера, вращающихся по часовой стрелке (CW Propellers) и пара двигателей с пропеллерами, вращающимися против часовой стрелки (CCW Propellers).

Они получают данные от контроллера полета и электронных регуляторов скорости (ESC) и в соответствии с ними заставляют дрон парить на одном месте либо лететь в нужном направлении.

Параметры полета на экране в режиме реального времени

Следить за телеметрией полета и наблюдать за всем тем, что видит дрон можно с помощью ПДУ или смартфона.

Технология «No Fly Zone»

Чтобы повысить безопасность и предотвратить полеты в запретных зонах, последние беспилотные аппараты от DJI и других производителей включают в себя функцию «No Fly Zone».

Эти запретные зоны подразделяются на две категории: А и В. Производитель с помощью обновления прошивки может изменять и корректировать размер и местоположение этих зон.

Подготовка к полету

После включения устройства происходит поиск спутников GPS. Когда дрон обнаружит как минимум 6 спутников, то на экране пульта управления появится надпись «Готов к полету».

Внутренний компас и функция Failsafe

Позволяет БПЛА и системе дистанционного управления точно обнаруживать свое текущее местоположение. Калибровка компаса необходима для установки точки возвращения. После того как данная точка будет установлена, в случае потери сигнала между дроном и системой дистанционного управления, БПЛА вернется «домой». Эта функция известна под названием Failsafe.

Технология трансляции видео от первого лица

FPV расшифровывается как « First Person View » и означает наличие камеры, которая устанавливается на беспилотнике, а затем транслирует видео в режиме реального времени на принимающее устройство пилота на земле. То есть, человек, управляющий дроном, может почти буквально «видеть его глазами», а не просто наблюдать за БПЛА с земли.

Данная функция также позволяет более точно управлять дроном, особенно, когда дело касается ухода от столкновения с препятствиями. С ее помощью очень удобно управлять дроном, летающим в закрытом помещении, а также в тех случаях, когда наблюдение с земли за БПЛА по ряду причин просто невозможно (например, вы отправили дрон в лес или в горы).

Исключительно быстрый рост и развитие гоночных соревнований дронов не был бы возможен без FPV технологии.

Такие «гоночные» дроны оснащены встроенным многодиапазонным беспроводным передатчиком FPV. В зависимости от типа беспилотника принимать транслируемое видео может как ПДУ, так и компьютер, планшет или смартфон.

Разумеется, передача видео в режиме реального времени напрямую зависит от силы сигнала между ПДУ и дроном. Новейшие беспилотники, такие как DJI Mavic и Phantom 4 Pro могут транслировать «живое видео» на расстоянии до 7 км. Phantom 4 Pro и Inspire 2 используют новейшую систему передачи DJI Lightbridge 2 .

Дроны, такие как DJI Mavic Pro, используют интегрированные контроллеры и интеллектуальные алгоритмы для установки нового стандарта беспроводной передачи изображений высокого разрешения путем снижения задержки и увеличения максимального диапазона связи.

FPV для сетей 4G / LTE

В 2016 году появилась новая технология, позволяющая передавать видео в режиме реального времени с минимальной задержкой с помощью 4G. Технология получила название Sky Drone FPV 2.Она включает в себя установку на дрон камеры, модуля данных и 4G модема.

Прошивка и порт для обновлений

Обновить систему управления полетом практически любого нового дрона можно с помощью ПК, используя USB-кабель.

БПЛА можно описать как летающий компьютер, с установленной на нем камерой и разными датчиками. Как и у любого компьютера, у дронов имеется прошивка – программное обеспечение, отвечающее за работу беспилотника и его управление.

Производители БПЛА выпускают обновления для исправления ошибок и добавления новых функций устройства.

Светодиодные индикаторы полета

Он расположены на передней и задней частях беспилотного летательного аппарата. Передние светодиоды обозначают «нос» устройства. Задние же загораются тогда, когда разряжен аккумулятор устройства, чтобы его владелец сразу это заметил.

Система дистанционного управления БПЛА

Представляет собой устройство беспроводной связи, использующее частоту 5,8 ГГц. Дрон и ПДУ должны быть сопряжены по умолчанию, что называется «из коробки». В эту систему входит приемник, встроенный в ПДУ и ряд других элементов, о которых ниже.

Расширитель диапазона частот БПЛА

Это тоже устройство беспроводной связи, которое работает на частоте 2,4 ГГц. Оно используется для расширения диапазона связи между смартфоном или планшетом и дроном на открытых пространствах.

