где λ – это интенсивность поступления заявок в СМО.

Пример .

Вычислить показатели обслуживания для одноканальной СМО, в которую заявки поступают с интенсивностью λ=1,2 заявки в час, время обслуживания t обс =2,5 часа. Исчисляем показатели обслуживания для одноканальной СМО:

    Интенсивность нагрузки .

ρ = λ t обс = 1,2 2,5 = 3

Интенсивность нагрузки ρ=3 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.

t пр = 15 мин.

    Доля заявок, получивших отказ . p 1 = 1 - p 0 = 1 - 0.25 = 0.75

Значит, 75% из числа поступивших заявок не принимаются к обслуживанию.

    Доля обслуживаемых заявок, поступающих в единицу времени:

    Абсолютная пропускная способность .

A = Q λ = 0.25 1.2 = 0.3 заявок/мин.

    Среднее время простоя СМО .

t пр = p отк t обс = 0.75 2.5 = 1.88 мин.

    Среднее число обслуживаемых заявок .

L обс = ρ Q = 3 0.25 = 0.75 ед

    Число заявок, получивших отказ в течение мин: λ p 1 = 0.9 заявок в мин. Номинальная производительность СМО: 1 / 2.5 = 0.4 заявок в мин. Фактическая производительность СМО: 0.3 / 0.4 = 75% от номинальной производительности.

Абсолютная пропускная способность смо. Пример решения

На станцию технического обслуживания поступает простейший поток заявок с интенсивностью 1 автомобиль за 2 ч. Во дворе в очереди может находиться не более 3 машин. Среднее время ремонта - 2 часа. Дайте оценку работы СМО и разработайте рекомендации по улучшению обслуживания.

Решение: Определяем тип СМО. Фраза «На станцию» говорит об единственном устройстве обслуживания, т.е. для решения используем формулы для одноканальной СМО. Определяем вид одноканальной СМО. Поскольку имеется упоминание об очереди, следовательно выбираем «Одноканальная СМО с ограниченной длиной очереди». Параметр λ необходимо выразить в часах. Интенсивность заявок 1 автомобиль за 2 ч или 0,5 за 1 час.

Интенсивность потока обслуживания μ явно не задана. Здесь приводится время обслуживания t обс = 2 часа.

Исчисляем показатели обслуживания для одноканальной СМО:

    Интенсивность потока обслуживания:

    Интенсивность нагрузки .

ρ = λ t обс = 0.5 2 = 1

Интенсивность нагрузки ρ=1 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.

Заявки не получают отказ. Обслуживаются все поступившие заявки, p отк = 0.

    Относительная пропускная способность .

Доля обслуживаемых заявок, поступающих в единицу времени: Q = 1 - p отк = 1 - 0 = 1

Следовательно, 100% из числа поступивших заявок будут обслужены. Приемлемый уровень обслуживания должен быть выше 90%.

Число заявок, получивших отказ в течение час: λ p 1 = 0 заявок в час. Номинальная производительность СМО: 1 / 2 = 0.5 заявок в час. Фактическая производительность СМО: 0.5 / 0.5 = 100% от номинальной производительности.

Вывод: станция загружена на 100%. При этом отказов не наблюдается.

1) одноканальная СМО

В предельном (стационарном) режиме система уравнений Колмогорова:

Учитывая нормировочное условие p 0 + p 1 = 1, найдем:

которые выражают среднее относительное время пребывания системы в состоянии S 0 (когда канал свободен) и S 1 (когда канал занят), т.е. определяют соответственно относительную пропускную способность системы q и вероятность отказа P отк:

Абсолютная пропускная способность: .

Задача 1. Известно, что заявки в ателье поступают с интенсивностью?=90 (заявок в час), а средняя продолжительность разговора по телефону t об = 2 мин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера.

Решение.

Интенсивность потока обслуживания?= 1/ t об =1/2 = 0,5(1/мин) = 30 (1/ч).

