Что составляет 29,76 о С. Если поместить его в теплую ладонь, оно постепенно начинает переходить из твердого состояния в жидкую форму.

Краткий экскурс в историю

Как называется металл, который плавится в руке? Как уже было отмечено выше, такой материал известен под определением галлий. Его теоретическое существование предсказал в далеком 1870 году отечественный ученый, автор таблицы химических элементов - Дмитрий Менделеев. Основой к возникновению такого предположения стало изучение им свойств многочисленных металлов. На то время ни одному теоретику не могло прийти в голову, что металл, который плавится в руках, существует в реальности.

Возможность синтеза чрезвычайно легкоплавкого материала, появление которого предсказывал Менделеев, доказал французский ученый Эмиль Лекок де Буабодран. В 1875 году ему удалось выделить галлий из цинковой руды. Во время опытов с материалом ученый получил металл, который плавится в руках.

Известно, что Эмиль Буабодран испытывал значительные трудности с выделением нового элемента из цинковой руды. В ходе первых опытов ему удалось добыть всего лишь 0,1 грамма галлия. Однако даже этого оказалось достаточно, чтобы подтвердить удивительное свойство материала.

Где встречается галлий в природе

Галлий относится к элементам, которые не встречаются в виде залежей руд. Материал очень рассеян в земной коре. В природе он встречается в составе крайне редких минералов, таких как галлит и зенгеит. В ходе лабораторных опытов небольшое количество галлия можно выделить из руд цинка, алюминия, германия, железа. Иногда его находят в бокситах, залежах угля, прочих месторождениях полезных ископаемых.

Как получают галлий

В настоящее время ученые чаще всего синтезируют металл, который плавится в руках, из алюминиевых растворов, что добываются в ходе переработки глинозема. В результате удаления основной массы алюминия и проведения процедуры неоднократного концентрирования металлов получают щелочной раствор, в котором находится незначительная доля галлия. Выделяют такой материал из раствора путем электролиза.

Сферы применения

Галлий по сей день не нашел применения в промышленности. Виной всему широкое использование алюминия, который обладает схожими свойствами в твердом виде. Несмотря на это, галлий выглядит перспективным материалом, поскольку обладает отменными полупроводниковыми качествами. Такой металл потенциально может быть использован для производства элементов транзисторов, высокотемпературных выпрямителей тока, солнечных батарей. Галлий выглядит прекрасным решением для изготовления покрытий оптических зеркал, которые будут обладать высочайшей отражательной способностью.

Главным препятствием на пути к применению галлия в промышленных масштабах остается высокая стоимость его синтеза из руд и минералов. Цена за тонну такого металла на мировом рынке составляет более 1,2 миллиона долларов.

На сегодняшний день галлий нашел эффективное применение лишь в сфере медицины. Металл в жидкой форме применяется в целях замедления потери костной массы у людей, что страдают от онкологических недугов. Его используют для быстрой остановки кровотечений при наличии крайне глубоких ран на теле пострадавших. В последнем случае закупорка сосудов галлием не приводит к образованию тромбов.

Как уже отмечалось выше, галлий - металл, который плавится в руках. Поскольку температура, что требуется для перехода материала в жидкое состояние, составляет чуть больше 29 о С, его достаточно подержать в ладонях. Через некоторое время изначально твердый материал начнет плавиться буквально на глазах.

Довольно увлекательный эксперимент можно провести с затвердеванием галлия. Представленный металл имеет свойство расширяться в ходе затвердевания. Для проведения интересного опыта достаточно поместить жидкий галлий в стеклянный пузырек. Далее необходимо начать охлаждать емкость. Через некоторое время можно заметить, как в пузырьке станут образовываться кристаллы металла. Они будут иметь синеватый цвет, в отличие от серебристого оттенка, который характерен для материала в жидком состоянии. Если не прекращать охлаждение, кристаллизирующийся галлий в конечном итоге разорвет стеклянный пузырек.

В заключение

Вот мы и выяснили, какой металл плавится в руке. Сегодня галлий можно отыскать в продаже для проведения собственных опытов. Однако обращаться с материалом следует крайне осторожно. Твердый галлий является нетоксичным веществом. Однако продолжительный контакт с материалом в жидкой форме может привести к самым непредвиденным последствиям для здоровья, вплоть до остановки дыхания, паралича конечностей и вхождения человека в состояние комы.

Об элементе с атомным номером 31 большинство читателей помнят только, что это один из трех элементов, предсказанных и наиболее подробно описанных Д.И. Менделеевым, и что галлий – весьма легкоплавкий металл: чтобы превратить его в жидкость, достаточно тепла ладони.

Впрочем, галлий – не самый легкоплавкий из металлов (даже если не считать ртуть). Его температура плавления 29,75°C, а цезий плавится при 28,5°C; только цезий, как и всякий щелочной металл, в руки не возьмешь, поэтому на ладони, естественно, галлий расплавить легче, чем цезий.

Свой рассказ об элементе №31 мы умышленно начали с упоминания о том, что известно почти всем. Потому что это «известное» требует пояснений. Все знают, что галлий предсказан Менделеевым, а открыт Лекоком де Буабодраном, но далеко не всем известно, как произошло открытие. Почти все знают, что галлий легкоплавок, но почти никто не может ответить на вопрос, почему он легкоплавок.