Дальность передачи может достигать 700 м. Каждый такой расширитель имеет уникальный MAC-адрес и сетевое имя (SSID).

Как упоминалось выше, некоторые модели могут летать на расстоянии до 7 км, при этом транслируя видео. Это хорошая реклама расширителей диапазона – поэтому они пользуются большой популярностью среди пользователей.

Приложения для смартфонов, превращающие их в наземные станции

Большинство современных дронов могут управляться как с ПДУ, так и со смартфона с помощью специального приложения. Такие приложения полностью заменяют пульт дистанционного управления, скачать их можно из Google Play или Apple Store. У каждого производителя имеется свое фирменное приложение, например, Go 4 от DJI.

Высокопроизводительная камера

В новейших беспилотных аппаратах от DJI, Walkera, Yuneec и других производителей установлены камеры, которые могут снимать видео в формате 4К, а также делать 12-ти мегапиксельные снимки.

Многие старые модели БПЛА использовали камеры, не совсем пригодные для аэрофотосъёмки. Из-за широкоугольного объектива снимки часто имели искажения. В последних же моделях такой недостаток устранен.

Дроны с зум-объективом

В 2016 и 2017 годах на рынке появился ряд карданных подвесов с интегрированными камерами, поддерживающими функцию Zoom.

DJI выпустила Zenmuse Z3, которая является интегрированной камерой с воздушным зумом и оптимизирована для фотосъемки. Zenmuse Z3 имеет 7-кратный зум, состоящий из 3,5-кратного оптического и двумерного цифрового, с диапазоном фокусного расстояния от 22 до 77 мм, что делает ее идеальной для промышленного применения.

Затем в октябре 2016 года DJI выпустила камеру Zenmuse Z30. Zenmuse Z30 представляет собой интегрированную камеру с 30-кратным оптическим и 6-кратным цифровым зумом с полным увеличением до 180x. Это позволяет использовать ее в промышленности, например, для осмотра башен сотовой связи для получения подробной информации о состоянии проводов и конструкции в целом. Zenmuse совместим с диапазоном частот дронов DJI Matrice.

Walkera Voyager 4 поставляется с невероятной камерой с 18-ти кратным зумом. Данная камера имеет возможность вести съемку на все 360 градусов. Запись видео производится в формате 4K со скоростью 30 кадров в секунду.

Карданные подвесы

Технология карданных подвесов имеет огромное значение для качественной фото-, видеосъемки. Карданный подвес позволяет изолировать камеру от вибрации, исходящей от самого БПЛА. Кроме того, с его помощью камера может изменять углы обзора. Большинство 3-х осевых стабилизирующих карданов способны работать в двух съемочных режимах: обычном и FPV.

Практически все новые БПЛА оснащены такой системой. Лидером в этой области является DJI со своей линейкой Zenmuse.

Датчики БПЛА

Мультиспектральные, лидарные, фотограмметрические и тепловизионные датчики используются в беспилотных аппаратах для высокоточного картографирования и аэрофотосъемки. С их помощью можно получать цифровые карты высот (DEMS), а также данные о состоянии сельскохозяйственных культур, цветов, кустарников, деревьев и даже фауны.

В 2016 году на рынке появились дроны с Time-of-Flight, так называемыми «времяпролетными» датчиками, определяющие расстояние до объекта. Эти сенсоры могут быть использованы в различных целях: для сканирования объектов, внутренней навигации, предотвращения столкновении с препятствиями, 3D-съемки, в играх дополненной реальности и многих других областях.

Дрон может быть запрограммирован на полет над определенной областью с использованием автономной навигационной системы. Камера БПЛА будет делать снимки с интервалом 0,5 или 1 сек. Затем эти изображения «сшиваются» воедино с помощью специального ПО и в результате получается 3D-карта местности.

Компания DroneDeploy является одним из лидеров в создании программного обеспечения для 3D-картографии в сельском хозяйстве. Их последний продукт под названием Fieldscanner работает с большинством новейших беспилотных летательных аппаратов.

Технология обнаружения препятствий и предотвращения столкновений

Современные беспилотники практически всегда оснащены такими системами. Датчик обнаружения препятствий постоянно сканирует окружение. Одновременно с этим программные алгоритмы и технология SLAM создают 3D-карту, которая обрабатывается контроллером полета и позволяет дрону избегать столкновений. Эта система использует один из нескольких датчиков для лучшего распознавания потенциально опасных объектов:

  • видеосенсор,
  • ультразвуковой,
  • инфракрасный,
  • лидар,
  • монокулярное зрение.

