Биометрические системы аутентификации - системы аутентификации , использующие для удостоверения личности людей их биометрические данные.

Биометрическая аутентификация - процесс доказательства и проверки подлинности заявленного пользователем имени, через предъявление пользователем своего биометрического образа и путем преобразования этого образа в соответствии с заранее определенным протоколом аутентификации .

Не следует путать данные системы с системами биометрической идентификации , каковыми являются к примеру системы распознавания лиц водителей и биометрические средства учёта рабочего времени . Биометрические системы аутентификации работают в активном, а не пассивном режиме и почти всегда подразумевают авторизацию . Хотя данные системы не идентичны системам авторизации, они часто используются совместно (например, в дверных замках с проверкой отпечатка пальца).

Биометрические методы аутентификации

Различные системы контролируемого обеспечения доступа можно разделить на три группы в соответствии с тем, что человек собирается предъявлять системе:

1) Парольная защита. Пользователь предъявляет секретные данные (например, PIN-код или пароль).

2) Использование ключей. Пользователь предъявляет свой персональный идентификатор, являющийся физическим носителем секретного ключа. Обычно используются пластиковые карты с магнитной полосой и другие устройства.

Аутентификация по радужной оболочке глаза

Данная технология биометрической аутентификации личности использует уникальность признаков и особенностей радужной оболочки человеческого глаза. Радужная оболочка – тонкая подвижная диафрагма глаза у позвоночных с отверстием (зрачком) в центре; расположена за роговицей , между передней и задней камерами глаза, перед хрусталиком . Радужная оболочка образовывается ещё до рождения человека, и не меняется на протяжении всей жизни.Радужная оболочка по текстуре напоминает сеть с большим количеством окружающих кругов и рисунков, которые могут быть измерены компьютером, рисунок радужки очень сложен, это позволяет отобрать порядка 200 точек, с помощью которых обеспечивается высокая степень надежности аутентификации. Для сравнения, лучшие системы идентификации по отпечаткам пальцев используют 60-70 точек.

Технология распознавания радужной оболочки глаза была разработана для того, чтобы свести на нет навязчивость сканирования сетчатки глаза, при котором используются инфракрасные лучи или яркий свет. Ученые также провели ряд исследований, которые показали, что сетчатка глаза человека может меняться со временем, в то время как радужная оболочка глаза остается неизменной. И самое главное, что невозможно найти два абсолютно идентичных рисунка радужной оболочки глаза, даже у близнецов. Для получения индивидуальной записи о радужной оболочке глаза черно-белая камера делает 30 записей в секунду. Еле различимый свет освещает радужную оболочку, и это позволяет видеокамере сфокусироваться на радужке. Одна из записей затем оцифровывается и сохраняется в базе данных зарегистрированных пользователей. Вся процедура занимает несколько секунд, и она может быть полностью компьютеризирована при помощи голосовых указаний и автофокусировки. Камера может быть установлена на расстоянии от 10 см до 1 метра, в зависимости от сканирующего оборудования. Термин «сканирование» может быть обманчивым, так как в процессе получения изображения проходит не сканирование, а простое фотографирование. Затем полученное изображение радужки преобразуется в упрощенную форму, записывается и хранится для последующего сравнения. Очки и контактные линзы, даже цветные, не воздействуют на качество аутентификации. .

Стоимость всегда была самым большим сдерживающим моментом перед внедрением технологии, но сейчас системы идентификации по радужной оболочке становятся более доступными для различных компаний. Сторонники технологии заявляют о том, что распознавание радужной оболочки глаза очень скоро станет общепринятой технологией идентификации в различных областях.

Аутентификация по сетчатке глаза

Аутентификация по геометрии руки

В этом биометрическом методе для аутентификации личности используется форма кисти руки. Из-за того, что отдельные параметры формы руки не являются уникальными, приходится использовать несколько характеристик. Сканируются такие параметры руки, как изгибы пальцев, их длина и толщина, ширина и толщина тыльной стороны руки , расстояние между суставами и структура кости. Также геометрия руки включает в себя мелкие детали (например, морщины на коже). Хотя структура суставов и костей являются относительно постоянными признаками, но распухание тканей или ушибы руки могут исказить исходную структуру. Проблема технологии: даже без учёта возможности ампутации, заболевание под названием «артрит » может сильно помешать применению сканеров.

С помощью сканера, который состоит из камеры и подсвечивающих диодов (при сканировании кисти руки, диоды включаются по очереди,это позволяет получить различные проекции руки), затем строится трехмерный образ кисти руки. Надежность аутентификации по геометрии руки сравнима с аутентификацией по отпечатку пальца.

Системы аутентификации по геометрии руки широко распространены, что является доказательством их удобства для пользователей. Использование этого параметра привлекательно по ряду причин. У всех работающих людей есть руки. Процедура получения образца достаточно проста и не предъявляет высоких требований к изображению. Размер полученного шаблона очень мал, несколько байт. На процесс аутентификации не влияют ни температура , ни влажность , ни загрязненность. Подсчеты, производимые при сравнении с эталоном, очень просты и могут быть легко автоматизированы .