Относительная пропускная способность СМО q = 30/(30+90) = 0,25, т.е. в среднем только 25% поступающих заявок осуществят переговоры по телефону. Соответственно вероятность отказа в обслуживании составит P отк = 0,75. Абсолютная пропускная способность СМО: Q = 90*0,25 = 22,5, т.е. в среднем в час будут обслужены 22,5 заявки.

Очевидно, что при наличии только одного телефонного номера СМО будет плохо справляться с потоком заявок.

2) многоканальная СМО

Система уравнений Колмогорова имеет вид:


В стационарном режиме:

Разрешим систему (1) относительно неизвестных p 0 , p 1 ,..., p m . Из первого уравнения:

Из второго с учетом (2):

Аналогично из третьего, с учетом (2) и (3):

и вообще, для любого k ? m:

Введем обозначение:

Определяет среднее число требований, поступающих в СМО за среднее время обслуживания одной заявки (приведенная плотность потока заявок).

Формула (6) выражает все вероятности p k через p 0 . Воспользуемся условием:

Подставляя (7) в (6), получим, 0 ? k ? m. (8)

Формулы (7) и (8) называют формулами Эрланга. Полагая в формуле (8) k = m, получим вероятность отказа

Относительная пропускная способность (вероятность того, что заявка будет обслужена):

Формулы Эрланга и их следствия (9), (10) выведены для случая показательного закона распределения времени обслуживания. Но исследования последних лет показали, что эти формулы остаются справедливыми при любом законе распределения времени обслуживания, лишь бы входной поток был простейшим. Также формулами Эрланга можно пользоваться (с известным приближением) и в случае, когда поток заявок отличается от простейшего (например, является стационарным потоком с ограниченным последействием). Наконец, формулами Эрланга можно приближенно пользоваться и в случае, когда СМО допускает ожидание заявки в очереди, но когда срок ожидания мал по сравнению со средним временем обслуживания одной заявки.

Абсолютная пропускная способность:

Среднее число занятых каналов есть математическое ожидание числа занятых каналов:

или или, учитывая (11) и (5)

При большом числе каналов обслуживания применяют следующие формулы, которые также называются формулами Эрланга:

При больших значениях i:

функция Лапласа.

Вероятность отказа: (9")

Относительная пропускная способность

Среднее число занятых каналов:

Задача 2. В условиях предыдущей задачи определить оптимальное число телефонных номеров в ателье, если условием оптимальности считать удовлетворение в среднем из каждых 100 заявок не менее 90 заявок на переговоры.

Решение. Интенсивность нагрузки канала по формуле (5) ? = 90/30 = 3, т.е. за время среднего (по продолжительности) телефонного разговора t об = 2 мин. поступает в среднем 3 заявки на переговоры.

Будем постепенно увеличивать число каналов (телефонных номеров) n = 2, 3, 4,... и определим по формулам (7), (10), (11) для получаемой n-канальной СМО характеристики обслуживания. Например, при n = 2

Значения характеристик СМО представим в таблице:

По условию оптимальности q ? 0,9, следовательно, в ателье необходимо установить 5 телефонных номеров (в этом случае q = 0,9). При этом в час будут обслуживаться в среднем 80 заявок (Q = 80,1), а среднее число занятых телефонных номеров (каналов)

Задача 3. Автоматическая телефонная станция обеспечивает не более 120 переговоров одновременно. Средняя продолжительность разговора 60 секунд, а вызовы поступают в среднем через 0,5 секунды. Рассматривая такую станцию как многоканальную систему обслуживания с отказами и простейшим входным потоком, определить: а) среднее число занятых каналов, б) относительную пропускную способность, в) среднее время пребывания вызова на станции с учетом того, что разговор может и не состояться.

Решение. Имеем: m = 120; ? = 1/0,5 = 2; ? = 1/60; ? = ?/? = 120.

Используя таблицы функции Лапласа, получаем:

так как? есть интенсивность входного потока (число заявок в единицу времени), то?t ср = и.

2 . СМО с ожиданием и ограниченным временем ожидания.

Имеется m каналов обслуживания, входной поток - простейший с интенсивностью?, время обслуживания и время ожидания - СВ, распределенные по экспоненциальному закону с параметрами? и? соответственно.

Если занято i каналов и i ? m, то в силу независимости их функционирования интенсивность обслуживания возрастает в i раз: ? i,i-1 = i?. При возникновении очереди каждое состояние рассматриваемой СМО характеризуется занятостью каналов обслуживания. Поэтому интенсивность освобождения каналов становится постоянной u = m?.

Закон распределения времени ожидания определяется интенсивностью? ухода из очереди при наличии в ней одной заявки. В силу независимости поступления заявок (см. определение простейшего потока) интенсивность, с которой заявки отказываются от обслуживания и уходят из очереди, равна r? (для очереди длины r ? 1). Т.о., плотность вероятности перехода системы из состояния S m+r в состояние S m+r-1 равна сумме интенсивностей освобождения каналов обслуживания и отказа от обслуживания: ? m+r,m+r-1 = m? + r?.

Составим уравнения Колмогорова:


i=1,..., m-1, r ? 0.

Если на длину очереди не накладывать ограничений, то система обыкновенных дифференциальных уравнений (1) является бесконечной.

Если в начальный момент времени t = 0 рассматриваемая система находилась в одном из своих возможных состояний S j , то начальные условия для нее выглядят следующим образом.

Простейшая одноканальная модель. Такой моделью с вероятност­ными входным потоком и процедурой обслуживания является мо­дель, характеризуемая показательным распределением как длитель­ностей интервалов между поступлениями требований, так и дли­тельностей обслуживания. При этом плотность распределения дли­тельностей интервалов между поступлениями требований имеет вид

(1)

где - интенсивность поступления заявок в систему.

Плотность распределения длительностей обслуживания:

, (2)

где - интенсивность обслуживания.

Потоки заявок и обслуживаний простейшие.

Пусть система работает с отказами. Необходимо определить абсолютную и относительную пропускную способность системы.

Представим данную систему массового обслуживания в виде графа (рис.1), у которого имеются два состояния:

S 0 - канал свободен (ожидание);

S 1 - канал занят (идет обслуживание заявки).

Рис. 1. Граф состояний одноканальной СМО с отказами

Обозначим вероятности состояний:

P 0 (t) - вероятность состояния «канал свободен»;

Р 1 (t) - вероятность состояния «канал занят».

По размеченному графу состояний (рис. 1) составим систему дифференциальных уравнений Колмогорова для вероятностей со­стояний:

(3)

Система линейных дифференциальных уравнений (3) имеет решение с учетом нормировочного условия = 1. Реше­ние данной системы называется неустановившимся, поскольку оно непосредственно зависит от t и выглядит следующим образом:

(4)

(5)

Нетрудно убедиться, что для одноканальной СМО с отказами вероятность Р 0 (t) есть не что иное, как относительная пропускная способность системы q.

Действительно, Р 0 - вероятность того, что в момент t канал сво­боден и заявка, пришедшая к моменту t, будет обслужена, а следо­вательно, для данного момента времени t среднее отношение числа обслуженных заявок к числу поступивших также равно , т. е.

q = . (6)

По истечении большого интервала времени () дости­гается стационарный (установившийся) режим:

Зная относительную пропускную способность, легко найти абсолютную. Абсолютная пропускная способность (А) - среднее число, которое может обслужить система массового обслуживания в единицу времени:

Вероятность отказа в обслуживании заявки будет равна вероят­ности состояния «канал занят»:

Данная величина может быть интерпретирована как сред­няя доля не обслуженных заявок среди поданных.

Пример 1. Пусть одноканальная СМО с отказами представ­ляет собой один пост ежедневного обслуживания (ЕО) для мойки автомобилей. Заявка - автомобиль, прибывший в момент, когда пост занят, - получает отказ в обслуживании. Интенсивность по­тока автомобилей = 1,0 (автомобиль в час). Средняя продолжи­тельность обслуживания - 1,8 часа. Поток автомобилей и поток обслуживании являются простейшими.

Требуется определить в установившемся режиме предельные значения:

относительной пропускной способности q;

абсолютной пропускной способности А;

вероятности отказа .

Сравните фактическую пропускную способность СМО с номи­нальной, которая была бы, если бы каждый автомобиль обслужи­вался точно 1,8 часа и автомобили следовали один за другим без перерыва.

Решение

1. Определим интенсивность потока обслуживания:

2. Вычислим относительную пропускную способность:

Величина q означает, что в установившемся режиме система бу­дет обслуживать примерно 35% прибывающих на пост ЕО автомо­билей.

3. Абсолютную пропускную способность определим по формуле:

1 0,356 = 0,356.

Это означает, что система (пост ЕО) способна осуществить в среднем 0,356 обслуживания автомобилей в час.

3. Вероятность отказа:

Это означает, что около 65% прибывших автомобилей на пост ЕО получат отказ в обслуживании.

4. Определим номинальную пропускную способность системы:

(автомобилей в час).

Оказывается, что в 1,5 раза больше, чем фак­тическая пропускная способность, вычисленная с учетом случай­ного характера потока заявок и времени обслуживания.

Одноканальная СМО с ожиданием. Система массового обслужи­вания имеет один канал. Входящий поток заявок на обслуживание - простейший поток с интенсивностью . Интенсивность потока обслуживания равна (т. е. в среднем непрерывно занятый канал будет выдавать обслуженных заявок). Длительность обслужива­ния - случайная величина, подчиненная показательному закону распределения. Поток обслуживаний является простейшим пуассоновским потоком событий. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Предположим, что независимо от того, сколько требований по­ступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N-требований (заявок), т. е. клиенты, не попавшие в ожидание, вынуждены об­служиваться в другом месте. Наконец, источник, порождающий за­явки на обслуживание, имеет неограниченную (бесконечно боль­шую) емкость.

Граф состояний СМО в этом случае имеет вид, показанный на рис. 2.

Рис. 2. Граф состояний одноканальной СМО с ожиданием

(схема гибели и размножения)

Состояния СМО имеют следующую интерпретацию:

S 0 - канал свободен;

S 1 - канал занят (очереди нет);

S 2 - канал занят (одна заявка стоит в очереди);

……………………

S n - канал занят (n - 1 заявок стоит в очереди);

…………………...

S N - канал занят (N - 1 заявок стоит в очереди).

Стационарный процесс в данной системе будет описываться следующей системой алгебраических уравнений:

п - номер состояния.

Решение приведенной выше системы уравнений (10) для на­шей модели СМО имеет вид

(11)

Следует отметить, что выполнение условия стационарности для данной СМО необязательно, поскольку число допу­скаемых в обслуживающую систему заявок контролируется путем введения ограничения на длину очереди (которая не может превы­шать N - 1), а не соотношением между интенсивностями входно­го потока, т. е. не отношением

Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N- 1):

вероятность отказа в обслуживании заявки:

(13)

относительная пропускная способность системы:

(14)

абсолютная пропускная способность:

А = q 𝝀; (15)

среднее число находящихся в системе заявок:

(16)

среднее время пребывания заявки в системе:

средняя продолжительность пребывания клиента (заявки) в очереди:

среднее число заявок (клиентов) в очереди (длина очереди):

L q = (1 - P N)W q . (19)

Рассмотрим пример одноканальной СМО с ожиданием.

Пример 2. Специализированный пост диагностики пред­ставляет собой одноканальную СМО. Число стоянок для автомо­билей, ожидающих проведения диагностики, ограничено и равно 3 [(N - 1) = 3]. Если все стоянки заняты, т. е. в очереди уже нахо­дится три автомобиля, то очередной автомобиль, прибывший на диагностику, в очередь на обслуживание не становится. Поток ав­томобилей, прибывающих на диагностику, распределен по закону Пуассона и имеет интенсивность 𝝀 = 0,85 (автомобиля в час). Вре­мя диагностики автомобиля распределено по показательному зако­ну и в среднем равно 1,05 час.

Требуется определить вероятностные характеристики поста ди­агностики, работающего в стационарном режиме.

Решение

1. Параметр потока обслуживании автомобилей:

.

2. Приведенная интенсивность потока автомобилей определяется как отношение интенсивностей 𝝀 и µ, т. е.

3. Вычислим финальные вероятности системы:

4. Вероятность отказа в обслуживании автомобиля:

5. Относительная пропускная способность поста диагностики:

6. Абсолютная пропускная способность поста диагностики

А = 𝝀 q = 0,85 0,842 = 0,716 (автомобиля в час).

7. Среднее число автомобилей, находящихся на обслуживании и в очереди (т.е. в системе массового обслуживания):

8. Среднее время пребывания автомобиля в системе:

9. Средняя продолжительность пребывания заявки в очереди на обслуживание:

10. Среднее число заявок в очереди (длина очереди):

L q = (1 - P N)W q = 0,85 (1 - 0,158) 1,423 = 1,02.

Работу рассмотренного поста диагностики можно считать удов­летворительной, так как пост диагностики не обслуживает автомо­били в среднем в 15,8% случаев отк = 0,158).

Одноканальная СМО с ожиданием без ограничения на вмести­мость блока ожидания (т. е. ). Остальные условия функцио­нирования СМО остаются без изменений.

Стационарный режим функционирования данной СМО суще­ствует при для любого n = 0, 1, 2,... и когда 𝝀< µ. Система алгебраических уравнений, описывающих работу СМО при для любого п =0,1,2,…, имеет вид

Решение данной системы уравнений имеет вид

Характеристики одноканальной СМО с ожиданием, без огра­ничения на длину очереди, следующие:

среднее число находящихся в системе клиентов (заявок) на об­служивание:

(22)

средняя продолжительность пребывания клиента в системе:

(23)

среднее число клиентов в очереди на обслуживании:

средняя продолжительность пребывания клиента в очереди:

Пример 3. Вспомним о ситуации, рассмотренной в примере 2, где речь идет о функционировании поста диагностики. Пусть рассматриваемый пост диагностики располагает неограниченным количеством площадок для стоянки прибывающих на обслужива­ние автомобилей, т. е. длина очереди не ограничена.

Требуется определить финальные значения следующих вероят­ностных характеристик:

Вероятности состояний системы (поста диагностики);

Среднее число автомобилей, находящихся в системе (на об­служивании и в очереди);

Среднюю продолжительность пребывания автомобиля в сис­теме (на обслуживании и в очереди);

Среднее число автомобилей в очереди на обслуживании;

4. Средняя продолжительность пребывания клиента в системе:

5. Среднее число автомобилей в очереди на обслуживание:

6. Средняя продолжительность пребывания автомобиля в очереди:

7. Относительная пропускная способность системы:

т. е. каждая заявка, пришедшая в систему, будет обслужена.

8 . Абсолютная пропускная способность:

A = q = 0,85 1 = 0,85.

Следует отметить, что предприятие, осуществляющее диагнос­тику автомобилей, прежде всего, интересует количество клиентов, которое посетит пост диагностики при снятии ограничения на длину очереди.

Допустим, в первоначальном варианте количество мест для сто­янки прибывающих автомобилей было равно трем (см. пример 2). Частота т возникновения ситуаций, когда прибывающий на пост диагностики автомобиль не имеет возможности присоединиться к очереди:

т = λP N .

В нашем примере при N=3 + 1= 4 и ρ = 0,893,

т = λ Р 0 ρ 4 = 0,85 0,248 0,8934 = 0,134 автомобиля в час.

При 12-часовом режиме работы поста диагностики это эквива­лентно тому, что пост диагностики в среднем за смену (день) будет терять 12 0,134 = 1,6 автомобиля.

Снятие ограничения на длину очереди позволяет увеличить ко­личество обслуженных клиентов в нашем примере в среднем на 1,6 автомобиля за смену (12 ч. работы) поста диагностики. Ясно, что ре­шение относительно расширения площади для стоянки автомоби­лей, прибывающих на пост диагностики, должно основываться на оценке экономического ущерба, который обусловлен потерей кли­ентов при наличии всего трех мест для стоянки этих автомобилей.


Похожая информация.


Краткая теория

Пусть в n-канальную систему массового обслуживания (СМО) поступает с интенсивностью простейший поток требований. Длительность обслуживания распределена по показательному закону со средним временем обслуживания . Если же все каналы обслуживания заняты, то вновь поступившее требование становится в очередь за ранее поступившими не обслуженными требованиями. Освободившийся канал приступает к обслуживанию очередного требования из очереди. Определим основные характеристики работы такой системы. Так как число требований, стоящих в очереди, может быть бесконечно большим, то и число состояний системы также может быть бесконечно большим.

Вероятность свободного состояния системы:

Последнее выражение получено при условии , которое является условием стационарности СМО. В случае система не справляется с обслуживанием, очередь неограниченно возрастает. Отношение обозначается через и называется уровнем загрузки системы:

Определим основные характеристики многоканальной СМО с ожиданием. Вероятность получения отказа равна нулю. Относительная пропускная способность -это величина, которая дополняет вероятность отказа до единицы: . Абсолютная пропускная способность . Определим среднее число занятых каналов: каждый занятый канал обслуживает в единицу времени в среднем заявок, а вся система - заявок. Тогда:

Коэффициент занятости каналов обслуживания:

Образование очереди возможно, когда вновь пост пившее требование застанет в системе не менее n требований, т. е. когда в системе будет находиться , , требований. Эти события независимы, поэтому вероятность того, что все каналы заняты, равна сумме вероятностей , Отсюда вероятность образования очереди:

Среднее число заявок в очереди можно вычислить как математическое ожидание, складывая произведения возможного числа заявок на вероятность того, что число заявок будет в очереди:

Среднее число заявок, связанных с системой:

Определим среднее время ожидания заявки в очереди . Очередь образуется, если все каналов заняты. Так как интенсивность обслуживания , то поток освобожденных каналов имеет интенсивность . Если заявка поступила в момент, когда заняты все каналов и очереди нет, то время ожидания составит в среднем , а если застанет одно требование в очереди, то , и так далее. Среднее время ожидания заявок в очереди найдем, суммируя произведения среднего времени ожидания на соответствующую вероятность:

Среднее время пребывания заявок в системе:

Формулы Литтла:

Среднее число простаивающих каналов обслуживания:

Коэффициент простоя каналов:

Пример решения задачи

Условие задачи

На строительном складе работают четыре кладовщика. Поток посетителей имеет с интенсивностью 2 заявки в минуту. Время обслуживания имеет показательное распределение со средним значением 1,5 минуты на заявку. Определить показатели работы склада.

Если вам необходима платная помощь в учебе с решением задач, об этом подробно (как оставить заявку, цены, сроки, способы оплаты) можно почитать на странице Как заказать решение задач по методам оптимальных решений...

Решение задачи

Отсюда следует, что вероятность того, что все четыре кладовщика простаивают, равна 0,05. Определим другие показатели работы системы.

Абсолютная пропускная способность склада, т. е. количество обслуживаемых в единицу времени требовании, (заявки в минуту). Среднее число занятых кладовщиков . Вероятность образования очереди, т. е. вероятность того, что в момент обращения заказчика все четыре кладовщика заняты:

Среднее число заявок в очереди:

Среднее время простаивания в очереди:

Среднее число заявок в системе:

Среднее время пребывания заявки в системе:

Среднее число простаивающих кладовщиков:

Если сроки со сдачей контрольной работы поджимают, то тогда за деньги на сайте можно выполнить вашу контрольную работу по методам оптимальных решений .

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Все вопросы по стоимости можете задать прямо в чат, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Примеры близких по теме задач

Многоканальная СМО с отказами
Приведены необходимые теоретические сведения, в частности формулы Эрланга, а также образец решения задачи по теме "Многоканальная система массового обслуживания с отказами". Подробно рассмотрены показатели многоканальной системы массового обслуживания (СМО) с отказами - вероятность отказа и вероятность обслуживания, абсолютная пропускная способность системы и среднее число каналов, занятых обслуживанием заявки.

Сетевое планирование - график работ
На примере решения задачи рассмотрены вопросы построения сетевого графика работ, нахождение критического пути и критического времени. Также показано вычисление параметров и резервов событий и работ - ранних и поздних сроков, общих (полных) и частных резервов.

Межотраслевая модель Леонтьева
На примере решения задачи рассмотрена межотраслевая модель Леонтьева. Показано вычисление матрицы коэффициентов прямых материальных затрат, матрицы «затраты-выпуск», матрицы коэффициентов косвенных затрат, векторов конечного потребления и валового выпуска.

Одноканальная система массового обслуживания с отказами.

Предположим, что СМО состоит из одного канала обслуживания и на ее вход поступает пуассоновский поток заявок с интенсивностью X, т. е. непрерывная случайная величина Т - время между соседними заявками распределено по экспоненциальному закону, время обслуживания каждой заявки имеет такое же распределение с параметром р. Параметры X и р называются соответственно интенсивностью потока заявок и интенсивностью потока обслуживании.

Система массового обслуживания может находиться в одном из двух состояний: s 0 - канал свободен (простаивает) или s, - канал занят. Из состояния s 0 в состояние s, систему переводит поток входящих заявок, а из состояния s, в состояние s 0 - поток обслуживании. Плотности вероятностей переходов из состояния s 0 в состояние s { и обратно равны соответственно X и р.

Граф состояний СМО показан на рис. 1.5.

Рис.

в состоянии s 0 или s t соответственно. Очевидно, что справедливо нормировочное условие p 0 (t) + Pi (t) = 1.

Учитывая, что случайный процесс, протекающий в СМО, является марковским, вероятности p 0 (t) и pj(t) можно определить из системы уравнений Колмогорова:

Подстановка нормировочного условия в эту систему приводит к обыкновенному дифференциальному уравнению относительно p 0 (t):

Принимая условие, что в начальный момент времени при t = О канал свободен, т. е. р 0 (0) = 1 и pj(0) = 0, можно получить решение уравнения (1.20) в следующем виде:

С использованием нормировочного условия можно также установить выражение для определения pj(t):

В предельном стационарном режиме (при t -» °°) система алгебраических уравнений для вероятностей состояний имеет вид:

Учитывая нормировочное условие, определим предельные вероятности состояний

Рассмотрим основные показатели эффективности работы одноканальной СМО с отказами.

Так как вероятность обслуживания поступивших заявок в такой системе равна р 0 , а относительная пропускная способность Q равна отношению среднего числа обслуженных заявок к среднему числу поступивших заявок за единицу времени, то Q = р 0 , т. е. для одноканальной СМО с отказами

Абсолютная пропускная способность СМО - это среднее число заявок, обслуживаемых в единицу времени, или интенсивность выходящего потока:

Вероятность отказа в СМО возникает, когда канал занят, это вероятность Р!

Среднее время обслуживания заявки есть величина, обратная р:

Аналогично можно определить среднее время простоя канала:

Среднее время пребывания заявки в системе вычисляется по формуле:

Пример 1.4. На телефонную линию оператора сотовой связи приходит простейший поток вызовов с интенсивностью X = 1,5 заявки в минуту. Производительность линии р = 0,4 вызова в минуту. Вызов, пришедший на линию во время ее занятости, не обслуживается. Определить абсолютную пропускную способность линии, среднее время обслуживания одного вызова, вероятность отказов обслуживаний, а также среднее время пребывания заявки в системе.

Решение. 1. По формулам (1.27)-(1.31), проведя необходимые расчеты, получаем: А = 0,32 выз./мин; р отк = 0,79; t o6cjI = 2,5 мин;

  • 1 сист = °> 52 МИН -
  • 2. Расчетные данные свидетельствуют о том, что при наличии одного телефонного номера СМО будет плохо справляться с потоком заявок.

Многоканальная СМО с отказами.

На вход системы, имеющей п каналов, поступает простейший поток заявок с интенсивностью X, поток обслуживаний каждым каналом также является простейшим с интенсивностью р.

Пронумеруем состояния системы по числу занятых каналов (каждый канал в системе либо свободен, либо обслуживает только одну заявку).

Система имеет следующие состояния: где s k -

состояние системы, когда в ней находится к заявок, т. е. занято к каналов.

Граф состояний такой системы соответствует процессу гибели и размножения и показан на рис. 1.6.

Рис. 1.6.

Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое состояние с одной и той же интенсивностью к. Интенсивность же потока обслуживания, переводящая систему из любого правого состояния в левое состояние, постоянно меняется в зависимости от состояния. Рассмотрим в качестве примера СМО, находящуюся в состоянии s 2 , когда заняты два канала. Система может перейти в состояние s t когда закончится обслуживание второго либо первого канала, соответственно суммарная интенсивность обслуживании будет равна 2р.

Воспользовавшись формулой (1.18) для процесса гибели и размножения, получим следующее выражение для предельной вероятности состояния р 0

Введем обозначение которое называется приведенной интенсивностью потока заявок (интенсивностью нагрузки каналов). Эта величина представляет собой среднее число заявок, приходящее за среднее время обслуживания одной заявки. Тогда мы можем получить следующую формулу:

Используя выражение (1.19), имеем:

Приведенные формулы (1.34) в технической литературе получили название формул Эрланга (датский инженер, математик - один из основателей теории массового обслуживания).

Запишем аналитические выражения для оценки основных показателей эффективности работы рассматриваемой СМО. Исходя из принципа работы такой СМО отказ в обслуживании заявки наступает, когда все каналы заняты, а система находится в состоянии s n , т. е. вероятность отказа СМО

Поскольку событие обслуживания заявки и событие отказа в ее обслуживании являются противоположными, вероятность обслуживания заявки (вероятность того, что свободен хотя бы один канал) будет

Относительная пропускная способность СМО определяется как вероятность ее обслуживания

Абсолютная пропускная способность СМО (она же интенсивность потока обслуженных заявок):

Для многоканальных СМО важным показателем эффективности их работы является среднее число занятых каналов к (математическое ожидание числа занятых каналов)

Учитывая, что абсолютная пропускная способность системы А есть не что иное, как интенсивность потока обслуженных системой заявок в единицу времени, а каждый занятый канал обслуживает в среднем р заявок в единицу времени, среднее число занятых каналов можно определить по формуле:

Пример 1.5. Вычислительный центр электросетевой компании оборудован тремя ЭВМ, на которые поступают заказы по выполнению вычислительных работ. Если работают одновременно все три ЭВМ, то вновь поступающий заказ не принимается. Среднее время работы с одним заказом 2,5 ч. Интенсивность потока заявок 0,2 ч -1 . Определить и проанализировать предельные вероятности состояний и показатели эффективности работы вычислительного центра.

Решение. 1. Определим параметры СМО: п = 2; X = 0,2 ч -1 ;

интенсивность потока обслуживания

; интенсивность нагрузки ЭВМ р = 0,2/0,4 = 0,5.

2. Найдем вероятности состояний: вероятность того, что в системе отсутствуют заявки:

вероятности других состояний:

вероятность того, что пришедшая заявка получит отказ:

Таким образом, в стационарном режиме работы вычислительного центра в среднем в течение 61 % времени нет ни одной заявки, в 30 % времени имеется одна заявка (занята одна ЭВМ), в 8 % - две заявки (заняты две ЭВМ) и в 1 % - три заявки (заняты три ЭВМ). Вероятность отказа, когда все три ЭВМ заняты - р отк = 0,01.

3. Определим показатели эффективности вычислительного центра: относительная пропускная способность:

т. е. из каждой сотни заявок вычислительный центр обслуживает 99;

абсолютная пропускная способность вычислительного центра:

т. е. в один час в среднем обслуживается 0,2 заявки; среднее число занятых ЭВМ:

Технико-экономический анализ полученных данных должен базироваться на сопоставлении доходов от выполнения заявок с потерями от простоя дорогостоящих ЭВМ. Как видим, в данном случае наблюдается высокая пропускная способность вычислительного центра, но значительный простой каналов обслуживания. Необходим поиск компромиссного решения.