Защита от падения (Anti-Drop Kit)

Защищает камеру в случае аварийного падения БПЛА.

ПО для редактирования видео

Наличие высококачественного видеопрограммного обеспечения важно как для съемки, так и для последующей обработки материала. Большинство современных дронов могут снимать в формате Adobe DNG, что очень удобно для последующей работы с полученными изображениями.

Операционные системы, которые используют дроны

Основная масса беспилотников работают под управлением Linux, остальные используют MS Windows. Также, у Linux Foundation есть проект, запущенный в 2014 году, под названием Dronecode*.

*Dronecode - проект по созданию свободной платформы с открытым исходным кодом для беспилотных летательных аппаратов.

Последние высокотехнологичные беспилотники

Львиную долю рынка инновационных дронов занимает, конечно же, компания DJI. Вот список новейших устройств, на которые стоит обратить внимание:

  • – маленький беспилотник, который может взлетать с ладони.

  • – небольшой складной дрон с датчиками предотвращения столкновения, расположенными спереди и снизу. Супер стабильный полет и возможность снимать видео в формате 4k.

  • DJI Phantom 4 Pro – с технологией предотвращения столкновения «Vision». Многоцелевой беспилотный летательный аппарат, способный вести аэрофотосъемку и фотограмметрические работы. Встроенная камера оснащена 4-х кратным зумом.

  • DJI Inspire 2 – запатентованная конструкция и двигатели. Многоцелевой беспилотник с подвесными карданами и камерой, предназначенной для аэрофотосъемки, записи видео в 5К, фотограмметрии, съёмки мультиспектральных и тепловизионных изображений.

  • Yuneec Typhoon H Pro – использует запатентованную технологию предотвращения столкновений Intel «Realsense». Отлично подходит для профессиональной аэрофотосъемки.

  • Walkera Voyager 4 – профессиональный дрон с 18-кратной оптической трансфокаторной камерой, что делает его идеальным для поисково-спасательных работ.

  • DJI Matrice 200 Commercial Quadcopter – дрон со встроенной двойной батареей, системами IMU и спутниковой навигацией. Поддерживает установку 2-х камер (например, камеры с тепловизором и зумом). Оснащен видеосенсором, ультразвуковым и ToF датчиками. Идеально подходит для осмотра труднодоступных объектов с целью оценки их состояния.

Интеллектуальные режимы полета

Все вышеперечисленные БПЛА имеют множество разных интеллектуальных режимов полета. Особенно ярко на фоне остальных выделяется Phantom 4 Pro от DJI, имеющий такие режимы как:

  • Active Track (Profile, Spotlight, Circle) - активный трек;
  • Draw Waypoints - рисунок точек пути;
  • TapFly - интеллектуальный режим полета;
  • Terrain Follow Mode - режим рельефа местности;
  • Tripod Mode - режим штатива;
  • Gesture Mode - режим жестов;
  • S-Mode (спорт);
  • P-Mode (позиция);
  • A-Mode (положение в воздухе);
  • Beginner Mode - начальный режим;
  • Course Lock - блокировка курса;
  • Home Lock - домашний замок;
  • Obstacle Avoidance - обхождение препятствий.

Использование БПЛА

Дронов можно использовать в самых различных целях. Когда вы устанавливаете камеру или датчики, такие как лидар, тепловизор, ToF, мультиспектральный и многие другие, диапазон применения устройств расширяется еще больше.

Лучшие видео на тему БПЛА

Ниже размещены 2 видеоролика, в которых подробно рассказывается о технологии БПЛА. На первом видео ведущий специалист по БПЛА Раффаэлло Д"Андреа даст зрителям представление о ПО, лежащем в основе технологии беспилотных летательных аппаратов. Он также расскажет об алгоритмах работы, теории управления и проектирования на основе разных моделей (видео, к сожалению, не адаптировано на русский язык).

Военные беспилотники

Следующее видео – это рассказ о том, что настоящее и будущее военной техники принадлежит беспилотным летательным аппаратам, таким как Predator и Reaper.

Два военных БПЛА среднего размера, которые в настоящее время активно используются – это Predator MQ-1B и MQ-9 Reaper . Их применяли в Афганистане и Пакистане.

Последние несколько лет характеризуются значительными инвестициями в разработку дронов, особенно в секторе бизнеса и потребительских БПЛА. Технологии действительно удалось совершить громадный рывок всего лишь за несколько лет.

По материалам DroneZon