Системы аутентификации, основанные на геометрии руки, начали использоваться в мире в начале 70-х годов.

Аутентификация по геометрии лица

Биометрическая аутентификация человека по геометрии лица довольно распространенный способ идентификации и аутентификации . Техническая реализация представляет собой сложную математическую задачу. Обширное использование мультимедийных технологий , с помощью которых можно увидеть достаточное количество видеокамер на вокзалах, аэропортах, площадях, улицах, дорогах и других местах скопления людей, стало решающим в развитии этого направлении. Для построения трехмерной модели человеческого лица, выделяют контуры глаз,бровей, губ, носа, и других различных элементов лица, затем вычисляют расстояние между ними, и с помощью него строят трехмерную модель. Для определения уникального шаблона, соответствующего определенному человеку, требуется от 12 до 40 характерных элементов. Шаблон должен учитывать множество вариаций изображения на случаи поворота лица, наклона, изменения освещённости, изменения выражения. Диапазон таких вариантов варьируется в зависимости от целей применения данного способа (для идентификации,аутентификации, удаленного поиска на больших территориях и т. д.). Некоторые алгоритмы позволяют компенсировать наличие у человека очков, шляпы, усов и бороды.

Аутентификация по термограмме лица

Способ основан на исследованиях, которые показали, что термограмма лица уникальна для каждого человека. Термограмма получается с помощью камер инфракрасного диапазона . В отличие от аутентификации по геометрии лица, данный метод различает близнецов. Использование специальных масок, проведение пластических операций, старение организма человека, температура тела, охлаждение кожи лица в морозную погоду не влияют на точность термограммы. Из-за невысокого качества аутентификации, метод на данный момент не имеет широкого распространения.

Динамические методы

Аутентификация по голосу

Биометрический метод аутентификации по голосу , характеризуется простотой в применении. Данному методу не требуется дорогостоящая аппаратура, достаточно микрофона и звуковой платы . В настоящее время данная технология быстро развивается, так как этот метод аутентификации широко используется в современных бизнес-центрах . Существует довольно много способов построения шаблона по голосу. Обычно, это разные комбинации частотных и статистических характеристик голоса. Могут рассматриваться такие параметры, как модуляция , интонация , высота тона, и т. п.

Основным и определяющим недостатком метода аутентификации по голосу - низкая точность метода. Например, человека с простудой система может не опознать. Важную проблему составляет многообразие проявлений голоса одного человека: голос способен изменяться в зависимости от состояния здоровья, возраста, настроения и т.д. Это многообразие представляет серьёзные трудности при выделении отличительных свойств голоса человека. Кроме того, учёт шумовой компоненты является ещё одной важной и не решенной проблемой в практическом использовании аутентификации по голосу. Так как вероятность ошибок второго рода при использовании данного метода велика (порядка одного процента), аутентификация по голосу применяется для управления доступом в помещениях среднего уровня безопасности, такие как компьютерные классы,лаборатории производственных компаний и т.д.

  • 3.2.Процедура концептуального проектирования сфз яо
  • 3.3.Основы анализа уязвимости яо
  • 3.4. Вопросы для самоконтроля
  • 4. Подсистема обнаружения
  • 4.1. Периметровые средства обнаружения
  • 4.1.1. Тактико-технические характеристики периметровых систем
  • 4.1.2. Физические принципы действия периметровых средств
  • 4.1.3. Описание периметровых средств обнаружения
  • 4.2. Объектовые средства обнаружения
  • 4.2.1. Вибрационные датчики
  • 4.2.2. Электромеханические датчики
  • 4.2.3. Инфразвуковые датчики
  • 4.2.4. Емкостные датчики приближения
  • 4.2.5. Пассивные акустические датчики
  • 4.2.6. Активные инфракрасные датчики
  • 4.2.7. Микроволновые датчики
  • 4.2.8. Ультразвуковые датчики
  • 4.2.9. Активные акустические датчики
  • 4.2.10. Пассивные инфразвуковые датчики
  • 4.2.11. Датчики двойного действия
  • 4.3. Вопросы для самоконтроля
  • 5. Подсистема контроля и управления доступом
  • 5.1. Классификация средств и систем контроля и управления доступом
  • 5.1.1. Классификация средств контроля и управления доступом
  • 5.1.2. Классификация систем контроля и управления доступом
  • 5.1.3. Классификация средств и систем куд по устойчивости к нсд
  • 5.2. Назначение, структура и принципы функционирования подсистем контроля и управления доступом
  • 5.3. Считыватели как элементы системы контроля и управления доступом
  • 5.4. Методы и средства аутентификации
  • 5.5. Биометрическая аутентификация
  • 5.6. Вопросы для самоконтроля
  • 6. Подсистема телевизионного наблюдения
  • 6.1. Задачи и характерные особенности современных стн
  • 6.2. Характеристики объектов, на которых создаются стн
  • 6.3. Телекамеры и объективы
  • 6.3.1. Современные тк
  • 6.3.2. Объективы
  • 6.3.3. Технические характеристики тк
  • 6.3.4. Классификация тк
  • 6.4. Устройства отображения видеоинформации - мониторы
  • 6.5. Средства передачи видеосигнала
  • 6.5.1. Коаксиальные кабели
  • 6.5.2. Передача видеосигнала по «витой паре»
  • 6.5.3. Микроволновая связь
  • 6.5.4. Радиочастотная беспроводная передача видеосигнала
  • 6.5.5. Инфракрасная беспроводная передача видеосигнала
  • 6.5.6. Передача изображений по телефонной линии
  • Сотовая сеть
  • 6.5.7. Волоконно-оптические линии связи
  • 6.6. Устройства обработки видеоинформации
  • 6.6.1. Видеокоммутаторы.
  • 6.6.2. Квадраторы.
  • 6.6.3. Матричные коммутаторы
  • 6.6.4. Мультиплексоры
  • 6.7. Устройства регистрации и хранения видеоинформации
  • 6.7.1.Специальные видеомагнитофоны
  • 6.7.2. Цифровые системы телевизионного наблюдения
  • 6.7.3. Мультиплексор с цифровой записьюCaliburDvmRe-4eZTфирмыKalatel, сша.
  • 6.8. Дополнительное оборудование в стн
  • 6.8.1. Кожухи камер
  • 6.8.2. Поворотные устройства камер
  • 6.9. Особенности выбора и применения средств (компонентов) стн
  • 6.10.Вопросы для самоконтроля
  • 7. Подсистема сбора и обработки данных
  • 7.1. Назначение подсистемы сбора и обработки данных
  • 7.2. Аппаратура сбора информации со средств обнаружения – контрольные панели.
  • 7.3. Технологии передачи данных от со
  • 7.4. Контроль линии связи кп-со
  • 7.5. Оборудование и выполняемые функции станции сбора и обработки данных
  • 7.6. Дублирование / резервирование арм оператора сфз
  • 7.7. Вопросы для самоконтроля
  • 8. Подсистема задержки
  • 8.1. Назначение подсистемы задержки
  • 8.2. Заграждения периметра
  • 8.3. Объектовые заграждения
  • 8.4. Исполнительные устройства
  • 8.5. Вопросы для самоконтроля
  • 9.Подсистема ответного реагирования
  • 9.1. Силы ответного реагирования
  • 9.2. Связь сил ответного реагирования
  • 9.3. Организация систем связи с использованием переносных радиостанций
  • 9.4. Вопросы для самоконтроля
  • 10. Подсистема связи
  • 10.1.Современные системы радиосвязи
  • 10.1.1. Основы радиосвязи
  • 10.1.2. Традиционные (conventional) системы радиосвязи.
  • 10.1.3. Транкинговые системы радиосвязи
  • 10.2. Система связи сил ответного реагирования
  • 10.3. Организация систем связи с использованием переносных радиостанций
  • 10.4. Системы радиосвязи с распределенным спектром частот
  • 10.5. Системы радиосвязи, используемые на предприятиях Минатома России
  • 10.6. Вопросы для самоконтроля
  • 11. Оценка уязвимости систем физической защиты ядерных объектов
  • 11.1.Эффективность сфз яо
  • 11.2.Показатели эффективности сфз яо
  • 11.3.Компьютерные программы для оценки эффективности сфз яо
  • 11.4. Вопросы для самоконтроля
  • 12. Информационная безопасность систем физической защиты ядерных объектов
  • 12.1. Основы методология обеспечения информационной безопасности объекта
  • 12.2. Нормативные документы
  • 12.3. Классификация информации в сфз яо с учетом требований к ее защите
  • 12.4. Каналы утечки информации в сфз яо
  • 12.5. Перечень и анализ угроз информационной безопасности сфз яо
  • 12.6. Модель вероятного нарушителя иб сфз яо
  • 12.7. Мероприятия по комплексной защите информации в сфз яо
  • Подсистема зи
  • Организационные
  • Программные
  • Технические
  • Криптографические
  • 12.8. Требования по организации и проведении работ по защите информации в сфз яо
  • 12.9. Требования и рекомендации по защите информации в сфз яо
  • 12.9.1. Требования и рекомендации по защите речевой информации
  • 12.9.2. Требования и рекомендации по защите информации от утечки за счет побочных электромагнитных излучений и наводок
  • 12.9.3. Требования и рекомендации по защите информации от несанкционированного доступа
  • 12.9.4. Требования и рекомендации по защите информации в сфз яо от фотографических и оптико-электронных средств разведки
  • 12.9.5. Требования и рекомендации по физической защите пунктов управления сфз яо и других жизненно-важных объектов информатизации
  • 12.9.6. Требования к персоналу
  • 12.10. Классификация автоматизированных систем сфз яо с точки зрения безопасности информации
  • 12.10.1. Общие принципы классификация
  • 12.10.2. Общие требования, учитываемые при классификации
  • 12.10.3.Требования к четвертой группе Требования к классу «4а»
  • Требования к классу «4п»
  • 12.10.4. Требования к третьей группе Требования к классу «3а»
  • Требования к классу «3п»
  • 12.10.4.Требования ко второй группе Требования к классу «2а»
  • Требования к классу «2п»
  • 12.10.5. Требования к первой группе Требования к классу «1а»
  • Требования к классу «1п»
  • 12.11. Информационная безопасность систем радиосвязи, используемых на яо
  • 12.11.1 Обеспечение информационной безопасности в системах радиосвязи, используемых на предприятиях Минатома России
  • 12.11.2. Классификация систем радиосвязи, используемых на яо, по требованиям безопасности информации
  • Требования ко второму классу
  • Требования к классу 2а
  • Требования к первому классу
  • Требования к классу 1б
  • Требования к классу 1а
  • 12.12. Вопросы для самоконтроля
  • Список литературы
  • 5.5. Биометрическая аутентификация

    При рассмотрении систем биометрической аутентификации особое внимание должно быть уделено точностным характеристикам:

      вероятности ошибочного отказа сотруднику (False Reject Rate, FRR);

      вероятности ошибочного пропуска злоумышленника (False Acceptance Rate);

      ординате точки пересечения кривых FRR и FAR (Equal Error Rate).

    Рисунок радужной оболочки. Радужная оболочка (окрашенная часть, ирис) каждого глаза абсолютно уникальна. Даже у однояйцовых близнецов рисунки радужек разные. Радужная оболочка защищена от внешней среды роговицей и тканевой жидкостью; в отличие от сетчатки, однако, радужная оболочка ясно видна на расстоянии. Случайные рисунки ириса созданы сплетением сетчатой структуры соединительной ткани и других видимых признаков (слоев, борозд, корон, впадин, пятен и т. п.) Рисунок ириса стабилен в течение всей жизни. Пример рисунка ириса показан на рис.5.2 (с сайта www.iriscan.com).

    Рис. 5.2. Рисунок ириса

    Система System 2000EAC фирмы IriScan использует технологию анализа радужной оболочки. Основной режим работы системы – идентификация. Процесс идентификации по ирису начинается с получения изображения глаза. Для считывания пользователю достаточно посмотреть на специальное отверстие с расстояния примерно 1 м. Далее на изображении выделяются границы зрачка и радужки, исключаются зоны, прикрытые веком, устраняются блики, определяется фокус для обработки изображения. Затем изображение ириса обрабатывается и кодируется. Поиск в базе данных осуществляется в реальном времени, поэтому скорость идентификации достаточно высока (при 10 тыс. зарегистрированных пользователей она составляет 2 сек). Непосредственно в устройстве может храниться информация о 1500 пользователей. При хранении данных на компьютере число пользователей не ограничено. Для работы в режиме аутентификации возможно подключение считывателей.

    Очки и контактные линзы не являются помехой работе системы. Реакция ириса на свет и естественное колебание зрачка делают невозможным обмануть систему при помощи подстановки фотографии.

    Основные характеристики системы приведены в табл.5.2.

    Таблица 5.2. Основные характеристики системы аутентификации по рисунку ириса глаза

    Расположение кровеносных сосудов сетчатки глаза. Ряд биометрических систем проводит автоматическую аутентификацию человека на основании уникальной картины расположения кровеносных сосудов сетчатки глаза (глазного дна). Исследованиями подтверждена уникальность рисунка кровеносных сосудов сетчатки глаза.

    При работе подобных систем пользователи должны смотреть в видоискатель прибора. Участок сетчатки сканируется неполяризованным светом низкой интенсивности, испускаемым ИК - диодами. Различная интенсивность отраженного света отображает расположение кровеносных сосудов.

    Продукт Icam 2001 компании EyeDentify относится к разряду рассматриваемых продуктов. Основные характеристики этой системы приведены в табл.5.3.

    Таблица 5.3. Основные характеристики системы аутентификации на основании уникальной картины расположения кровеносных сосудов сетчатки глаза

    Системы аутентификации на основе анализа особенностей глаза обладают очень высокой точностью. В частности, система фирмы IriScan считается самой точной биометрической системой в настоящее время. Недостатки подобных систем - высокая цена и неудобство использования. Процесс получения изображения глаза неприятен пользователям – многие стараются избежать аутентификации, защищая свои глаза.

    Область применения технологий аутентификации по особенностям глаза – объекты высокой степени секретности.

    Папиллярные узоры. Кожа человека состоит из двух слоев. Наружный слой называется эпидермисом, а второй, более глубокий, - дермой. Поверхность дермы, прилегающая к эпидермису, образует многочисленные выступы - так называемые дермальные сосочки. На ладонных поверхностях кистей, в частности пальцев, дермальные сосочки складываются в ряды. Поэтому эпидермис, повторяющий строение внешнего слоя дермы, на этих участках тела образует небольшие складки, отображающие и повторяющие ход рядов дермальных сосочков. Эти складки называются папиллярными линиями и отделяются друг от друга неглубокими бороздками. Папиллярные линии, особенно на поверхностях пальцев кисти, образуют различные узоры, называемые папиллярными узорами.

    Рисунок папиллярного узора на протяжении всей жизни человека остается неизменным, размер узора окончательно фиксируется к 18 – 20 годам. Папиллярный узор каждого пальца любого человека индивидуален и присущ только этому пальцу. После любых повреждений эпидермиса, не затрагивающих сосочков дермы, папиллярный узор в процессе заживления восстанавливается в прежнем виде. Если повреждены сосочки дермы, то образуется рубец, в определенной мере деформирующий в этом месте узор, но не изменяющий его первоначального общего рисунка и деталей строения в других местах.

    Для ввода образа отпечатка пальца используется несколько типов датчиков. Существуют датчики, измеряющие электроемкость выступов и впадин на коже пальца. Действие оптических датчиков основано на том факте, что зоны контакта выступающих папиллярных линий имеют более низкий коэффициент отражения света. Ультразвуковые датчики позволяют минимизировать влияние на результат распознавания грязи и пыли. Перспективна технология получения, обработки и хранения голограмм отпечатков.

    Характеристики наиболее популярных систем аутентификации по отпечаткам пальцев приведены в табл. 5.4.

    Таблица 5.4. Основные характеристики системы аутентификации по отпечаткам пальцев

    Название продукта

    Уровень FRR, %

    Уровень FAR, %

    Значение EER, %

    Цена, долл

    Puppy Logon System

    Ultra-Scan 500 series

    Identicator DFR-90

    ЛОМО Интэк

    Академмедфонд

    В некоторых системах предусмотрена корректировка изображения в соответствии с состоянием кожи пальца – возможны настройки контрастности и яркости и регулировка уровня белого.

    Папиллярные узоры ладоней имеют меньше уникальных черт, чем узоры пальцев. Однако несколько продуктов, использующих такой принцип идентификации, находятся в стадии разработки или уже выходят на рынок. Все они разрабатываются для объектов с невысокими требованиями к уровню безопасности.

    Достоинства систем идентификации по папиллярным узорам - небольшие размеры устройств, удобство (можно встраивать сканеры даже в клавиши), невысокая (и постоянно снижающаяся) стоимость систем, высокая точность. К недостаткам технологии следует отнести возможность влияния на результат следов предыдущего отпечатка, порезов, грязи. В отечественных источниках указывают на психологическую проблему при применении дактилоскопии – у большинства людей снятие отпечатков пальцев устойчиво ассоциируется с криминалистикой.

    Области применения технологии – управление доступом в режимные помещения, к источникам информации (в т. ч. к компьютерам и вычислительным сетям), юридическое подтверждение права на использование различных документов и пластиковых карт.

    Форма кисти руки . В некоторых биометрических системах при аутентификации человека анализируется форма кисти руки, пальцев. Ведутся исследования в области автоматического измерения геометрических характеристик руки целиком.

    Несмотря на изменение формы кисти как с течением жизни человека, так и за относительно короткие сроки, практически постоянными остаются отношения размеров, форма пальцев, расположение суставов. В современных системах распознавания по форме руки применяется компенсация – образец корректируется при каждой успешной аутентификации. Принцип аутентификации по кисти руки человека поясняет рис. 5.5, а некоторые характеристики наиболее распространенных систем приведены в табл. 5.5.

    Рис. 5.5. Аутентификация по форме кисти руки

    Система Digi-2 фирмы BioMet Partners, Inc. идентифицирует человека по форме и трехмерным характеристикам двух пальцев (указательного и среднего), расположенных в форме латинской буквы V.

    Устройство ID3D HandKey фирмы Recognition Systems, Inc. анализирует ширину ладони и пальцев в нескольких местах, длину, ширину и толщину пальцев. Рука освещается инфракрасными лучами, а установленная сверху видеокамера регистрирует ее вид. В поле зрения камеры оказываются также боковое зеркало, дающее информацию о толщине ладони. В случае, когда сканирование полной кисти невозможно (например, отсутствует палец), устройство может работать с частью кисти. Ошибка первого рода составляет для устройства 0,1%, а на испытаниях, проведенных Сандийской Национальной лабораторией, вероятность трехкратного отказа зарегистрированному пользователю составила 0,03%. Возможное количество пользователей для автономного устройства – 20736, при хранении базы на компьютере число пользователей не ограничено.

    Существует отечественный аналог этого устройства - "ГЕОР".

    Таблица 5.5. Основные характеристики систем аутентификации по кисти руки

    Системы аутентификации по форме руки просты и удобны в эксплуатации. К недостаткам следует отнести громоздкость считывателей и меньшую, чем, например, у сканеров отпечатков пальцев, точность. Области применения – аутентификация посетителей в офисах, производственных помещениях, т. е. в местах, где из-за грязи затруднено применение сканеров отпечатков пальцев.

    Особенности лица. Наиболее распространенный метод аутентификации лиц основан на так называемых картах линий одинаковой интенсивности. Эти карты состоят из линий, соединяющих элементы изображения с равным уровнем яркости (интенсивности отраженного света). Аутентификация человека выполняется путем сравнения формы линий одинаковой интенсивности. Метод имеет ряд достоинств: легко реализуется программными и аппаратными средствами, позволяет отражать в описании трехмерную структуру лица, обеспечивает высокую точность распознавания личности, даже если человек в очках или с бородой.

    Применяется метод аутентификации человеческого лица по профилю, извлеченному из трехмерных данных изображения лица. Точность распознавания в данном методе слабо зависит от расстояния между наблюдаемым объектом (лицом) и камерой, а также от угла поворота головы.

    В табл. 5.6 приведены некоторые характеристики наиболее распространенных систем аутентификации по лицу.

    Таблица 5.6. Основные характеристики систем аутентификации по лицу

    Название продукта

    Уровень FRR, %

    Уровень FAR, %

    Значение EER, %

    Цена, долл.

    Порядка 100-300 долл., включая стоимость видеооборудования

    Программа TrueFace Logon компании Miros Software сравнивает изображение с видеокамеры с эталонным, записанном, например, на смарт-карте. Слабая освещенность или цвет кожи программе не помеха. Алгоритм приспосабливается к изменениям прически, наличию или отсутствию очков, выражению лица и т. д. Программа разрабатывалась для аутентификации пользователей в корпоративных вычислительных сетях.

    Программа FaceIt PC для ОС Windows 95 корпорации Visionics Corp. сканирует изображение лица в режиме реального времени, что увеличивает стоимость оборудования (требуется плата захвата видеоизображения и предъявляются повышенные требования к производительности компьютера). Программа способна анализировать движущиеся лица, может выделять лицо в группе людей. Утверждается, что предусмотрена защита от обмана системы посредством предъявления фотографии. Время идентификации в режиме «движущегося изображения» составляет 0,1-0,2 сек, а в режиме «статического изображения» - 3 сек.

    Системы аутентификации, анализирующие особенности лица , отвечают практически всем требованиям, предъявляемым к биометрическим системам. Такие БС просты и удобны в использовании, имеют приемлемую скорость работы, хорошо воспринимаются пользователями, дешевы. Недостатки – возможность ввести систему в заблуждение, сильная зависимость точности распознавания от освещенности.

    Области применения - криминалистика, сфера компьютерной безопасности.

    Термографическая карта лица. Метод лицевой термографии базируется на результатах исследований, показавших, что вены и артерии лица каждого человека создают уникальную температурную карту. Специальная инфракрасная камера сканирует фиксированные зоны лица. Результат сканирования – термограмма – является уникальной характеристикой человека. Даже у однояйцовых близнецов термографическая картина различается. На точность системы не влияет ни высокая температура тела, ни охлаждение кожи лица в морозную погоду, ни естественное старение организма человека. Термограмма сохраняется после пластической операции, не зависит от освещенности (можно проводить идентификацию даже в темноте).

    Компания Technology Recognition Systems разработала аппаратно – программную систему идентификации человека по термографической карте лица. Система обладает очень высокой надежностью. Главный недостаток системы - очень высокая стоимость инфракрасных видеокамер (комплект для предприятия предлагается за 55 тыс. долл).

    Рисунок вен за запястье. Рисунок сухожилий и сосудов на запястье человека индивидуален. На этом основано устройство аутентификации, сканирующее поверхность запястья с помощью инфракрасного излучения.

    Преимущество предлагаемой технологии – невозможность случайного или умышленного повреждения рисунка сосудов запястья, в отличие, например, от рисунка отпечатков пальцев.

    В настоящий момент надежность и практичность указанной технологии не доказана.

    Форма уха. Результаты исследований, опубликованные в Европе, США и Японии, показывают, что уши людей сильно различаются по морфологическим и анатомическим признакам. Параметры ушей в целом формируются в возрасте 16–17 лет. Несмотря на то, что уши немного изменяются и далее на протяжении всей жизни человека, для практических приложений этим изменением можно пренебречь.

    В настоящее время проблема наследования особенностей ушей носит лишь теоретический характер.

    Особенности голоса. Использование технологии распознавания человека по голосу основано на анализе таких характеристик голоса, как тембр, спектр сигнала, акцент, интонация, сила звука, скорость речи, вибрации в гортани, носовые звуки и т.д.

    В зависимости от того, необходима ли идентификация (узнавание) или аутентификация (подтверждение) личности, применяются различные методы распознавания.

    Существуют методы идентификации говорящего, как зависимые от содержания речи, так и не зависимые от него. В некоторых методах точность распознавания увеличена благодаря использованию текстовой подсказки, когда проверяемый человек повторяет фразу, «произнесенную» машиной.

    Существует так называемый гибридный метод анализа речи. С помощью данного метода можно объединять акустическую и лингвистическую обработку (т. е. обработку звука и выделение слов и фраз).

    В других комбинированных методах параллельно с анализом голосовых признаков обрабатываются изображения формы рта. В качестве признаков речевого сигнала используется спектр мощности сигнала, а в качестве дополнительной информации - признаки геометрической формы рта.

    Основная техническая проблема при распознавании голоса – зашумленность сигнала.

    Характеристики некоторых биометрических систем голосовой аутентификации приведены в табл 5.7.

    Таблица 5.7. Основные характеристики систем голосовой аутентификации

    Название продукта

    Уровень FRR, %

    Уровень FAR, %

    Значение EER, %

    Цена, долл.

    Определяется стоимостью программного обеспечения и составляет в среднем 50 – 200 долл.

    «Кристалл»

    Texas Instruments

    Системы аутентификации по голосу позволяют на базе обычного телефонного оборудования и недорогих звуковых плат проводить аутентификацию удаленных пользователей. Аутентификация по голосу оказалась наиболее подходящей биометрической технологией для системы платежей по кредитным картам проекта CASCADE .

    Достоинством таких систем является низкая цена оборудования (причем необходимое аппаратное обеспечение входит в стандартную комплектацию современных компьютеров). Недостатки - малая скорость работы, более низкая надежность по сравнению с большинством биометрических методов. На результатах проверки может сказываться небрежность, физическое и эмоциональное состояние человека, болезнь и т. п. (это относится ко всем биометрическим системам, основанным на анализе психологических параметров организма).

    Область применения технологии - управление удаленным доступом в закрытые программные системы.

    Особенности почерка. Методы распознавания по особенностям почерка делятся на две группы: анализ только изображения и анализ изображения вместе с анализом динамики письма.

    При анализе почерка выполняются такие этапы работы, как считывание и оцифровывание знаков, сегментация (в процессе сегментации производится сглаживание, устранение помех), подавление шумов, выделение непроизводных элементов, распознавание, идентификация символов. Сначала выделяются отдельные строки текста, затем отдельные знаки, а на последнем этапе - признаки выделенных знаков.

    При анализе почерка интерес представляют такие его особенности, как расположение точек над знаками, палочек у символов, точек поворота, положение мест отрыва пера от бумаги, точек пересечения, петель, прямолинейных участков, сегментов, длины и положения линий подъема и спуска и т. п. В качестве признаков могут использоваться такие структурные характеристики знаков, как отверстия, вогнутости контура, концевые точки.

    При анализе особенностей динамики письма сбор информации может происходить двумя способами. Во-первых, может использоваться перо со средствами восприятия силы его нажима на поверхность. Во-вторых, информация может быть получена при использовании чувствительной пластины со средствами восприятия положения точки на поверхности пластины. При появлении на поверхности написанных от руки символов регистрируются одновременно динамические усилия, воздействующие на кончик узла при письме, и положение наносимых обозначений относительно точки отсчета. Далее могут анализироваться такие динамические характеристики письма, как скорость, ускорение, порядок штрихов и т. д.

    Табл. 5.8 содержит данные о некоторых биометрических системах аутентификации человека по почерку.

    Ручка SmartPen разработана фирмой IMEC . Ручка беспроводная, в нее вмонтирован радиопередатчик с криптографической защитой. Ручкой можно расписываться на обычной бумаге.

    Ручка, разработанная фирмой IBM , имеет три пьезоэлектрических датчика: один измеряет давление вдоль оси пера, два других – ускорение. За 12,5 сек выполняется около 1000 измерений параметров.

    Таблица 5.8. Основные характеристики биометрических системах аутентификации человека по почерку

    Название продукта

    Уровень FRR, %

    Уровень FAR, %

    Значение EER, %

    Цена, долл.

    Порядка 100-300 долл.

    «Кристалл»

    Известны биометрические системы, анализирующие до 42 статических и динамических параметров подписи.

    Системы аутентификации по почерку имеют относительно невысокую стоимость. Недостатком таких систем является то, что на результатах распознавания может сказываться физическое и эмоциональное состояние человека. Системы имеют невысокую скорость работы.

    Области применения этих БС – удостоверение подписей и подтверждение личности в банковской и компьютерной сфере.

    Динамические характеристики работы на клавиатуре. Рассматриваемая биометрическая технология основана на уникальности динамических характеристик («клавиатурного почерка») каждого человека.

    В системах аутентификации по динамическим характеристикам измеряются промежутки времени между нажатиями клавиш, длительности их удержания и взаимного перекрытия.

    Приближенная оценка вероятностей ошибок первого и второго рода для данной биометрической технологии составляет соответственно FRR=9%, FAR=8%.

    Недостаток биометрической технологии лежит в юридической области - при использовании программного обеспечения, анализирующего клавиатурный почерк, возможен скрытый контроль над сотрудниками (наблюдение за активностью их работы на компьютере). Другой недостаток – система может быть эффективно использована только лицами, обладающими устойчивым клавиатурным почерком и имеющими достаточно высокую скорость ввода.

    Область применения – системы управления доступом к компьютерам и терминалам.

    Привычные системы аутентификации на сегодня не всегда удовлетворяют требованием политики информационной безопасности предприятия или компании. Все большую популярность набирает биометрическая аутентификация пользователя, разрешающая аутентифицировать пользователя с помощью считывания его физиологических данных.

    Методы аутентификация основывающийся на паролях имеют недостаток: многоразовый пароль можно скомпрометировать разными способами. можно потерять, скопировать. Биометрические методы аутентификации не имеют эти недостатки. К основным плюсам таких методов относят:

    • большой уровень достоверности аутентификации по биометрическим параметрам из-за их уникальности
    • неотделимость биометрических параметров от пользователя
    • сложность фальсификации биометрических признаков

    В качестве биопараметров используют следующие:

    • форма кисти руки
    • отпечаток пальца
    • размер и форма лица
    • узор сетчатки глаза и радужной оболочки
    • особенности голоса

    Схема работы биометрической системы аутентификации

    При процессе регистрации в системе пользователь должен показать один или несколько раз биометрический признак, по которому происходит дальнейшая аутентификация. Эти признаки в системе регистрируются как контрольный образец пользователя. Этот образец обрабатывается системой для получения ЭИП (эталонный идентификатор пользователя). ЭИП — числовая последовательность, из которой нельзя восстановить первоначальный образец. При прохождении аутентификации пользователем, сравнивается эталонные ЭИП и ЭИП при прохождении аутентификации. Поскольку эти 2 параметра никогда не совпадут, существует параметр отвечающий за степень совпадения. На основе этой степени совпадения система решает о прохождении аутентификации.

    Ошибочный отказ (FRR)- это отказ, когда система не подтверждает законного пользователя. Такие отказы бывают 1 на 100.

    Ошибочное подтверждение (FAR) — подтверждение, когда система подтверждает аутентификацию незаконного пользователя. ТАкие ошибки бывают 1 на 10000.

    Дактилоскопическая система аутентификации

    Одна из причин широкого использования таких систем, это наличие громадных банков данных по отпечаткам пальцев. Основные пользователи таких систем являются сотрудники гос. служб или банковские компании. Основные компоненты дактилоскопической системы аутентификации:

    • сканер
    • ПО идентификации
    • ПО аутентификации

    В последнее время все большее распространение получает биометрическая аутентификация пользователя, позволяющая уверенно аутентифицировать потенци­ального пользователя путем измерения физиологических пара­метров и характеристик человека, особенностей его поведения. Основные достоинства биометрических методов:

    · высокая степень достоверности аутентификации по био­метрическим признакам (из-за их уникальности);

    · неотделимость биометрических признаков от дееспособной личности;

    · трудность фальсификации биометрических признаков. Активно используются следующие биометрические признаки:

    · отпечатки пальцев;

    · геометрическая форма кисти руки;

    · форма и размеры лица;

    · узор радужной оболочки и сетчатки глаз.

    При регистрации в системе пользователь должен продемонстрировать один или несколько раз свои характерные биометрические признаки. Эти признаки регистрируются системой как кон­трольный «образ» (биометрическая подпись) законного пользо­вателя. Этот образ пользователя хранится системой в электрон­ной форме и используется для проверки идентичности каждого, кто выдает себя за соответствующего законного пользователя. В зависимости от совпадения или несовпадения совокупности предъявленных признаков с зарегистрированными в контроль­ном образе предъявивший их признается законным пользовате­лем (при совпадении) или незаконным (при несовпадении).

    С точки зрения потребителя, эффективность биометриче­ской аутентификационной системы характеризуется двумя пара­метрами:

    · коэффициентом ошибочных отказов FRR;

    · коэффициентом ошибочных подтверждений FAR.

    Ошибочный отказ возникает, когда система не подтверждает личность законного пользователя (типичные значения FRR - порядка одной ошибки на 100). Ошибочное подтверждение про­исходит в случае подтверждения личности незаконного пользо­вателя (типичные значения FAR - порядка одной ошибки на 10 000). Эти коэффициенты связаны друг с другом: каждом коэффициенту ошибочных отказов соответствует определенны коэффициент ошибочных подтверждений.



    В совершенной биометрической системе оба параметра ошибки должны быть равны нулю. К сожалению, биометрические системы тоже не идеальны. Обычно системные параметры настраивают так, чтобы добиться требуемого коэффициента ошибочных подтверждений, что определяет соответствующий коэффициент ошибочных отказов.

    К настоящему времени разработаны и продолжают совер­шенствоваться технологии аутентификации по отпечаткам паль­цев, радужной оболочке глаза, по форме кисти руки и ладони, по форме и размеру лица, по голосу и «клавиатурному почерку». Чаще всего биометрические системы используют в качестве параметра идентификации отпечатки пальцев (дактилоскопиче­ские системы аутентификации). