К.т.н. М.А. Биялт, начальник участка вибрационной диагностики и наладки, ООО «КВАРЦ Групп», г. Омск;
к.т.н. А.В. Кистойчев, доцент,
А.В. Балеевских, студент,
Е.Ф. Ковальчук, студент, ФГАОУ ВПО «УрФУ имени первого Президента России Б.Н. Ельцина», г. Екатеринбург

Гибкие муфты обычно используют для передачи небольших по величине крутящих моментов. Ранее они устанавливались в турбинах единичной мощностью до 100 МВт. В современных же мощных турбоагрегатах гибкие муфты уже не применяются из-за возникающих больших сопротивлений при передаче значительных крутящих моментов. Однако в небольших приводных агрегатах и различных вспомогательных механизмах (насосы, нагнетатели, компрессоры) они находят широкое применение благодаря своим свойствам:

1. Способность смягчать толчки и удары.

2. Упругие муфты могут служить средством защиты от резонансных крутильных колебаний, возникающих в механизме вследствие неравномерности вращения.

3. Упругие муфты допускают сравнительно большие смещения осей соединяемых валов. При этом, за счет деформации упругих элементов, валы и опоры нагружаются сравнительно малыми силами и моментами.

Вместе с тем, гибким муфтам присущи следующие недостатки: сложность (невозможность) точной подгонки ее рабочих элементов для равномерной передачи ими крутящего момента; повышенный вследствие этого износ элементов муфты в эксплуатации. Нарушения в работе гибкой муфты могут стать причиной появления зависимости вибрации агрегата от нагрузки (величины крутящего момента), разрушения элементов муфты или даже ее заклинивания.

В статье нами на основании собственного опыта, а также опыта наших коллег, был рассмотрен еще один аспект вибрационного поведения агрегата, имеющего в составе валопровода гибкую муфту - это склонность таких агрегатов к низкочастотной вибрации при наличии дефектов гибкой муфты. В данной работе хотелось бы подойти к обозначенной проблеме несколько с другой стороны и рассмотреть низкочастотную вибрацию как диагностический признак развитого дефекта гибкой муфты. О необходимости этого красноречивее всего говорит следующий пример.

В статье , пожалуй, впервые было отмечено, что неправильная работа гибкой муфты может приводить к возникновению низкочастотных колебаний. К такому выводу автор приходит после длительных комплексных испытаний агрегата ПТ-50-90/16, вышедшего из капитального ремонта, которые включали в себя исследования зависимости вибрации:

1. от величины расхода пара в производственный отбор при постоянной электрической нагрузке;

2. от электрической нагрузки в конденсационном режиме;

3. от электрической нагрузки при постоянном расходе пара в отбор;

4. от расхода свежего пара;

5. от температуры масла, поступающего на подшипники.

В ходе испытаний была выявлена зависимость величины низкочастотной вибрации от мощности, вырабатываемой ЦВД . После нормализации работы муфты низкочастотная вибрация исчезла.

Рассмотренный случай хорошо иллюстрирует, что отсутствие четких диагностических признаков того или иного дефекта ведет к увеличению времени и затрат на вибрационную наладку агрегата. По этой причине одним из направлений научной деятельности специалистов УрФУ является разработка и уточнение диагностических признаков наиболее характерных дефектов валопроводов . Диагностические признаки нарушения работы гибких муфт, которые проявляются в вибрационном сигнале, достаточно хорошо известны:

■ рост оборотной вибрации;

■ появление «нагрузочного вектора» (табл.);

■ возникновение в спектрах вибрации опорных подшипников ряда высокочастотных гармоник (рис. 1 и 2).

Как показывает опыт наладки т/а ПТ-60-130 , данные диагностические признаки могут довольно ярко проявляться в вибрационном поведении агрегата, однако низкочастотная вибрация при этом может отсутствовать или ее уровень может оставаться незначительным. Срыв агрегата в низкочастотную вибрацию происходит после некоторой наработки, если не были своевременно предприняты меры по нормализации работы гибкой муфты. Это правило лучше всего прослеживается на примере нашего опыта диагностики и наладки компрессорной установки К-1700 мощностью 10 МВт .

Таблица. Результаты измерений вибрации на передних подшипниках турбоагрегата ПТ-60-130 при наличии дефекта гибкой муфты.

Длительное время агрегат работал без особых замечаний, но в дальнейшем на рабочем режиме работы периодически стали возникать самовозбуждающиеся низкочастотные колебания ротора электродвигателя, что однозначно указывало на потерю устойчивости.

При пуске агрегата и нагружении уровни вибрации скачкообразно возрастали (за счет амплитуды НЧВ), но общий уровень вибрации не превышал уровня срабатывания защит. Обычно в таких случаях агрегат останавливали и запускали вновь, до тех пор, пока НЧВ не возникала (иногда для этого требовалось несколько пусков). На определенном этапе такой эксплуатации возникла технологическая необходимость не отключать компрессор даже при возникшей НЧВ. В таком режиме (с уровнями вибрации до 10,0 мм/c) агрегат проработал почти 10 суток и после этого был выведен в ремонт. При ревизии подшипников электродвигателя было обнаружено разрушение баббита в виде сколов на нижних и верхних половинах вкладышей обоих подшипников, в связи с чем подшипники были заменены.

Таким образом, изложенные выше случаи, на наш взгляд, позволяют утверждать, что наличие в спектре вибрации опор агрегатов, имеющих в составе валопровода гибкую муфту, следов НЧВ, а тем более их срыв в НЧВ, может указывать на появление значительных отклонений в работе гибкой муфты. Данные отклонения могут быть не только результатом развития дефектов самой муфты, но и следствием воздействия внешних факторов (нарушения в тепловых расширениях, режимные расцентровки). Данное утверждение может быть легко подтверждено и приведенным в объяснением роли гибкой муфты в механизме возникновения НЧВ.

Как известно, надежная работа гибких муфт даже при отсутствии расцентровки в значительной степени зависит от равномерности передачи крутящего момента по окружности. Неравномерность тангенциальных зазоров между передаточными элементами и зубцами полумуфт, износ и деформации передаточных элементов, разношаговость зубцов на полумуфтах или «коронке», пригары, некачественная смазка и многие другие причины приводят к неравномерной передаче крутящего момента по окружности муфты, что визуально подтверждалось и в рассмотренных выше случаях.

В результате неравномерности передачи крутящего момента в плоскости муфты возникает поперечная сила, равная равнодействующей сил, передаваемых передаточными элементами, схематично изображенная на рис. 3.

Сила, которая может быть условно названа «поводковой», подобна силе от дисбаланса и вызывает повышенную оборотную вибрацию. Такая сила по мере ее возникновения и увеличения «разматывает» ротор в расточках подшипников и увеличивает прецессию. Изменение крутящего момента, а значит и передаваемой мощности, приводит к изменению указанной силы, что и отражается ростом оборотной вибрации при увеличении нагрузки, т.е. появлением «нагрузочного» вектора. И самое главное - при резком нагружении или разгрузке агрегата эта сила является той самой дестабилизирующей силой, которая, смещая шейки ротора в расточках вкладышей подшипников, может привести к возникновению прецессионного движения с угловой скоростью, равной половине угловой скорости ротора, т.е. к срыву в НЧВ. Причем, чем более развит дефект гибкой муфты, тем выше значение «поводковой» силы, а значит и выше склонность агрегата к срыву в НЧВ. Это точно соответствует классическому механизму появления циркуляционной силы в расточке подшипника, который обычно используется для объяснения данного процесса.

Выводы

Анализ многочисленных случаев возникновения НЧВ на турбоагрегатах, имеющих гибкую муфту в составе валопровода, а также других роторных машин (компрессоров, нагнетателей, насосов и пр.), показывает, что причина срыва, в большинстве случаев, заключается в неудовлетворительной работе именно гибкой муфты. Т.о. при прочих усугубляющих факторах, а именно близости собственной частоты ротора к половине от оборотной частоты (25 Гц), увеличенных зазорах в подшипниках и т.д., агрегаты с гибкими муфтами следует рассматривать склонными к срыву в НЧВ (естественно при ухудшении условий работы гибкой муфты) и уделять особое внимание к ревизии данного узла в процессе ремонта.

На основе обобщения опыта диагностики и вибрационной наладки роторных машин рассмотрены особенности срыва в НЧВ агрегатов, имеющих в своей конструкции гибкую муфту, а также предложен механизм потери устойчивости и показана определяющая роль в этом механизме появления отклонений в работе муфты.

Предложено рассматривать появление НЧВ на опорах роторных машин как диагностический признак появления значительных отклонений в работе гибкой соединительной муфты.

Литература

1. Биялт М.А. Роль гибких муфт в возникновении низкочастотной вибрации / М.А. Биялт, А.В. Кистойчев, Е.А.Зонов, Е.В. Урьев // Тяжелое машиностроение. 2012. № 2. С. 40-48.

2. Трунини Е.С. Автоколебания ротора высокого давления // Электрические станции. 1964. № 3. С. 80-81.