Как был открыт галлий

Французский химик Поль Эмиль Лекок де Буабодран вошел в историю как открыватель трех новых элементов: галлия (1875), самария (1879) и диспрозия (1886). Первое из этих открытий принесло ему славу.

В то время за пределами Франции он был мало известен. Ему было 38 лет, занимался он преимущественно спектроскопическими исследованиями. Спектроскопистом Лекок де Буабодран был хорошим, и это, в конечном счете, привело к успеху: все три свои элемента он открыл методом спектрального анализа.

В 1875 г. Лекок де Буабодран исследовал спектр цинковой обманки, привезенной из Пьеррфита (Пиренеи). В этом спектре и была обнаружена новая фиолетовая линия (длина волны 4170 Ǻ). Новая линия свидетельствовала о присутствии в минерале неизвестного элемента, и, вполне естественно, Лекок де Буабодран приложил максимум усилий, чтобы этот элемент выделить. Сделать это оказалось непросто: содержание нового элемента в руде было меньше 0,1%, и во многом он был подобен цинку*. После длительных опытов ученому удалось-таки получить новый элемент, но в очень небольшом количестве. Настолько небольшом (меньше 0,1 г), что изучить его физические и химические свойства Лекок де Буабодрап смог далеко не полно.

О том, как получают галлий из цинковой обманки, рассказано ниже.

Сообщение об открытии галлия – так в честь Франции (Галлия – ее латинское название) был назван новый элемент – появилось в докладах Парижской академии наук.

Это сообщение прочел Д.И. Менделеев и узнал в галлии предсказанный им пятью годами раньше экаалюминий. Менделеев тут же написал в Париж. «Способ открытия и выделения, а также немногие описанные свойства заставляют предполагать, что новый металл не что иное, как экаалюминий», – говорилось в его письме. Затем он повторял предсказанные для этого элемента свойства. Более того, никогда не держа в руках крупинки галлия, не видя его в глаза, русский химик утверждал, что первооткрыватель элемента ошибся, что плотность нового металла не может быть равна 4,7, как писал Лекок де Буабодран, – она должна быть больше, примерно 5,9...6,0 г/см 3 !

Как это ни странно, но о существовании периодического закона первый из его утвердителен, «укрепителен», узнал лишь из этого письма. Он еще раз выделил и тщательно очистил крупицы галлия, чтобы проверить результаты первых опытов. Некоторые историки науки считают, что делалось это с целью посрамить самоуверенного русского «предсказателя». Но опыт показал обратное: ошибся первооткрыватель. Позже он писал: «Не нужно, я думаю, указывать на исключительное значение, которое имеет плотность нового элемента в отношении подтверждения теоретических взглядов Менделеева».

Почти точно совпали с данными опыта и другие предсказанные Менделеевым свойства элемента №31. «Предсказания Менделеева оправдались с незначительными отклонениями: экаалюминий превратился в галлий». Так характеризует это событие Энгельс в «Диалектике природы».

Нужно ли говорить, что открытие первого из предсказанных Менделеевым элементов значительно укрепило позиции периодического закона.

Почему галлий легкоплавок?

Предсказывая свойства галлия, Менделеев считал, что этот металл должен быть легкоплавким, поскольку его аналоги по группе – алюминий и индий – тоже тугоплавкостью не отличаются.

Но температура плавления галлия необычно низкая, в пять раз ниже, чем у индия. Объясняется это необычным строением кристаллов галлия. Его кристаллическая решетка образована не отдельными атомами (как у «нормальных» металлов), а двухатомными молекулами. Молекулы Ga 2 очень устойчивы, они сохраняются даже при переводе галлия в жидкое состояние. Но между собой эти молекулы связаны лишь слабыми вандерваальсовыми силами, и для разрушения их связи нужно совсем немного энергии.

С двухатомностью молекул связаны еще некоторые свойства элемента №31. В жидком состоянии галлий плотнее и тяжелее, чем в твердом. Электропроводность жидкого галлия также больше, чем твердого.

На что галлий похож?

Внешне – больше всего на олово: серебристо-белый мягкий металл, на воздухе он не окисляется и не тускнеет.

А по большинству химических свойств галлий близок к алюминию. Как и у алюминия, на внешней орбите атома галлия три электрона. Как и алюминий, галлий легко, даже на холоду, взаимодействует с галогенами (кроме иода). Оба металла легко растворяются в серной и соляной кислотах, оба реагируют со щелочами и дают амфотерные гидроокиси. Константы диссоциации реакций

Ga(OH) 3 → Ga 3+ + 3OH –

Н 3 GаО 3 → 3Н + + GaO 3– 3

– величины одного порядка.

Есть, однако, и отличия в химических свойствах галлия и алюминия.

Сухим кислородом галлий заметно окисляется лишь при температуре выше 260°C, а алюминий, если лишить его защитной окисной пленки, окисляется кислородом очень быстро.

С водородом галлий образует гидриды, подобные гидридам бора. Алюминий же способен только растворять водород, но не вступать с ним в реакцию.

А еще галлий похож на графит, на кварц, на воду.

На графит – тем, что оставляет серый след на бумаге.

На кварц – электрической и тепловой анизотропностью.

Величина электрического сопротивления кристаллов галлия зависит от того, вдоль какой оси проходит ток. Отношение максимума к минимуму равно 7 – больше, чем у любого другого металла. То же и с коэффициентом теплового расширения.

Величины его в направлении трех кристаллографических осей (кристаллы галлия ромбические) относятся как 31:16:11.

А на воду галлий похож тем, что, затвердевая, он расширяется. Прирост объема заметный – 3,2%.

Уже одно сочетание этих противоречивых сходств говорит о неповторимой индивидуальности элемента №31.

Кроме того, у него есть свойства, не присущие ни одному элементу. Расплавленный, он может многие месяцы оставаться в переохлажденном состоянии при температуре ниже точки плавления. Это единственный из металлов, который остается жидкостью в огромном интервале температур от 30 до 2230°C, причем летучесть его паров минимальна. Даже в глубоком вакууме он заметно испаряется лишь при 1000°C. Пары галлия в отличие от твердого и жидкого металла одноатомны. Переход Ga 2 → 2Ga требует больших затрат энергии; этим и объясняется трудность испарения галлия.

Большой температурный интервал жидкого состояния – основа одного из главных технических применений элемента №31.

На что галлий годен?

Галлиевые термометры позволяют в принципе измерить температуру от 30 до 2230°C. Сейчас выпускаются галлиевые термометры для температур до 1200°C.

Элемент №31 идет на производство легкоплавких сплавов, используемых в сигнальных устройствах. Сплав галлия с индием плавится уже при 16°C. Это самый легкоплавкий из всех известных сплавов.

Как элемент III группы, способствующий усилению в полупроводнике «дырочной» проводимости, галлий (чистотой не меньше 99,999%) применяют как присадку к германию и кремнию.

Интерметаллические соединения галлия с элементами V группы – сурьмой и мышьяком – сами обладают полупроводниковыми свойствами.

Добавка галлия в стеклянную массу позволяет получить стекла с высоким коэффициентом преломления световых лучей, а стекла на основе Ga 2 O 3 хорошо пропускают инфракрасные лучи.

Жидкий галлий отражает 88% падающего на него света, твердый – немногим меньше. Поэтому делают очень простые в изготовлении галлиевые зеркала – галлиевое покрытие можно наносить даже кистью.

Иногда используют способность галлия хорошо смачивать твердые поверхности, заменяя им ртуть в диффузионных ваккумных насосах. Такие насосы лучше «держат» вакуум, чем ртутные.

Предпринимались попытки применить галлий в атомных реакторах, но вряд ли результаты этих попыток можно считать успешными. Мало того, что галлий довольно активно захватывает нейтроны (сечение захвата 2,71 барна), он еще реагирует при повышенных температурах с большинством металлов.

Галлий не стал атомным материалом. Правда, его искусственный радиоактивный изотоп 72 Ga (с периодом полураспада 14,2 часа) применяют для диагностики рака костей. Хлорид и нитрат галлия-72 адсорбируются опухолью, и, фиксируя характерное для этого изотопа излучение, медики почти точно определяют размеры инородных образований.

Как видите, практические возможности элемента №31 достаточно широки. Использовать их полностью пока не удается из-за трудности получения галлия – элемента довольно редкого (1,5 10 –3 % веса земной коры) и очень рассеянного. Собственных минералов галлия известно немного. Первый и самый известный его минерал, галлит CuGaS 2 обнаружен лишь в 1956 г. Позже были найдены еще два минерала, совсем уже редких.

Обычно же галлий находят в цинковых, алюминиевых, железных рудах, а также в каменном угле – как незначительную примесь. И что характерно: чем больше эта примесь, тем труднее ее извлечь, потому что галлия больше в рудах тех металлов (алюминий, цинк), которые близки ему по свойствам. Основная часть земного галлия заключена в минералах алюминия.

Сформулировал свой периодических закон и составил периодическую же таблицу, многие металлы были науке ещё не известны.

Это, впрочем, не помешало химику выстроить свою периодическую систему, оставив пустые клетки для ещё не открытых элементов. Эти "белые пятна" вскорости были заполнены. Об одном из таких предсказанных Менделеевым элементов и пойдёт сегодня речь.

Знакомьтесь: галлий, 31 номер в таблице. Третья группа, легкоплавкий металл, близкий по свойствам к алюминию и кремнию. Менделеев не только достаточно подробно описал свойства этого металла, но и практически со стопроцентной точностью указал его атомный вес.

Открытие и происхождение названия

Галлий был открыт и выделен в виде просто вещества французским химиком Полем Эмилем Лекоком де Буабодраном. Произошло это в 1875 году, года учёный исследовал образцы цинковой обманки, привезённые из Пиренеев. Исследования проводились методом спектроскопии и учёный заметил в спектре руды фиолетовую линию, свидетельствующую о присутствии в минерале неизвестного элемента.

Выделение элемента в чистом виде потребовало немало труда, так как содержание его в руде было меньше 0,1%. В конце концов, Лекоку де Буабодрану удалось получить менее 0,1 грамма чистого вещества и исследовать его. Обнаруженный французом элемент по свойствам оказался во многом сходен с цинком.

На очередном заседании Парижской академии наук, состоявшемся 20 сентября 1875 года, было зачитано письмо Лекока де Буабодрана, в котором сообщалось об открытии нового элемента и изучении его свойств. Также химик сообщал, что назвал новооткрытый элемент в честь Франции, по её латинскому названию - Галлия (Gallia).

Когда Менделеев прочёл опубликованный доклад, посвящённый этому открытию, он отметил, что описание свойств нового элемента почти в точности совпадает с описанием предсказанного им ранее экаалюминия. Менделеев не замедлил сообщить об этом Лекоку де Буабодрану, указав, что плотность нового металла определена неверно и должна быть 5,9-6,0 , а не 4,7 г/см3. Тщательная проверка показала правоту Менделеева.

Добыча галлия

В природе галлий крупных месторождений не образует. В некоторых минералах галлий содержится в относительно больших (для этого металла): гранат, сфалерит, турмалин, берилл, полевые шпаты, нефелин.

Самый богатый источник галлия - минерал германит, руда, состоящая из сульфида меди, которая может содержать 0,5-0,7% галлия. Кроме этого, галлий получают при переработке боксита и нефелина. Также этот металл можно получить с помощью переработки полиметаллических руд, угля.


Загрязнённый галлий промывают водой, после этого фильтруют через пористые пластины и нагревают в вакууме для того, чтобы удалить летучие примеси. Для получения галлия высокой чистоты используют химический (реакции между солями), электрохимический (электролиз растворов) и физический (разложение) методы.

Месторождения, на которых ведётся добыча галлия, находятся, главным образом в Юго-Западной Африке , а также в России и в некоторых из стран СНГ.

Свойства галлия

Галлий – мягкий пластичный металл серебристого цвета. При низких температурах находится в твердом состоянии, но плавится уже при температуре, ненамного превышающей комнатную (29,8°C).

Вообще широкий температурный интервал существования жидкого состояния этого металла (от 30 и до 2230 °C) является одной из особенностей галлия. Химические свойства галлия близки к свойствам алюминия. В связи с легкоплавкостью, перевозка галлия осуществляется в полиэтиленовых пакетах.


До появления полупроводников, галлий использовался для создания легкоплавких сплавов. Сегодня же галлий используется, главным образом, в микроэлектронике в составе полупроводников. Нитрид галлия используется в создании полупроводниковых лазеров и светодиодов синего и ультрафиолетового диапазона.

Галлий - превосходный смазочный материал. На основе галлия и никеля, галлия и скандия созданы очень важные в практическом плане металлические клеи. Металлическим галлием также заполняют кварцевые термометры для измерения высоких температур, заменяя этим металлом ртуть. Это связано с тем, что галлий имеет значительно более высокую температуру кипения по сравнению с ртутью.

Галлий - один из самых дорогих металлов. Так в 2005 году на мировом рынке тонна галлия стоила 1,2 млн долларов США. В связи с его высокой стоимостью и с большой потребностью в этом металле, очень важно наладить его полное извлечение при алюминиевом производстве и переработке каменных углей на жидкое топливо.

Химия

Галлий №31

Подгруппа галлия. Содержание каждого из членов данной подгруппы в земной коре по ряду галлий (4-10~4%) -индий (2-10~6) - таллий (8-10-7) уменьшается. Все три" элемента чрезвычайно распылены, и нахождение в виде определенных минералов для них не характерно. Напротив, незначительные примеси их соединений содержат руды многих металлов. Получают Ga, In и Тi из отходов при переработке подобных руд.
В свободном состоянии галлий, индий и таллий представляют собой серебристо-белые металлы. Их важнейшие константы сопоставлены ниже:
Ga In Tl

Физические свойства галлия

Плотность, g/cjH3 5,9 7,3 11,9
Температура плавления, °С. . . 30 157 304
Температура кипения, °С... . 2200 2020 1475
Электропроводность (Hg = 1) . . 2 11 6

По твердости галлий близок к свинцу , In и Тi - еще мягче 6-13.
В сухом воздухе галлий и индий не изменяются , а таллий покрывается серой пленкой окисла. При накаливании все три элемента энергично соединяются с кислородом и серой . С хлором и бромом они взаимодействуют уже при обычной температуре, с иодом -лишь при нагревании. Располагаясь в ряду напряжений около железа , Ga, In и Тi растворимы в кислотах.14’ 15
Обычная валентность галлия и индия равна трем. Таллий дает производные, в которых он трех- и одновалентен. 18
Окиси галлия и его аналогов - белая Ga 2 O 3 , желтая 1п203 и коричневая Т1203 - в воде нерастворимы - отвечающие им гидроокиси Э (ОН)3 (которые могут быть получены исходя из солей) представляют собой студенистые осадки, практически нерастворимые в воде, но растворяю-щиеся в кислотах. Белые гидроокиси Ga и In растворимы также в растворах сильных щелочей с образованием аналогичных алюминатам галлатов и индатов. Они имеют, следовательно, амфотерный характер, причем кислотные свойства выражены у 1п(ОН) 3 слабее, а у Ga(OH) 3 сильнее, чем у Аl(ОН) 3 . Так, помимо сильных щелочей, Ga(OH) 3 растворима в крепких растворах NH 4 OH. Напротив, краснокоричневая Ti(ОН) 3 в щелочах не растворяется.
Ионы Ga"" и In" бесцветны, ион Тi" имеет желтоватую окраску. Производящиеся от них соли большинства кислот хорошо растворимы в воде, но сильно гидролизованы; Из растворимых солей слабых кислот многие подвергаются практически полному гидролизу. В то время как производные низших валентностей Ga и In для них не типичны, для таллия наиболее характерны именно те соединения, в которых он одновалентен. Поэтому соли Т13+ имеют заметно выраженные окислительные свойства.


Закись таллия (Т120) образуется в результате взаимодействия элементов при высоких температурах. Она представляет собой черный гигроскопичный порошок. С водой закись таллия образует желтый гидрат закиси (Т10Н), который при нагревании легко отщепляет воду и переходит обратно в Т120.
Гидрат закиси таллия хорошо растворим в воде и является сильным основанием. Образуемые им соли в большинстве бесцветны и
кристаллизуются без воды. Хлорид, бромид и иодид почти нерастворимы, но некоторые другие ] соли растворимы в воде. Произволные TiOН и слабых кислот вследствие гидролиза дают в растворе щелочную реакцию. При дей- : ствии сильных окислителей (например, хлорной воды) одновалентный таллий окисляется до трехвалентного.57-66
По химическим свойствам элементов и их соединений подгруппа галлия во многом похожа " на подгруппу германия. Так, для Ge и Ga более устойчива высшая валентность, для РЬ и Т1 низшая, химический характер гидроокисей в рядах Ge-Sn-РЬ и Ga-In-Тi изменяется однотипно. Иногда проявляются далее более тонкие ‘ черты сходства, например малая растворимость галоидных (Cl, Br, I) солей как РЬП, так и Тi . При всем том между элементами обеих подгрупп имеются и существенные различия (частично обусловленные их разной валентностью) : кислотный характер гидроокисей Ga и его аналогов выражен значительно слабее, чем у соответствующих элементов подгруппы германия , в противополжность PbF 2 фтористый таллий хорошо растворим и т. д.

Галлий дополнения

  1. Все три члена рассматриваемой подгруппы открыты при помощи спектроскопа: 1 таллий - в 1861 г., индий - в 1863 г. и галлий - в 1875 г. Последний из этих элементов за 4 года до его открытия был предсказан и описан Д. И. Менделеевым (VI § 1). Природный галлий слагается из изотопов с массовыми числами 69 (60,2%) и 71 (39,8); индий-113 (4,3) и 115 (95,7); таллий - 203 (29,5) и 205 (70,5%).
  2. В основном состоянии атомы элементов подгруппы галлия имеют строение внешних электронных оболочек 4s2 34p (Ga), 5s25p (In), 6s26p (Tl) и одновалентны, i Возбуждение трехвалентных состояний требует затраты 108 (Ga), 100 (In) или 129 , (Тi) ккал/г-атом. Последовательные энергии ионизации равны 6,00; 20,51; 30,70 для Ga; 5,785; 18,86; 28,03 для In: 6,106; 20,42; 29,8 эв для Т1. Сродство атома таллия к электрону оценивается в 12 ккал/г-атом.
  3. Для галлия известен редкий минерал галлит (CuGaS 2). Следы этого элемента постоянно содержатся в цинковых рудах. Значительно большие его количества: Е (до 1,5%) были обнаружены в золе некоторых каменных углей. Однако основным сырьем для промышленного получения галлия служат бокситы, обычно содержащие незначительные его примеси (до 0,1%). Извлекается он электролизом из щелочных жидкостей, являющихся промежуточным продуктом переработки природных бокситов на технический глинозем. Размеры ежегодной мировой выработки галлия исчисляются пока немногими тоннами, но могут быть значительно увеличены.
  4. Индий получают главным образом в качестве побочного продукта при комплексной переработке сернистых руд Zn, Pb и Си. Его ежегодная мировая выработка составляет несколько десятков тонн.
  5. Таллий концентрируется главным образом в пирите (FeS2). Поэтому шламы сернокислотного производства являются хорошим сырьем для получения этого элемента. Ежегодная мировая выработка таллия меньше, чем индия, но также исчисляется десятками тонн.
  6. Для выделения Ga, In и Т1 в свободном состоянии применяется или электролиз растворов их солей, или накаливание окислов в токе водорода. Теплоты плавления и испарения металлов имеют следующие значения: 1,3 и 61 (Ga), 0,8 и 54 (In), 1,0 и 39 ккал/г-атом (Т1). Теплоты их возгонки (при 25 °С) составляют 65 (Ga), 57 (In) и 43 ккал/г-атом (Т1). В парах все три элемента состоят почти исключительно из одноатомных молекул.
  7. Кристаллическая решетка галлия образована не отдельными атомами (как обычно для металлов), а двухатомными молекулами (rf = 2,48A). Она представляет собой, таким образом, интересный случай сосуществования молекулярной и металлической структур (III § 8). Молекулы Ga2 сохраняются и в жидком галлии, плотность которого (6,1 г/см) больше плотности твердого металла (аналогия с водой и висмутом). Повышение давления сопровождается снижением температуры плавления галлия. При высоких давлениях, помимо обычной модификации (Gal), установлено существование двух других его форм. Тройные точки (с жидкой фазой) лежат для Gal - Gall при 12 тыс. ат и 3 °С, а для Gall - Galll - при 30 тыс. ат и 45 °С.
  8. Галлий весьма склонен к переохлаждению, и его удавалось удерживать в жидком состоянии до -40 °С. Многократное повторение быстрой кристаллизации переохлажденного расплава может служить методом очистки галлия. В очень чистом состоянии (99,999%) он был получен и путем электролитического рафинирования, а также восстановлением водородом тщательно очищенного GaCl3. Высокая точка кипения и довольно равномерное расширение при нагревании делают галлий ценным материалом для заполнения высокотемпературных термометров. Несмотря на его внешнее сходство с ртутью, взаимная растворимость обоих металлов сравнительно невелика (в интервале от 10 до 95 °С она изменяется от 2,4 до 6,1 атомного процента для Ga в Hg и от 1,3 до 3,8 атомного процента для Hg в Ga). В отличие от ртути жидкий галлий не растворяет щелочные металлы и хорошо смачивает многие неметаллические поверхности. В частности, это относится к стеклу, нанесением на которое галлия могут быть получены зеркала, сильно отражающие свет (однако имеется указание на то, что очень чистый галлий, не содержащий примеси индия, стекло не смачивает). Нанесение галлия на пластмассовую основу используется иногда для быстрого получения радиосхем. Сплав 88% Ga и 12% Sn плавится при 15 °С, а некоторые другие содержащие галлий сплавы (например, 61,5% Bi, 37,2 - Sn и 1,3 - Ga) были предложены для пломбирования зубов. Они не изменяют своего объема с температурой и хорошо держатся. Галлий можно использовать также как уплотнитель для вентилей в вакуумной технике. Однако следует иметь в виду, что при высоких температурах он агрессивен по отношению и к стеклу, и ко многим металлам.
  9. В связи с возможностью расширения производства галлия становится актуальной проблема ассимиляции (т. е. освоения практикой) этого элемента и его соединений, что требует проведения исследовательских работ для изыскания областей их рационального использования. По галлию имеются обзорная статья и монографии.
  10. Сжимаемость индия несколько выше, чем у алюминия (при 10 тыс. ат объем составляет 0,84 исходного). С повышением давления уменьшается его электросопротивление (до 0,5 от исходного при 70 тыс. ат) и растет температура плавления (до 400°С при 65 тыс. ат). Палочки металлического индия при сгибании хрустят, подобно оловянным. На бумаге он оставляет темную черту. Важное применение индия связано с изготовлением германиевых выпрямителей переменного тока (X § 6 доп. 15). Благодаря своей легкоплавкости он может играть роль смазки в подшипниках.
  11. Введение небольшого количества индия в сплавы меди сильно повышает их устойчивость к действию морской воды, а присадка индия к серебру усиливает его блеск и предупреждает потускнение на воздухе. Сплавам для пломбирования зубов добавка индия придает повышенную прочность. Электролитическое покрытие индием других металлов хорошо предохраняет их от коррозии. Сплав индия с оловом (1:1 по массе) хорошо спаивает стекло со стеклом или металлом, а сплав состава 24% In и 76% Ga плавится при 16°С. Плавящийся при 47 °С сплав 18,1% In с 41,0 - Bi, 22,1 - РЬ, 10,6 - Sn и 8,2 - Cd находит медицинское использование при сложных переломах костей (вместо гипса). По химии индия имеется монография
  12. Сжимаемость таллия примерно такова же, как индия, но для него известны две аллотропические модификации (гексагональная и кубическая), точка перехода между которыми лежит при 235 °С. Под высоким давлением возникает еще одна. Тройная точка всех трех форм лежит при 37 тыс. ат и 110°С. Этому давлению соответствует скачкообразное уменьшение примерно в 1,5 раза электросопротивления металла (которое при 70 тыс. ат составляет около 0,3 от обычного). Под давлением в 90 тыс. ат третья форма таллия плавится при 650 °С.
  13. Таллий используется главным образом для изготовления сплавов с оловом и свинцом, обладающих высокой кислотоупорностью. В частности, сплав состава 70% РЬ, 20% Sn и 10% Т1 хорошо выдерживает действие смесей серной, соляной и азотной кислот. По таллию имеется монография.
  14. По отношению к воде галлий и компактный индий устойчивы, а таллий в присутствии воздуха медленно разрушается ею с поверхности. С азотной кислотой галлий реагирует лишь медленно, а таллий весьма энергично. Напротив, серная, и особенно соляная, кислота легко растворяет Ga и In, тогда как Т1 взаимодействует с ними значительно медленнее (вследствие образования на поверхности защитной пленки труднорастворимых солей). Растворы сильных щелочей легко растворяют галлий, лишь медленно действуют на индий и не реагируют с таллием. Галлий заметно растворяется также в NH4OH. Летучие соединения всех трех элементов окрашивают бесцветное пламя в характерные цвета: Ga - в почти незаметный для глаза темно-фиолетовый (Л. = 4171 А), In -в темно-синий (Л, = 4511 А), Т1 - в изумрудно-зеленый (А, = = 5351 А).
  15. Галлий и индий, по-видимому, не ядовиты. Напротив, таллий сильно ядовит, причем по характеру действия похож на РЬ и As. Поражает он нервную систему, пищеварительный тракт и почки. Симптомы острого отравления проявляются не сразу, а через 12-20 часов. При медленно развивающемся хроническом отравлении (в том числе и через кожу) наблюдается прежде всего возбуждение и расстройство сна. В медицине препаратами таллия пользуются для удаления волос (при лишаях и т. п.). Соли таллия нашли применение в светящихся составах как вещества, увеличивающие продолжительность свечения. Они оказались также хорошим средством против мышей и крыс.
  16. В ряду напряжений галлий располагается между Zn и Fe, а индий и таллий - между Fe и Sn. Переходам Ga и In по схеме Э+3 + Зе = Э отвечают нормальные потенциалы: -0,56 и -0,33 в (в кислой среде) или -1,2 и -1,0 в (в щелочной среде). Таллий переводится кислотами в одновалентное состояние (нормальный потен- пиал -0,34 в). Переход Т1+3 + 2е = Т1+ характеризуется нормальным потенциалом + 1,28 в в кислой среде или +0,02 в - в щелочной.
  17. Теплоты образования окислов Э203 галлия и его аналогов уменьшаются по ряду 260 (Ga), 221 (In) и 93 ккал/моль (Т1). При нагревании на воздухе галлий практически окисляется только до GaO. Поэтому Ga203 обычно получают обезвоживанием Ga (ОН) з. .Индий при нагревании на воздухе образует 1п203, а таллий - смесь Т1203 и Т120 с тем большим содержанием высшего окисЛа, чем ниже температура. Нацело до Т1203 таллий может быть окислен действием озона.
  18. Растворимость окислов Э203 в кислотах увеличивается по ряду Ga - In - Tl. В том же ряду уменьшается прочность связи элемента с кислородом: Ga203 плавится при 1795°С без разложения, 1п203 переходит в 1п304 лишь выше 850 °С, а мелко раздробленная Т1203 начинает отщеплять кислород уже около 90 °С. Однако для полного перевода Т1203 в Т120 необходимы гораздо более высокие температуры. Под избыточным давлением кислорода 1п203 плавится при 1910 °С, а Т1203 - при 716 °С.
  19. Теплоты гидратации окислов по схеме Э203 + ЗН20 = 2Э(ОН)3 составляют +22 ккал (Ga), +1 (In) и -45 (Т1). В соответствии с этим легкость отщепления гидроокисями воды возрастает от Ga к Т1: если Ga(OH)3 полностью обезвоживается лишь при прокаливании, то Т1(ОН)3 переходит в Т1203 даже при стоянии под жидкостью, из которой она была выделена.
  20. При нейтрализации кислых растворов солей галлия его гидроокись осаждается приблизительно в интервале pH = 3-4. Свежеосажденная Ga(OH)3 хорошо растворима в крепких растворах аммиака, но по мере ее старения растворимость все более снижается. Ее изоэлектрическая точка лежит при pH = 6,8, а ПР = 2 10~37. Для 1п(ОН)3 было найдено ПР = 1 10-31, а для Т1(ОН)3- 1 10~45.
  21. Для вторых и третьих констант диссоциации Ga(OH)3 по кислотному и основному типам были определены следующие значения:

H3Ga03 /С2 = 5-10_И К3 = 2-10-12
Ga(OH)3 К2“2. Ю-П /Сз = 4 -10 12
Таким образом, гидроокись галлия представляет собой случай электролита, очень близкого к идеальной амфотерности.

  1. Различие кислотных свойств гидроокисей галлия и его аналогов отчетливо проявляется при их взаимодействии с растворами сильных щелочей (NaOH, КОН). Гидроокись галлия легко растворяется с образованием галлатов типа M, устойчивых и в растворе, и в твердом состоянии. При нагревании они легко теряют воду (соль Na - при 120, соль К - при 137 °С) и переходят в соответствующие безводные соли типа MGa02. Для получаемых из растворов галлатов двухвалентных металлов (Са, Sr) характерен другой тип - M3 ■ 2Н20, которые тоже почти нерастворимы. Водой они полностью гидролизуются.
    Гидроокись таллия легко пептизируется сильными щелочами (с образованием отри-цательного золя), но нерастворима в них и таллатов не дает. Сухим путем (сплавлением окислов с соответствующими карбонатами) производные типа МЭ02 были получены для всех трех элементов подгруппы галлия. Однако в случае таллия они оказались смесями окислов.

    1. Эффективные радиусы ионов Ga3+, In3* и Т13* равны соответственно 0,62, 0,92 и 1,05 А. В водной среде они непосредственно окружены, по-видимому, шестью молекулами воды. Такие гидратированные ионы несколько диссоциированы по схеме Э(ОН2)а Г * Э (ОН2)5 ОН + Н, причем их константы диссоциации оцениваются в 3 ■ 10-3°(Ga) и 2 10-4 (In).
    2. Галоидные соли Ga3+, In3* и Т13*’ в общем похожи на соответствующие соли А13*. Кроме фторидов, они сравнительно легкоплавки и хорошо растворимы не только в воде, но и в ряде органических растворителей. Окрашены из них лишь желтые Gal3


    Широкого промышленного применения галлий еще не получил. В настоящее время определились следующие области использования галлия.
    Термометры для высокой температуры. Галлий обладает низкой температурой плавления (29,8°) при высокой температуре кипения (~2200°). Это позволяет использовать его для изготовления кварцевых термометров для измерения высоких температур (600-1300°).
    Легкоплавкие сплавы. Галлий с рядом металлов (висмут, свинец, олово, кадмий, индий, таллий и др) образует легкоплавкие сплавы, имеющие температуру плавления ниже 60°. Так, например, сплав галлия с 25% In плавится при температуре 16°, точка плавления сплава галлия с 8% Sn равна 20°. Температура плавления эвтектического сплава (82% Ga, 12% Sn и 6% Zn) равна 17°.
    Предложен ряд легкоплавких сплавов, содержащих галлий, для сигнальных устройств (спринклерных предохранителей), применяемых в пожарном деле, действие которых основано на расплавлении сплава при превышении определенной температуры, что вызывает автоматическое включение системы распыления воды.
    Легкоплавкий сплав, содержащий 60% Sn, 30% Ga и 10% In, предложен для термометров взамен ртути.
    В последнее время привлечено внимание к возможности использования галлия и его сплавов в качестве жидкой среды для отвода тепла на энергетических установках, например тепла, выделяющегося в атомных котлах. Преимуществом галлия как теплопроводной жидкости является высокая температура кипения, сочетающаяся с высокой теплопроводностью. Однако препятствием к использованию галлиевого теплоносителя служит взаимодействие галлия с большинством металлов при высоких температурах.
    Предложено использовать сплавы галлия в зубном деле вместо амальгам ртути. Для зубных пломб рекомендованы следующие сплавы; 40-80% Bi; 30-60% Sn; 0,5-0,8% Ga и 61,5% Bi; 37,2% Sn; 1,3% Ga.
    Зеркала. Галлий обладает способностью хорошо прилипать к стеклу, что позволяет изготовлять галлиевые зеркала. Зеркало можно изготовить путем сдавливания галлия между двумя нагретыми листами стекла. Галлиевые зеркала обладают высокой
    отражательной способностью. Для длины волны 4,360 А отражательная способность составляет 75,6%, для волны 5,890 А - 71,3%. Жидкий галлий отражает 88% падающего на зеркало света.
    Другие области применения. Предложено применять сплав алюминия с галлием вместо ртути в качестве катода ламп ультрафиолетового излучения, используемых в медицине. Получаемое при этом излучение обогащено лучами голубых и красных частей спектра, что улучшает терапевтическое действие излучения.
    Возможна замена галлием ртути в ртутных выпрямителях. Весьма высокая температура кипения металла позволяет работать со значительно большими нагрузками, чем при использовании ртути.
    Известно применение солей галлия в качестве компонента светящихся красок (для возбуждения флуоресцентного свечения соединений). Соли галлия используют также в аналитической химии, в медицине и в качестве катализаторов в органическом синтезе.

    Имя:*
    E-Mail:
    Комментарий:

    Добавить

    27.03.2019

    В-первую очередь надо определиться сколько вы готовы потратить на покупку. Специалисты рекомендуют начинающим инвесторам сумму от 30 тысяч рублей до 100. Стоит...

    27.03.2019

    Металлопрокат в наше время активно используется в самых разных ситуациях. Действительно, на многих производствах просто не обойтись без него, так как металлопрокат...

    27.03.2019

    Стальные прокладки овального сечения предназначены для герметизации фланцевых соединений арматуры и трубопроводов, которые транспортируют агрессивные среды....

    26.03.2019

    Многие из нас слышали о такой должности как системный администратор, но далеко не каждый представляет себе, что конкретно имеется в виду под этой фразой....

    26.03.2019

    Каждый человек, который делает ремонт в своем помещении, должен задумываться о том, какие конструкции необходимо установить в межкомнатное пространство. На рынке...

    26.03.2019

    26.03.2019

    На сегодняшний день газоанализаторы активно применяют в нефтяной и в газовой отраслях, в коммунальной сфере, в ходе осуществления анализов в лабораторных комплексах, для...

    26.03.2019

    На сегодняшний день металлические емкости активно используются с целью стационарного хранения разного рода жидкостей, среди которых нефть и нефтепродукты, на складах, в...

    25.03.2019

    На предприятии Algerian Qatari Steel, располагающемся в населённом пункте Беллара, стартовали «горячие» проверки проволочного стана с показателем мощности примерно...

    25.03.2019

    Высочайший уровень надёжности снабжения электричеством для ответственных потребителей можно достигнуть посредством эксплуатации автономных генераторов. Принимая во...