3. Кистойчев А. В. О диагностических признаках наличия жидкости в центральной расточке роторов // А. В. Кистойчев, Е.В. Урьев, М.А. Биялт/Электрические станции. 2012. № 6. С. 57-62.

4. Kistoychev A., Uriev E. Diagnostic of Transversal NonCircular Crack in Turbomachine Rotors // 12th International Scientific and Engineering Conference «HERVIC0N-2008». Poland, Kielce-Przemysl, 2008. P. 56-62.

5. Биялт М.А. Роль гибких муфт в возникновении низкочастотной вибрации / М.А. Биялт, А.В. Кистойчев, Е.А.Зо- нов, Е.В. Урьев// Тяжелое машиностроение. 2012. № 2. С. 40-48.

Ускорение - все эти понятия наверняка вам знакомы. В этой статье мы рассмотрим более подробно такую важную тему, как вибрация. Каждый из нас сталкивается с этим явлением в повседневной жизни.

Что же такое вибрация? Определение можно дать следующее: это колебательные механические движения, которые передаются непосредственно телу человека. Главными ее физическими характеристиками являются частота и амплитуда колебаний. Измерение вибрации по амплитуде осуществляется в сантиметрах или метрах, а по частоте - в герцах.

Как следует оценивать вибрацию по ускорению и скорости?

При всяком скорость и ускорение непрерывно изменяются. Ускорение наибольшим является на осевой линии колебания, а в крайних позициях оно наименьшее. Учитывая это, измерение вибрации осуществляется по ускорению и скорости. Отчет децибел при этом ведется от опорной виброскорости (условной), которая равна 5∙10 8 м/с, а также виброускорения - 3∙10 4 м/с 2 . Виброускорение и виброскорость выражаются относительно нулевых порогов в децибелах. Порог восприятия при этом составляет примерно 70 дБ. Частота вибрации низкочастотной не превышает 32 Гц, а высокочастотной составляет более 32 Гц.

Источники вибрации

Это широко используемые в строительстве, промышленности, быту, сельском хозяйстве, транспорте электрические и пневматические механизированные ручные инструменты, различное оборудование и машины, транспортные средства, станки. Вибрация широко используется не только в технике, но также и в медицине для лечения мышечных и нервных заболеваний (вибромассаж, вибротерапия).

Воздействие вибрации

Вибрация - это фактор, который обладает большой биологической активностью. Направленность, глубина и характер физиологических сдвигов разных систем человеческого организма определяются ее спектральным составом, уровнями и физическими свойствами человеческого тела. Важную роль в генезисе данных реакций играют анализаторы - кожный, зрительный, двигательный, вестибулярный и др.

Нужно отметить большую роль, которую играют в субъективном восприятии вибрации биохимические свойства тела человека. Действие ее на организм опосредуется такими явлениями, как физическое воздействие контакта на поверхность, распространение по тканям колебаний, непосредственная реакция в тканях и органах на воздействие, раздражение механорецепторов, которые вызывают субъективные и нейрорецепторные реакции.

Сегодня накоплен значительный клинический и экспериментальный материал по данной проблеме. Исследование вибрации показало, что возникающие под ее действием расстройства двигательной функции обусловлены как непосредственным поражением мышц, так и нарушениями регуляторных воздействий ЦНС. Преобладание диффузных сдвигов при этом можно объяснить изменениями в функционировании суперспинальных структур, а большую выраженность, которую имеют в мышцах локальные изменения, - их непосредственной травматизацией. Наиболее чувствительными к воздействию вибрации локальной являются отделы симпатической нервной системы, которые регулируют тонус периферических сосудов, и отделы периферической нервной системы, которые связаны с тактильной и вибрационной чувствительностью.

Исследование вибрации дало право утверждать, что параметрами ее воздействия в первую очередь определяется направленность сосудистых нарушений. При механических колебаниях частотой более 35 Гц в капиллярах происходят спастические явления, а ниже наблюдается картина атонии капилляров. Самой опасной с точки зрения возможного развития спазма сосудов является область частот от 35 до 250 Гц.

Негативное влияние при выполнении рабочих операций

Вибрация может мешать прямым путем выполнению рабочих операций, а также влиять косвенно на работоспособность человека, снижая ее. Некоторые авторы, проводящие исследование вибрации, рассматривают ее как сильный стресс-фактор, который оказывает негативное воздействие на психомоторную работоспособность. Кроме того, страдает умственная деятельность и эмоциональная сфера, а также увеличивается вероятность несчастных случаев.

Колебательная скорость

Установлено, что шум и вибрация энергетически действуют на человеческий организм. Поэтому последнюю начали характеризовать спектром выраженной в сантиметрах в секунду колебательной скорости или же измерять в децибелах, как и шум. Условно была принята в качестве пороговой величины механических колебаний скорость, составляющая 5∙10 6 см/сек. Только при непосредственном соприкосновении организма с содрогающимся телом либо через соприкасающиеся с ним другие твердые тела ощущаются (воспринимаются) механические колебания. При соприкосновении с их источником, издающим (генерирующим) басовый звук, вибрации (самых низких частот), вместе со звуком также воспринимается сотрясение.

Общая и местная

Различают общую и местную вибрацию в зависимости от распространения механических колебаний по частям тела человека. При местной подвергается сотрясению только часть тела, непосредственно соприкасающаяся с поверхностью, которая содрогается. Чаще всего это руки. Такое происходит при работе с некоторыми ручными инструментами или при удержании детали машины и других дрожащих предметов.

Местная вибрация иногда передается на части тела, которые соединены суставами с непосредственно подвергающимися ей органами. Но амплитуда колебаний данных частей тела бывает обычно ниже, поскольку по мере передачи по тканям (особенно мягким) колебаний они постепенно затухают. Напротив, общая вибрация оказывает воздействие на все тело. Это происходит в основном от механических колебаний поверхности, где находится рабочий.

Вибрационная болезнь

При воздействии на организм человека вестибулярных раздражителей оценка и восприятие времени нарушаются, а также снижается скорость обработки информации. вызывает низкочастотная вибрация. Самые выраженные изменения при этом отмечаются при частотах в диапазоне от 4 до 11 Гц.

К стойким патологическим нарушениям в человеческом организме приводит длительное воздействие вибрации. Всесторонний анализ данного патологического процесса привел к выделению его в отдельную нозологическую форму - вибрационную болезнь. Она продолжает удерживать одно из ведущих мест в числе других профессиональных заболеваний. Ее порождает использование не отвечающих нормативным требованиям ручных машин, а также увеличивающаяся специализация труда, которая ведет к повышению общего времени воздействия механических колебаний на организм. С увеличением длительности и интенсивности воздействия вибрации возрастает вероятность развития данной болезни. Существенное значение при этом имеет индивидуальная чувствительность. Переутомление, охлаждение, шум, алкогольное опьянение, мышечное напряжение и др. усиливают вредное воздействие.

Стадии вибрационной болезни

Выделяют 4 стадии данного заболевания по степени выраженности:

Начальная (I);

Умеренно выраженная (II);

Выраженная (III);

Генерализованная (IV, крайне редко встречается).

Негативное воздействие общей вибрации

Общая низкочастотная вибрация, в особенности резонансного диапазона, может вызвать долговременную травматизацию костной ткани и межпозвоночных дисков, смещение органов, расположенных в брюшной полости, а также боли в пояснице, дегенеративные изменения позвоночника, хронический гастрит и др.

У подвергающихся в течение долгого времени подобному воздействию женщин отмечается увеличение частоты гинекологических заболеваний, преждевременных родов, самопроизвольных абортов. Вибрация низкочастотная у женщин вызывает нарушение кровообращения в органах малого таза.

Механические колебания в жилых зданиях

Исследование вибрации очень важно осуществлять не только в производственных зданиях, но и в жилых домах. Дело в том, что она представляет опасность не только для здоровья рабочих, но и для некоторых других групп населения. В жилых зданиях влияние вибрации на человека оказывается благодаря использованию промышленных установок, транспорта, инженерно-технологического оборудования. Наиболее воздействует на организм по интенсивности колебаний городской рельсовый транспорт: железнодорожные магистрали, открытые участки метрополитена.

Возникающая от движения поездов в зданиях вибрация имеет прерывистый регулярный характер. Амплитуда колебаний по мере удаления от ее источника снижается. Говоря о распространении колебаний по этажам многоэтажного помещения, следует сказать, что на верхних может наблюдаться, в зависимости от резонанса, как усиление, так и ослабление вибрации. При этом типы конструкций помещений не оказывают в условиях одинаковых грунтов значительного влияния на ее уровни в жилых помещениях. Иногда отмечаются высокие вибрационные уровни от расположенного в самих зданиях инженерно-технологического оборудования (лифтов), а также встроенных объектов.

Методы защиты

Защита от вибрации очень важна на предприятиях. Нормирование ее уровней, гигиенически обоснованное, - основа профилактики вибрационной болезни. Учитываются при этом направленность, характер, продолжительность действия. В РФ санитарным законодательством регламентируются уровни механических колебаний, которые должны быть соблюдены на рабочих местах.

Защита от общей вибрации

Влияние вибрации на человека следует по возможности уменьшать. Безопасность труда представляет собой систему количественных и качественных характеристик и показателей, которые формируют специфику элементов, обеспечивающих отсутствие вредного воздействия механических колебаний на человеческий организм. Защита от вибрации обеспечивается:

Использованием вибробезопасных машин;

Виброзащиты;

Проектированием производственных помещений и технологических процессов, которые обеспечивают соблюдение на рабочих местах санитарных норм;

Организационно-техническими мероприятиями, цель которых - улучшение эксплуатации используемых машин, организация их своевременного ремонта, а также контролем вибрационных параметров;

Созданием оптимальных режимов труда и отдыха.

Средства индивидуальной защиты, используемые при воздействии общей вибрации, - это виброизолирующая обувь, подметки, стельки. Самым действенным среди всех средств защиты можно считать устранение непосредственного контакта человека с дрожащим оборудованием. Это осуществляется с помощью использования дистанционного управления, замены и автоматизации технологических операций.

Средства защиты от вибрации локальной

Уменьшение ее негативного воздействия достигается:

С помощью уменьшения ее интенсивности непосредственно в самом источнике (использование рукояток с амортизирующими или виброгасящими устройствами);

Путем использования средств внешней защиты, то есть упругодемпфирующих устройств и материалов, размещенных между руками оператора и источником механических колебаний (виброизолирующие перчатки, рукавицы, прокладки и вкладыши).

Важная роль в комплексе мероприятий, направленных на снижение отрицательного воздействия вибрации на человеческий организм, отводится режимам труда и отдыха. Общее время контакта с ней, согласно режимом труда, должно быть ограничено в течение смены. Рекомендуется делать два перерыва для проведения физиотерапевтических процедур, активного отдыха и т. д. Продолжительность первого должна составлять 20 минут (этот перерыв следует сделать через 2 часа после времени начала смены). Продолжительность второго - 30 минут, он должен быть через 2 часа после перерыва на обед. при этом длится должен не менее 40 минут. Продолжительность непрерывного одноразового воздействия на организм механических колебаний должна быть не более 10-15 минут.

К общеоздоровительным и медико-биологическим мероприятиям, служащим для профилактики вибрационной болезни, можно отнести следующие:

Гидропроцедуры для рук (ванночки с теплой водой (+37-38 градусов) либо использование сухого воздушного обогрева;

Производственную гимнастику;

Самомассаж и взаимомассаж плечевого пояса и рук;

Ультрафиолетовое облучение;

Употребление витаминов, а также иные мероприятия общеукрепляющего характера (кислородный коктейль, комната психологической разгрузки и др.).

Важность и актуальность этой темы подтверждается тем, что ее изучают еще в школе. Вибрация рассматривается, в частности, в учебнике "Физика" (11 класс). Конечно, в школе она изучается в более общем виде. Рассматриваются, в частности, вибрации Земли. Частота нашей планеты равняется 7,83 Гц. Эту величину называют волной Шумана, или частотой резонанса Шумана. Некоторые, правда, полагают, что в последнее время меняются вибрации Земли. Например, Анку Динкэ, румынский физик, считает, что к декабрю 2012 года они должны были достигнуть 12,6-12,8 Гц. Вибрации человека должны соответствовать вибрациям планеты. Те, кто сможет настроиться на новые частоты, выиграют в духовном плане, как полагает Анку Динкэ. Вибрации человека - это тема отдельной статьи.

Надежность работы турбины и генератора в значительной мере определяется их вибрационным со­стоянием.

Повышенная вибрация, возни­кающая вследствие некачественного изготовления, монтажа, ремонта или некачественной эксплуатации агре­гата, является источником всевоз­
можных аварийных ситуаций и да­же крупных аварий. Необходимо от­метить, «что вредные последствия да­же умеренных вибраций имеют свой­ство накапливаться и проявляться в самой различной форме. Это мо­жет найти выражение в появлении усталостных трещин в роторе тур­бины, штоках регулирующих клапа­нов, чугунных опорах, зубчатых пе­редачах и т. д. Под действием виб­рации расстраивается взаимное крепление частей, нарушается жест­кая связь статоров и подшипников с фундаментными плитами, уве­личивается расцентровка валов.

При повышенной вибрации воз­никает опасность повреждения ла­биринтных уплотнений турбины, во­дородных уплотнений и системы водяного охлаждения генератора. Значительные колебания вала на масляной пленке могут вызвать воз­никновение очагов полусухого тре­ния, что увеличивает опасность вы­плавления подшипников.

Неблагоприятное действие виб­рации оказывается также на работе системы регулирования турбины и приборов контроля. Необходимо от­метить также отрицательное воз­действие вибрации на обслуживаю­щий персонал. Это воздействие определяется как повышенным уровнем шума, так и непосредствен­ным, физиологическим действием вибрации на организм человека.

Все эти обстоятельства предъяв­ляют весьма жесткие требования к нормированию вибраций. Соглас­но ПТЭ вибрационное состояние турбоагрегата оценивается по сле­дующей шкале:

На турбогенераторах блочных установок мощностью 150 МВт и бо­лее вибрация не должна превышать 30 мкм.

Вибрация должна замеряться в трех направлениях: вертикальном, горизонтально-продольном и гори­зонтально-поперечном. Если вибра­ция хотя бы одного из подшипников в одном из трех направлений пре­вышает значение «удовлетворитель­но» для данного типа машин, то вибрационное состояние всего агре­гата признается неудовлетворитель­ным, и турбина должна быть выве­дена в ремонт для устранения виб­рации.

Вибрационное состояние агрега­та должно определяться при вводе его в эксплуатацию после монтажа, перед выводом агрегата в капиталь­ный ремонт и после капитального ремонта. При отличном и хорошем вибрационном состоянии агрегата периодичность замеров вибрации должна составлять 1 раз в 3 мес. При заметном повышении вибрации подшипников замеры должны произ­водиться по особому графику. Тур­боагрегаты с удовлетворительной оценкой вибрации могут быть вве­дены в эксплуатацию только с раз­решения главного инженера район­ного управления (энергокомбина­та), причем в самое ближайшее вре­мя должны быть приняты меры по улучшению вибрационного состоя­ния агрегата.

Для оценки вибрационного со­стояния турбоагрегата уровень виб­рации должен определяться не толь­ко на рабочих числах оборотов, но и при прохождении турбиной крити­ческого числа оборотов. Исследова­ния показали , что переход систе­мы «ротор - опоры» через критиче­ские скорости в процессе пуска и останова агрегата может сопровож­даться весьма значительным увели­чением амплитуды колебаний. Хотя в данном случае повышенная вибра­ция действует относительно кратко­временно, однако нескольких пусков и остановов машины с недопустимо большими амплитудами колебаний ротора на критических скоростях может оказаться достаточным для приведения в негодность паровых и масляных уплотнений. В худших случаях возникают задевания в про­точной части турбины, появляется остаточный прогиб ротора, разруша­ется баббит вкладышей подшипни­ков, появляются трещины в фунда­менте и т. п.

Значительный рост вибрации на кри­тических скоростях вызывается существен­ной неуравновешенностью ротора по соб­ственным формам динамического прогиба валов. Как показывает практика, и этот небаланс может быть устранен специаль­ными методами балансировки с доведением уровня вибрации подшипников на крити­ческих оборотах до величины порядка 30- 50 мкм. Поэтому вибрационное состояние турбоагрегата, проходящего критические скорости с повышенной вибрацией, не мо­жет считаться удовлетворительным, если даже на рабочей скорости вращения ви­брация подшипников «е превышает нор­мы.

Существующие допуски нормируют ам­плитуду колебаний подшипников только в за­висимости от скорости вращения роторов, не учитывая частотного состава этих колеба­ний. Однако многочисленные измерения по­казывают, что вибрация подшипников, ва­лов и других элементов машины часто ко­сит. несвнусоидальный характер. На коле­бания основной частоты, равной частоте вращения роторов, накладываются состав­ляющие высших, а иногда и низших ча­стот. В отдельных случаях наблюдаются колебания, близкие к синусоидальным, ио с частотами, отличными от основной .

У агрегатов с частотой вращения 3000 об/мин с основной частотой колеба­ний 50 Гц чаще всего обнаруживается высокочастотная составляющая 100 Гц, а также имеют место низкочастотные состав­ляющие с частотами, близкими, к низшей критической скорости системы «ротор - опоры» (обычно 17-21 Гц) или к полови­не рабочей частоты (~25 Гц).

Присутствие существенных по амплиту­де высших гармоник свидетельствует о дей­ствии на колеблющуюся систему значи­тельных нагрузок, которые могут в несколь­ко раз превышать нагрузки, вызывающие колебания основной частоты. Однако, по­скольку вопрос о связи между спектраль­ным составом вибрации и опасностью ее для турбины недостаточно изучен, можно ограничиться лишь указанием на необхо­димость принятия более жестких допусков на вибрацию в случае значительных высо­кочастотных составляющих. Что касается низкочастотных колебаний, то вследствие их неустойчивости, способности к внезапно­му и резкому возрастанию они представля­ют несомненную опасность для машины. Поэтому, если в колебаниях подшипников и роторов обнаруживаются заметные низ­кочастотные составляющие, вибрационное состояние турбоагрегата не может быть признано удовлетворительным.

Некоторый учет частотного состава ви­брации предусматривают нормы VDI, по­лучившие распространение в европейской практике. Согласно этим нормам в каче­стве основной характеристики вибрации принимается эквивалентная амплитуда ви­броскорости, измеренная при рабочей ско­рости вращения роторов

Если измеряемые колебания разлагают­ся на гармонические составляющие с угло­выми частотами сої, (02, ..., (о„ и соответст­вующими им амплитудами At, Аг,., .,Ап, то эквивалентная амплитуда внброскоро - сти может быть подсчитана по формуле

Vskb = К"Л^шг, + ЛЧсоЧ + . . . + AinP*„ = = VVh + V», + . . . + Wn, (3-14)

Где Vi, . . ., Vn - амплитудные значения виброскорости каждой из гармонических составляющих.

Для случая измерения биений с мак­симальными l/макс и минимальными Vrnui значениями виброскоростей

VSKB = К^макс + VW (3-15)"

В табл. 3-7 приводятся нормы допу­стимой вибрации подшипников турбоагре-

Гатов по данным VDI на основной частоте 50 Гц

В проекте международного стандарта на вибрацию машин предлагается исполь­зование в качестве критерия эффективной амплитуды виброскорости

Уэфф = l-"экв (3-16>

Как величины, непосредственно измеряемой электроизмерительными приборами. Уровни

■оценки вибросостояния машин ПО Уэфф со­ответствуют подобным же уровням, при­веденным по Уэкв в нормах VDI. Эти нор­мы учитывают гармонический состав изме­ряемой вибрации за счет составляющих, имеющих частоту выше оборотной.

Оценка вибрационного состояния турбоагрегата будет не полной, если не учитывать уровень вибрации его фундамента. Обычно у правильно спроектированного и хорошо выпол­ненного фундамента двойная ампли­туда колебаний при хорошо отба­лансированном роторе не превышает 10-20 мкм. Заметное отклонение от приведенных значений в сторо­ну увеличения свидетельствует о де­фектах фундамента.

При рассмотрении вопросов виб­рации современных крупных турбо­агрегатов необходимо учитывать то обстоятельство, что колебания под­шипников в современных агрегатах все в меньшей степени отражают истинные колебания вала турбины. Это объясняется в первую очередь повышенной массой и жесткостью опор крупных турбоагрегатов. Не последнюю роль в этом явлении играют также демпфирующие свой­ства масляного клина, существую­щего между шейкой вала и подшип­ником.

Согласно экспериментальным данным на крупных агрегатах ам­плитуда вибрации концов валов мо­жет превосходить в 10-15 раз ам­плитуду колебаний подшипника, причем эти колебания могут быть смещены между собой по фазе. На­блюдались также случаи, когда вы­лет одной или нескольких рабочих лопаток не приводил к заметному увеличению вибрации подшипников, тогда как колебания вала сущест­венно возрастали. Это показывает, что для ряда турбоагрегатов вибра­ция подшипников не являтся надеж­ным критерием безопасности, и не­обходимо для этих агрегатов в каж­дом отдельном случае эксперимен­тально устанавливать связь между колебаниями валов и подшипников турбины. Переход к большим еди­ничным мощностям турбоагрегатов повышает требования к их вибра­ционной надежности, вследствие че­го устранение значительных вибра­ций и определение причины их появ­ления являются задачами первосте­пенной важности.

К основным причинам, вызываю­щим возникновение вибраций агре­гата, можно отнести следующие:

А) динамическая неуравновешен­ность роторов;

Б) нарушение центровки рото­ров;

В) ослабление жесткости систе­мы;

Г) работа в области резонансных чисел оборотов;

Д) потеря устойчивости вала на масляной пленке;

Е) появление возмущающих сил электромагнитного происхождения.

Возникновение динамической не­уравновешенности роторов может быть вызвано двумя причинами:

1) перераспределением масс по окружности ротора или приложе­нием к ротору новых неуравнове­шенных масс;

2) смещением главной централь­ной оси инерции ротора относитель­но оси его вращения.

В обоих случаях возникает не­уравновешенная центробежная си­ла, пропорциональная квадрату чис­ла оборотов, вызывающая вибрацию агрегата оборотной частоты.

Причинами возникновения не­уравновешенности роторов турбин и генераторов могут быть обрыв лопа­ток и бандажей, разрушение дисков, некачественная балансировка при перелопачивании роторов, перемот - іка роторов генераторов, неравно­мерный износ лопаток, .неравномер­ный занос солями лопаточного аппа­рата и т. д.

Смещение оси инерции ротора относительно оси вращения может возникнуть из-за ослабления "посад­ки деталей на валу или прогиба вала. Прогиб ротора при сборке мо­жет возникнуть в результате пере­коса шпонок относительно ШПОНОЧ­НЫХ пазов, некачественно выполнен­ной насадки дисков и т. д. В процессе эксплуатации прогиб ротора - мо­жет "вызываться тепловой разбалан - сировкой, термической нестабильно­стью металла, ротора, задеваниями в проточной части, а также непра­вильными режимами пуска - и оста­нова турбин, вызывающими прогиб ротора.

Рассмотренные выше явления приводят к появлению первичного прогиба, являюще­гося следствием первичной неуравновешен­ности ротора. Появление первичного проги­ба вызывает вторичную неуравновешен­ность, возникающую вследствие отклонения оси инерции от оси вращения при динами­ческом прогибе ротора. Эта вторичная не­уравновешенность трудно поддается опреде­лению из-за сложности измерения динами­ческого прогиба по длине роторов в эксплуа­тационных условиях, однако приближенные расчеты показывают, что она может в не­сколько раз превышать первичную неуравно­вешенность ротора.

Динамический прогиб на крити­ческих скоростях достигает, как пра­вило; максимальных значений, что приводит к значительному росту суммарной неуравновешенности и как следствие к усилению вибрации подшипников. Преобладающее влия­ние динамического прогиба на виб­рацию наблнрдается главным обра­зом у роторов современных генера­торов средней и большой мощности, работающих вблизи второй критиче­ской скорости. Вследствие этого критерием оценки уравновешенно­сти роторов генераторов является амплитуда вибрации подшипников и вала на рабочей и критической ско­ростях вращения.

Одной из причин повышения ви­брации агрегата может явиться рас - центровка "роторов. Влияние расцен - тровки на вибрацию турбин суще­ственно зависит от степени уравно­вешенности роторов и носит различ­ный характер в зависимости от типа соединительных муфт. При жестких или полужестких муфтах сболчива - ние муфты восстанавливает нор­мальную центровку роторов. При этом возникает перераспределение нагрузки на подшипники от веса со­единенных роторов. Не являясь не­посредственным источником динами­ческих сил, возбуждающих колеба­ния, такое перераспределение стати­ческой нагрузки изменяет парамет­ры системы «ротор - опоры». Так, например, полная разгрузка одной промежуточной опоры увеличивает пролет вала между опорами и изме­няет его критическое число оборо­тов, что в свою очередь может при­вести к приближению одной из кри­тических скоростей к рабочей ско­рости вращения агрегата. Если в ре­зультате перераспределения стати­ческой нагрузки одна из опор ока­жется частично разгруженной, то это может способствовать возбужде­нию низкочастотных колебаний, вы­званных неустойчивостью вала на масляной лленке при малых ради­альных нагрузках на подшипник. Гибкие соединительные муфты мо­гут компенсировать значительную расцентровку валов (до 0,3 мм) без возникновения заметной вибрации. Однако в случае загрязнения масла, отложений шлама и наличия накле­па на рабочих поверхностях подвиж­ных элементов муфты происходит резкое увеличение коэффициента трения между этими элементами, что может привести к частичному или полному заклиниванию муфты. В этом случае соединенные роторы начинают работать со смещением центра тяжести относительно оси вращения, что является причиной возникновения вибрации.

В процессе эксплуатации расцен - тровки роторов или перераспределе­ние нагрузки на подшипники воз­можны вследствие нарушения пра­вильного теплового расширения цилиндров турбины. Это явление свя­зано с заклиниванием корпусов под­шипников или цилиндров на шпон­ках, упором в дистанционные болты, односторонним нагревом или охлаж­дением цилиндра и т. д.

Наряду с неравномерным обогре­вом цилиндров вибрация может воз­никнуть также вследствие неравно­мерного прогрева фундамента ма­шины. Такие явления наблюдались при эксплуатации турбин 300 МВт, у которых разность вертикальных тепловых расширений колонн фун­дамента достигала 2 мм.

Причиной, вызывающей неравно­мерный прогрев фундамента, может быть близкое расположение паро­проводов, клапанов, и подогревате­лей, имеющих недостаточную или поврежденную изоляцию. Характер­ным признаком возникновения рас - центровки агрегата по этой причине является постепенное нарастание вибраций в течение нескольких дней с момента пуска, поскольку, как по­казали наблюдения, нагрев фунда­мента длится несколько суток (у тур­бин К-300-240 до 7 суток). Для устранения вибраций, вызываемых этим явлением, необходимо тща­тельно изолировать находящиеся в непосредственной близости от фун­дамента высокотемпературные узлы и детали с установкой в наиболее обогреваемых местах водяных экра­нов, а также проверить и, если по­требуется, провести дополнительную балансировку роторов.

Еще одной причиной возникнове­ния вибрации при эксплуатации крупных агрегатов является просад­ка выхлопных патрубков турбины со "встроенными в них подшипника­ми при наборе вакуума и от веса на­ходящейся в водяных камерах кон­денсатора циркуляционной воды. Для турбин мощностью 100- 300 МВт просадка опор под дей­ствием вакуума оценивается вели­чиной порядка 0,1-0,15 мм. Эту причину можно обнаружить, заме­ряя уровень вибрации при измене­нии вакуума на турбине. При этом наибольшее изменение вибраций на­блюдается на подшипниках ЧНД.

На рис. 3-17 приводится зависи­мость поперечных колебаний задне­го подшипника ЦНД от вакуума для турбины ВК-100-2. Хотя виброграм­ма, представленная на графике, отражает целый ряд причин, вызы­вающих вибрацию, в том числе и тепловую расцентровку за счет ухудшения вакуума, однако влияние

Изменения вакуума прослеживается довольно четко. Подобное влияние вакуума можно в значительной мере устранить путем установки ротора низкого давления с некоторым за­вышением относительно остальных валов при центровке агрегата.

При постоянной величине неба­ланса или расцентровки ротора уве­личение амплитуды колебаний мо­жет явиться следствием уменьшения статической жесткости системы.

При эксплуатации турбоагрегата ослабление жесткости может "быть вызвано следующими причинами:

А) ослаблением взаимного креп­ления составных частей опоры рото­ра: вкладышей, корпусов подшипни­ков, фундаментных рам, ригелей фундамента;

Б) отрывом стула подшипника от фундаментной плиты («опрокидыва­ние» стула подшипника);

В) нарушением связи между сту­лом подшипника и опирающимся на него цилиндром турбины;

Г) нарушением связи между ци­линдром турбины и его опорами на фундаменте;

Д) появлением трещин у несу­щих элементов фундамента.

Указанные явления могут воз­никнуть в (результате недоброкаче­ственного монтажа или сборки пос­ле ремонта, а также в процессе экс­плуатации из-за нарушения нор­мальных тепловых расширений тур­бины. Отрыв стула подшипника от фундаментной плиты также вызы­вается конструктивными дефектами соединения его с цилиндром турби­ны. Уменьшение жесткости опор мо­жет вызвать, кроме того, изменение собственной частоты колебаний си­стемы «ротор-опоры» с приближе­нием ее к резонансу. Вибрация, воз­никающая в результате ослабления жесткости опор, имеет, как правило, синусоидальную форму и оборотную частоту. Иногда наблюдаются высо­кочастотные наложения, искажаю­щие синусоидальность колебаний, что связано с появлением микроуда­ров в трещинах или местах соеди­нений конструктивных элементов. Отличительной особенностью этой вибрации является ее зависимость от теплового состояния турбины.

Надежность работы турбоагрега­та во многом зависит от близости критических частот вращения систе­мы «ротор-опоры» к номинальной частоте вращения. В случае работы ротора в области критических час­тот даже незначительная неуравно­вешенность может привести к суще­ственному повышению уровня виб­рации. Для предотвращения подоб­ных явлений всеми заводами-изгото­вителями производится тщательный расчет роторов турбин и генерато­ров по всем собственным формам колебаний вала.

Однако выполнение расчетов весьма затрудняется из-за недостат­ка исходных данных о влиянии упру­гости масляной пленки, податливо­сти опор и т. л. Вследствие этого действительная критическая частота вращения турбоагрегата, определяе­мая экспериментальным путем, ино­гда оказывается в значительном не­соответствии с расчетной. Это при­водит к тому, что на ряде турбо­агрегатов рабочая частота вращения находится в области второй крити­ческой частоты, что существенно увеличивает уровень вибрации на рабочих частотах. В первую очередь это относится к генераторам, имею­щим весьма большой вес ротора, приходящийся на единицу длины вала. У этих агрегатов уже расчет­ная вторая критическая частота на­ходится вблизи рабочей частоты, и, если учесть, что неточность исход­ных данных влияет в первую оче­редь на высшие критические часто­ты вала, можно прийти к выводу, что попадание в резонанс на рабо­чих частотах у этих машин весьма вероятно.

Как показывает эксперимент, для ряда генераторов отстройка действительной второй критической частоты от рабочей не превышает 4-8% (ТВ2-150-2, ТВФ-200-2, ТГВ-200), что нельзя считать удов­летворительным.

У некоторых генераторов, а также у большинства турбии вторая критическая ча­стота лежит выше рабочих частот вращения. В этом случае существует опасность посте­пенного снижения резонаисиой частоты си­стемы за счет уменьшения жесткости опор в процессе длительной эксплуатации турбо­агрегата. Этому процессу в значительной ме­ре способствует повышенный уровень вибра­ции турбоагрегата.

Рассматривая вопрос о влиянии крити­ческих частот на работу агрегата, необходи­мо отметить, что с переходом в крупных аг­регатах на применение жестких муфт и ог­раниченного числа опор возрастает влияние жесткой связи между валами на критиче­скую частоту вращения всего валопровода. Хотя критические частоты валопровода и в этом случае определяются в основном ре­зонансными колебаниями отдельных валов, жесткая связь между роторами и отсутст­вие промежуточных опор вызывают допол­нительные резоиаисы. При этом наблюдается заметное повышение критических частот ва­лопровода относительно резонансов несвя­занных роторов. Все эти обстоятельства должны быть учтены при отстройке вала от резонансной частоты вращения. По дан­ным ряда наладочных организаций, мини­мально допустимая отстройка вала от резо­нансной частоты вращения при второй резо­нансной частоте должна быть не менее 10%.

Из всех причин, возбуждающих колебания турбоагрегата, наименее изученной и наиболее опасной счи­тается низкочастотная вибрация, обусловленная потерей устойчивости вала на масляной пленке. Эти коле­бания относятся к разряду автоко­лебаний и вызываются гидродина­мическими силами, возникающими

В масляном клине. подшипников, вследствие чего этот тип вибрации получил название «масляной» виб­рации.

Этот вид вибрации еще недостаточно изучен, и четких представлений о причине ее возникновения нет. Эксперименты показыва­ют, что она ие связана с механической не­уравновешенностью ротора, а зависит в ос­новном от динамических характеристик ма­сляного слоя, описывающих его упругие и демпфирующие свойства, а также от распо­ложения оси вала относительно расточки вкладыша. Как известно, у неподвижного ротора центр цапфы располагается под цен­тром расточки вкладыша О і со статическим эксцентриситетом бо (рис. 3-18,а). При вра­щении вала между цапфой и вкладышем об­разуется масляный слой, на котором вал всплывает в направлении вращения. С уве­личением скорости вращения центр цапфы перемещается по дуге О-Оь являющейся линией подвижного равновесия цапфы, и экс­центриситет б уменьшается. Теория и экс­перименты показывают, что в случае зна­чительного всплываиия вала, когда 6^0,7бо, вал теряет устойчивость и начинает переме­щаться относительно своего равновесного положения на линии подвижного равнове­сия О0-0\. Эта перемещения происходят по замкнутой траектории и носят название прецессии вала.

Угловая скорость этой прецессии, т. е. частота колебаний цапфы, близка к поло­винной частоте вращения или к первой кри­тической скорости вала. Обычно эта частота лежит между критическими скоростями си­стемы «ротор - опоры» в направлении ее осей максимальной и минимальной жестко­сти.

Прецессия может быть трех видов: зату­хающая, установившаяся и нарастающая (рис. 3-18,6). Первый вид прецессии (коле­бания в точке О") ие может считаться опас­ным, поскольку затухающий процесс колеба­ний приводит центр цапфы при любом на­чальном отклонении снова на кривую устой­чивого равновесия О-Оі. Второй вид пре - цесии (колебания в точке О") соответствует установившимся малым колебаниям цапфы вокруг положения устойчивого равно­весия. Возникновение таких колеба­ний свидетельствует о достижении гра­ницы устойчивости, переход через которук» приводит к возбуждению нарастающей пре­цессии (колебания в точке О""). Нарастаю­щая прецессия вызывает интенсивные коле­бания цапфы, амплитуда которых может до­стигнуть разрушительной величины. Колеба­ния вала, передаваясь через масляный слой, в свою очередь возбуждают значительную низкочастотную вибрацию подшипника.

Длительный опыт эксплуатации, а также результаты эксперимента показывают, что возбуждение низко­частотных колебаний зависит в ос­новном от температуры масла, окружной скорости шейки вала и удельного давления на подшипник. Уменьшение удельного давления на подшипник, а также увеличение вяз­кости масла и окружной скорости действуют благоприятно на возник­новение и развитие низкочастотной вибрации.

Уменьшение удельного давления на подшипник в процессе эксплуата­ции может "быть вызвано:

А) износом баббита нижней по­ловины вкладыша и увеличением вследствие этого площади опоры вала;

Б) уменьшением нагрузки от ро­тора на подшипник из-за неправиль­ной центровки роторов, дефектов соединительных муфт или непра­вильного теплового расширения ци­линдров;

В) неправильной очередностью1 открытия регулирующих клапанов* вследствие чего возникает паровое усилие, отжимающее ротор вверх и разгружающее тем самым подшип­ник от веса ротора.

Одной из распространенных при­чин, вызывающих «масляную» виб­рацию в крупных агрегатах, являет­ся заниженная температура масла на входе в подшипник. Испытания, проведенные на ряде машин, выяви­ли вполне определенную зависи­мость амплитуды низкочастотной
составляющей колебаний подшип­ников от температуры масла.

На рис. 3-19 представлен график зависимости амплитуды колебаний подшипников генератора ТГВ-200 от температуры масла. Как видно из графика, увеличение температуры масла с 43 д<э 53°С, что соответ­ствует изменению его вязкости при­мерно в 1,5 раза, снижает уровень низкочастотной вибрации в 5-6 раз. Проблема борьбы с низкочастот­ной вибрацией особенно остро воз­никла в связи с освоением турбо­агрегатов большой мощности, где высокая окружная скорость цапфы создает благоприятные условия для возникновения этого типа автоколе­баний. Для решения этой проблемы в последнее время в конструкцию опорных подшипников крупных ма­шин вносится ряд конструктивных изменений. Одним из мероприятий является уменьшение относительной длины подшипника для увеличения удельного давления на масляный клин. Вторым, весьма эффективным, мероприятием является замена ци­линдрической расточки вкладышей подшипника овальной («лимон­ной») расточкой (рис. 3-20). При та­кой расточке верхний зазор в под­шипнике делается примерно в 2 ра­за меньше бокового.

Это приводит к возникновению еще одного масляного клина, обра­зующегося на верхней половине вкладыша. Верхний масляный клин хорошо демпфирует возникшие ко­лебания и, кроме того, увеличивает давление на цапфу, устраняя перво­причину возникновения «масляной» вибрации. Дальнейшим развитием этой следует считать создание подшипников с разрезным верхним вкладышем, где удается создать не один, а несколько масляных клиньев.

Особую группу причин, вызываю­щих вибрацию турбоагрегата, со­ставляют возмущающие электромаг­нитные силы. Эти силы являются следствием нарушения электромаг­нитной симметрии генератора и су­щественно зависят от электрической нагрузки. На холостом ходу турбо­генератора при снятом возбуждении эти силы отсутствуют, что позволяет легко отличить их от возбуждающих сил, вызванных механическими при­чинами.

Нарушение электромагнитной симметрии генератора может быть выз"вано:

А) витковыми замыканиями в ро­торе;

Б) неравномерностью воздушно­го зазора между статором и бочкой ротора;

В) периодическим изменением силы магнитного притяжения меж­ду вращающимся ротором и стато­ром, обусловленным конечным чис­лом ПОЛЮСОВ."

Витковые замыкания в роторе генератора являются наиболее рас­пространенным источником колеба-

Ний, идущих от генератора. Практи­ка показывает, что многие генера­торы работают с витковыми замы­каниями в обмотке ротора. Наличие короткозамкнутых витков искажает распределение общего магнитного потока ротора, что приводит к появ­лению несимметричных сил притя­жения ротора к статору. Эти силы всегда направлены вдоль оси полю­сов и по своему характеру идентич­ны силам от механической "неурав­новешенности ротора. Односторон­няя электромагнитная сила притя­жения вызывает синусоидальные ко­лебания ротора и подшипников с оборотной частотой. Вторым след­ствием витковых замыканий в об­мотке ротора является несимметрич­ный нагрев ротора по сечению, что Может вызвать его тепловой прогиб и возбудить вибрацию чисто меха­нического характера.

Неконцентричное расположение бочки ротора в расточке статора также приводит к появлению перио­дической силы, вызывающей колеба­ния ротора и статора. Эта сила в от­личие от предыдущей имеет двой­ную оборотную частоту. Основными причинами появления неравномерно­го воздушного зазора являются есте­ственный прогиб ротора под дей­ствием собственного веса и смеще­ние его в процессе центровки с рото­ром турбины. При работе генерато­ра ротор всплывает на масляной пленке, и, кроме того, зазор может меняться вследствие вибрации рото­ра из-за механической неуравнове­шенности.

Все эти причины устранить нель­зя, однако практика показывает, что в нормальных условиях эти вибра­ции имеют малую амплитуду и опас­ности не представляют. Если же ак­тивная сталь сердечника запрессо­вана неудовлетворительно или кон­струкция корпуса статора не обла­дает достаточной жесткостью, мо­жет возникнуть значительная вибра­ция статора. По данным испытаний турбогенератора ТВ2-100-2 в отдель­ных случаях на корпусе статора и торцевых щитах наблюдались сину­соидальные колебания с частотой 100 Гц и двойной амплитудой 100- 150 мкм.

Ускорения, а следовательно, инерционные силы, действующие на элементы статора при наличии по­добных высокочастотных колебаний, весьма велики, и это может приве­сти к усталостному разрушению кре­пящих деталей, сварных швов, тру­бок газоохладителей и т. п. Вибра­ция статора еще более усиливается, если в обмотке ротора имеются ко- роткозамкнутые витки.

Рассматривая вопросы, связан­ные с колебаниями статоров генера­торов, нельзя не отметить еще один источник возбуждения колебаний - неравномерность сил взаимного при­тяжения ротора и статора по окруж - . ности.

Для двухполюсных генераторов сила взаимодействия между ротором и статором изменяется по окружно­сти на ±33%. ореднего значения, причем максимальная сила взаимо­действия превышает минимальную в 2 раза. С увеличением числа по­люсов неравномерность силы притя­жения ротора и статора уменьшает­ся. Так, для четырехполюсной маши­ны эта неравномерность по отноше­нию к средней величине составляет ±6,7%, а для восьмиполюсной - менее ±2%.

Для большинства современных турбогенераторов с рабочей часто­той вращения 3000 об/мин рассма­триваемая возбуждающая сила имеет двойную оборотную частоту. Повышенная вибрация статора (с ча­стотой 100 Гц) передается через фундамент подшипникам генерато­ра, накладываясь на колебания ос­новной оборотной частоты.

Определение причин, вызывающих ви­брацию современного турбоагрегата, - зада­ча весьма сложная. Эта работа обычно вы­полняется научно-исследовательскими, нала­дочными и ремонтными организациями, имеющими квалифицированный персонал и всю необходимую аппаратуру.

Для анализа источников повышенной вибрации снимаются характеристики: скоро­стные, режимные, контурные.

Скоростная характеристика (рис. 3-21) представляет собой зависимость амплитуды и фазы вибрации или отдельных ее состав­ляющих от частоты вращения ротора. Из полигармонических колебаний обязательно выделяются основная гармоника оборотной частоты и низкочастотные составляющие. По скоростной характеристике определяют вид неуравновешенности ротора и формы вынужденных колебаний при различных ча­стотах вращения. При помощи скоростных характеристик выявляются также нелиней­ные источники возбуждения повышенной ви­брации.

Режимные характеристики представляют собой зависимость вибрации от режима ра­боты машины: тепловой и электрической на­грузки, теплового состояния турбины, ваку­ума, температуры масла и т д. Некоторые из этих характеристик приведены на рис. 3-ІІ7 и 3-19. Подобные характеристики позволяют определить раздельное влияние каждого из режимных факторов иа вибра­цию машины.

Контурные характеристики (рис. 3-22) показывают изменение вибрации по контуру исследуемого элемента, что позволяет оце­нить ослабление жесткости вибрирующей системы. При помощи контурных характери­стик обнаруживается ослабление крепления подшипников к фундаментной плите или плиты к фундаменту. По виду характери­стики могут быть выявлены такие дефекты, как глубокие трещины в элементах опоры и фундамента. В программу исследований входит также контроль ряда узлов и эле­ментов машины, являющихся обычным источ­ником возбуждения колебаний. Проверке подвергаются центровка роторов, состояние соединительных муфт, шеек роторов и под­шипников. Если вибрационные характери­стики указывают на значительную неуравно­вешенность ротора, вал проверяется инди­катором иа прогиб, после чего производится балансировка роторов. В тех случаях, ког­да исследованиями выявлена заметная за­висимость вибрации от тока возбуждения или температуры ротора генератора, произ­водится контроль обмотки ротора на отсут­ствие витковых замыканий.

120 80 40 О 40 ВО 120 2Д, мкм 2А, мкм

I I.1___ 1-1_______ 1111 I L-l I "

240 W0 80 О 80 /80 240 f, грав <р, град

Рнс. 3-22. Контурная вибрационная харак­теристика (стрелками указаны места за­меров).

2А - двойная амплитуда колебаний; ф - угол сдвига фаз.

Отметим, что для определения причин вибрации первостепенную роль играет по­стоянный эксплуатационный контроль за вибрацией подшипников и других узлов аг­регата. Постоянный контроль позволяет учесть целый ряд режимных факторов, не­посредственно влияющих на величину ви­брации, а также проследить динамику на­растания вибраций в процессе эксплуатации в течение межремонтного периода.

В заключение следует сказать, что поскольку уровень вибрации яв­ляется важнейшим объективным по­казателем эксплуатационной надеж­ности , нормы допусти­мой вибрации постоянно пересмат­риваются в сторону уменьшения ам­плитуды колебаний.

Вибрация благотворная и вибрация вредная

Вибрация представляет собой механические колебательные движения, непосредственно передаваемые телу человека.

Длительное воздействие вибрации на человека является опасным. Опасна вибрация при определенных условиях и для машин и механизмов, так как может вызвать их разрушение.

Причиной появления вибраций являются возникающие при работе машин и агрегатов неуравновешенные силовые воздействия. Источником такого дисбаланса может быть неоднородность материала вращающегося тела, несовпадение центра массы тела и оси вращения, деформация деталей, а также неправильная установка и эксплуатация оборудования.

Основными параметрами, характеризующими вибрацию, являются:

· амплитуда смещения , то есть величина наибольшего отклонения от положения равновесия;

· амплитуда ускорения ;

· период колебаний – время между двумя последовательными одинаковыми состояниями системы;

· частота .

В производственных условиях почти не встречается вибрации в виде простых колебаний. При работе машин и оборудования обычно возникает сложное движение, имеющее импульсный или толчкообразный характер.

Вибрацию по способу передачи на человека (в зависимости от характера контакта с источниками вибрации) условно подразделяют на:

- общую вибрацию , передающуюся через опорные поверхности на тело сидящего или стоящего человека;

- локальную вибрацию , передающуюся через руки человека.

Вибрация, передающаяся на ноги сидящего человека и на предплечья, контактирующие с вибрирующими поверхностями рабочих столов, относится к локальной вибрации.

В производственных условиях нередко имеет место сочетание действий местной и общей вибрации (комбинированная вибрация).

По направлению действия вибрацию подразделяют на:

· вертикальную, распространяющуюся перпендикулярной к опорной

поверхности;

· горизонтальную, распространяющуюся от спины к груди;

· горизонтальную, распространяющуюся от правого плеча к левому плечу.

По частотному составу вибрации выделяют:

- низкочастотные вибрации (1-4 Гц для общих вибраций, 8-16 Гц - для локальных вибраций);

- среднечастотные вибрации (8-16 Гц - для общих вибраций, 31,5-63 Гц - для локальных вибраций);

- высокочастотные вибрации (31,5-63 Гц - для общих вибраций, 125-1000 Гц - для локальных вибраций).

По временной характеристике различают: постоянную вибрацию, которая за время наблюдения изменяется не более чем в два раза; непостоянную вибрацию, изменяющуюся более чем в два раза.

Вибрация может прямым путем мешать выполнению рабочих операций или косвенно отрицательно влиять на работоспособность человека. Вибрацию рассматривается как сильный стресс-фактор, оказывающий отрицательное влияние на психомоторную работоспособность, эмоциональную сферу и умственную деятельность человека и повышающий вероятность возникновения несчастных случаев.

При увеличении интенсивности колебаний и длительности их воздействия возникают изменения, приводящие в ряде случаев к развитию профессиональной патологии – вибрационной болезни.

Вибрационная патология стоит на втором месте (после пылевых) среди профессиональных заболеваний. Развитие вибрационных патологий зависит от частоты и амплитуды колебаний, продолжительности воздействия, места приложения и направления оси вибрационного воздействия, демпфирующих свойств тканей, явлений резонанса и других условий, при этом существенное значение имеет индивидуальная чувствительность. Вредное действие вибрации усиливают шум, охлаждение, переутомление, значитель­ное мышечное напряжение, алкогольное опьянение и др. Выделяют три вида вибрационной патологии от воздействия общей, локальной и толчкообразной вибраций.

При действии на организм общей вибрации страдает в первую очередь нервная система и анализаторы: вестибулярный, зрительный, тактильный. Эти нарушения вызывают головные боли, головокружения, нарушения сна, снижение работоспособности, ухудшение самочувствия, нарушения сердечной деятельности, расстройство зрения, онемение и отечность пальцев рук, заболевание суставов, снижение чувствительности. Общая низкочастотная вибрация оказывает влияние на обменные процессы, проявляющиеся изменением углеводного, белкового, ферментного, витаминного и холестеринового обменов, биохимических показателей крови.

У женщин, подвергающихся длительному воздействию общей вибрации, отмечается повышенная частота гинекологических заболеваний, самопроизвольных абортов, преждевременных родов. Низкочастотная вибрация вызывает у женщин нарушение кровообращения органов малого таза. Общая вибрация с частотой менее 0,7 Гц, определяемая как качка, хотя и неприятна, но не приводит к вибрационной болезни. Следствием такой вибрации является морская болезнь, вызванная нарушением нормальной деятельности вестибулярного аппарата.

При частоте колебаний рабочих мест, близкой к собственным частотам внутренних органов, возможны механические повреждения или даже разрывы. Низкочастотная общая вибрация, вызывая длительную травматизацию межпозвоночных дисков и костной ткани, смещение органов брюшной полости, изменения моторики гладкой мускулатуры желудка и кишечника, может приводить к болевым ощущениям в области поясницы, возникновению и прогрессированию дегенеративных изменений позвоночника, заболеваний хроническим пояснично-крестцовым радикулитом, хроническим гастритом.

Особенно опасна толчкообразная вибрация, вызывающая микротравмы различных тканей с последующими изменениями.

Локальной вибрации подвергаются главным образом люди, работающие с ручным механизированным инструментом. Локальная вибрация вызывает спазмы сосудов кисти, предплечий, нарушая снабжение конечностей кровью. Особенно чувствительными к действию локальной вибрации являются отделы симпатической нервной системы, регулирующие тонус периферических сосудов. Доказано, что направленность сосудистых нарушений определяется, в первую очередь, параметрами воздействующей вибрации. Спастические явления в капиллярах происходят при вибрации выше 35 Гц, а ниже наблюдается преимущественно картина атонии капилляров. Область частот 35-250 Гц наиболее опасна в отношении развития спазма сосудов.

При воздействии вестибулярных раздражителей, к которым относится вибрация, нарушаются восприятие и оценка времени, снижается скорость переработки информации. В ряде работ показано, что низкочастотная вибрация вызывает нарушение координации движения, причем наиболее выраженные изменения отмечаются при частотах 4-11 Гц.

Установлено, что вибрационная болезнь может длительное время протекать компенсированно, в течение этого периода больные сохраняют трудоспособность и не обращаются за врачебной помощью.

В основе профилактики вибрационной болезни лежит гигиенически обоснован­ное нормирование уровней вибрации. Предельно допустимый уровень (ПДУ) вибрации - это уровень фактора, который при ежедневной (кроме выходных дней) работе, но не более 40 часов в неделю в течение всего рабочего стажа, не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений. При этом учитываются направленность, продолжительность действия, характер вибрации. В РФ уровни вибрации на рабо­чих местах в производственных по­мещениях, на горных, сельскохозяйст­венных, мелиоративных, строительно-дорожных машинах, железнодорож­ном и автомобильном транспорте, на судах регламентируются санитарным законодательством: "Санитарные нормы и правила при работе с машинами и оборудованием, создающими локальную вибрацию, передающуюся на руки работающих" № 3041-84 и "Санитарные нормы вибрации рабочих мест" № 3044-84.

Соблюдение ПДУ вибрации не исключает нарушение здоровья у сверхчувствительных лиц.

В настоящее время около 40 государственных стандартов регламентируют технические требования к вибрационным машинам и оборудованию, системам виброзащиты, методам измерения и оценки параметров вибрации и другие условия.

К работе с вибрирующими машинами и оборудованием допускаются лица не моложе 18 лет, получившие соответствующую квалификацию, сдавшие технический минимум по правилам безопасности и прошедшие медицинский осмотр.

Работа с вибрирующим оборудованием, как правило, должна проводиться в отапливаемых помещениях с температурой воздуха не менее 16 0 С при влажности 40-60%. Если создание подобных условий невозможно (работа на открытом воздухе, подземные работы и т.д.), то для периодического обогрева должны быть предусмотрены специальные отапливаемые помещения с температурой воздуха не менее 22 0 С.

Наиболее действенным средством защиты человека от вибрации является устранение непосредственно его контакта с вибрирующим оборудованием. Осуществляется это путем применения дистанционного управления, промышленных роботов, автоматизации и замены технологических операций.

В комплексе мероприятий важная роль отводится разработке и внедрению научно обоснованных режимов труда и отдыха. Например, суммарное время контакта с вибрацией не должно превышать 2/3 продолжительности рабочей смены; рекомендуется устанавливать 2 регламентируемых перерыва для активного отдыха, проведения физиопрофилактических процедур, производственной гимнастики по специальному комплексу.

В целях профилактики неблагоприятного воздействия локальной и общей вибрации, работающие должны использовать средства индивидуальной защиты: рукавицы или перчатки (ГОСТ 12.4.002-74. "Средства индивидуальной защиты рук от вибрации. Общие требования"); спецобувь (ГОСТ 12.4.024-76. "Обувь специальная виброзащитная").

На предприятиях с участием санэпиднадзора медицинских учреждений, служб охраны труда должен быть разработан конкретный комплекс медико-биологических профилактических мероприятий с учетом характера воздействующей вибрации и сопутствующих факторов производственной среды.

Борьба с вибрацией в источнике её возникновения предполагает конструирование и проектирование таких машин и технологических процессов, в которых исключены или снижены неуравновешенные силы, отсутствует ударное взаимодействие деталей, вместо подшипников качения используются подшипники скольжения. Применение специальных видов зацепления и чистоты поверхности шестерен позволяют снизить уровень вибрации на 3 – 4 дБ. Устранение дисбаланса вращающихся масс достигается балансировкой.

Вибродемпфирование – это снижение вибрации объекта путем превращения ее энергии в другие виды (в конечном счете, в тепловую). Увеличения потерь энергии можно достичь разными приемами: использованием материалов с большим внутренним трением; использованием пластмасс, дерева, резины; нанесением слоя упруго вязких материалов, обладающих большими потерями на внутреннее трение (рубероид, фольга, мастики, пластические материалы и р.). Толщина покрытий берется равной 2 – 3 толщинам демпфируемого элемента конструкции. Хорошо демпфируют колебания смазочные масла.

Виброгашение – это способ снижения вибрации путем введения в систему дополнительных реактивных сопротивлений. Чаще всего для этого вибрирующие агрегаты устанавливают на массивные фундаменты. Одним из способов увеличения сопротивления является установка виброгасителей. Наибольшее распространение получили динамические гасители. Другим видом гасителей являются буферные емкости, служащие для превращения пульсирующего потока газа в равномерный. Возможно применение комбинированных защитных устройств. В этом случае говорят о динамических виброгасителях с трением.

Вибропоглощение – метод снижения вибрации путем усиления в конструкции процессов внутреннего трения, рассеивающих виброэнергию в результате необратимого преобразования ее в теплоту при деформациях, возникающих в материалах, из которых изготовлена конструкция, и в местах соединения ее элементов (заклепочных, резьбовых, прессовых и др.). В настоящее время вибропоглощение осуществляется преимущественно путем применения конструкционных материалов с повышенным значением коэффициента потерь и вибропоглощающих покрытий. Перспективным в вибропоглощении является нанесение на колеблющиеся поверхности элементов конструкции высокоэффективных вибропоглощающих материалов. Они могут изготовляться на основе меди, свинца, олова, битума и других материалов. Большое распространение получила многокомпонентная система на основе полимера, способного рассеивать механическую энергию в большом количестве при основных деформациях: растяжении, изгибе, сдвиге. Из других компонентов полимерной системы главными являются пластификаторы и наполнители. Пластификаторы придают полимеру требуемое сочетание свойств эластичности и пластичности. Наполнители (сажа, графит, слюда и др.) сообщают материалу необходимые эксплуатационные свойства; они могут, например, повысить его прочность, облегчить обработку. Вибропоглощающий материал выпускается промышленностью в отвержденном виде листов и мастичных состояниях. Листовой приклеивается к вибрирующей поверхности; мастику наносят методом штапелирования или напыления.

При жестком наружном покрытии поверхность пластины накрывается слоем жесткого вибропоглащающего материала. Жесткое наружное покрытие с прокладкой имеет повышенный по сравнению с предыдущим коэффициент потерь, так как между слоем вибропоглащающего материала и пластиной расположен слой легкого жесткого полимера (например, пенопласта).Он удаляет вибропоглощающий материал от нейтральной плоскости (не испытывающей деформации при изгибе), при этом увеличивается его виброскорость, возрастает деформация растяжения и, следовательно, увеличиваются потери энергии в покрытии. С увеличением частоты покрытие эффективно работает до тех пор, пока в прокладке не возникнут деформации сдвига.

Кроме жестких покрытий применяют также: армированные покрытия, когда на слой вибропоглащающего материала наносится тонкий слой другого материала, который упрочняет, усиливает или защищает вибропоглощающий слой; слоистые покрытия, когда толщина упрочняющего металлического слоя близка к толщине пластины; и мягкие наружные покрытия, которые представляют собой слой вибропоглащающего материала, легко сжимаемого по толщине и рассеивающего энергию изгибных колебаний в результате деформаций в поперечном направлении.

Виброизоляция – это способ уменьшения вибрации защищенного объекта посредством введения в систему упругой связи, препятствующей передаче вибрации от источника. Между источником вибрации и человеком, являющимся одновременно объектом защиты, устанавливают устройство – виброизолятор.В качестве виброизоляторов используют металлические пружины, резину, пробку, войлок. Выбор того или иного материала обычно определяется величиной требуемого прогиба и условиями, в которых виброизолятор будет работать.Резина имеет малую плотность, хорошо крепится к деталям, ей легко придать любую форму и она обычно используется для виброизоляции машин малой и средней массы. Металлические пружины применяют обычно тогда, когда рабочие условия делают невозможным применение резины. Конструктивно пружинные виброизоляторы можно выполнить для работы практически на любой частоте. Однако металлические пружины имеют тот недостаток, что, будучи спроектированы на низкую частоту, они пропускают более высокие частоты.

Пробку используют при нагрузке 50-150 кПа, отвечающей рекомендованному диапазону упругости. Обычно установку сначала устанавливают на бетонные блоки и уже последние отделяют от фундамента с помощью нескольких слоев пробковой плитки толщиной 2-15см. Увеличение толщины будет понижать частоту, выше которой виброизоляция эффективна, но при большой толщине возникает проблема устойчивости. Поэтому пробку не применяют в области низких частот. С течением времени от нагрузки пробка сжимается.

Войлок толщиной 1-2,5см, занимающий площадь 5% площади основания машины, - весьма распространенный изолирующий материал. Он имеет относительно большой коэффициент потерь и поэтому эффективен на резонансных частотах. Обычно войлок применяют в частотном диапазоне свыше 40 Гц.

Примером виброзащиты могут служить гибкие вставки в воздуховодах, «плавающие полы», виброизолирующие опоры (для изоляции машин с вертикальной возмущающей силой).

Несмотря на вредное воздействие вибрации, местная вибрация малой интенсивности может благоприятно воздействовать на организм человека, улучшать функциональное состояние ЦНС, ускорять заживление ран и т.п.

Экспериментально установлено, что механическая вибрация возбуждает нервы, утратившие функции, и, наоборот, успокаивает слишком возбужденные. Кратковременное ежедневное применение вибрации способствует увеличению силы мышц, повышению их работоспособности, улучшению кровоснабжения работающих мышц. Степень воздействия аппаратной вибрации на организм зависит от частоты и амплитуды колебаний, а также от продолжительности воздействия.

Вибромассаж оказывает воздействие на сосудистую систему, он улучшает кровообращение, нормализует сердечнососудистую деятельность. Доказано, что низкие колебательные частоты (до 50 Гц) способны вызвать понижение артериального давления, а высокочастотные колебания (до 100 Гц), наоборот, поднимают артериальное давление, а также увеличивают число сердечных сокращений. Аппаратная вибрация улучшает работу органов дыхания, активизирует обменные процессы в организме. Вибромассаж улучшает окислительно-восстановительные процессы в мышечной ткани. Вибромассаж оказывает тонизирующее воздействие на массируемые ткани, а также противоспалительное и обезболивающее. Аппаратная вибрация применяется при лечении заболеваний опорно-двигательного аппарата, последствий переломов и травм, бронхитов и бронхиальной астмы, радикулитов, остеохондрозов, заболеваний центральной нервной системы. Широко применяется аппаратная вибрация в спортивном массаже перед тренировками и после них. Воздействие аппаратной вибрации исправляет осанку, активизирует процесс кровообращения, улучшает цвет лица, обогащает ткани кислородом, стимулирует лимфо-дренаж и повышает эластичность тканей.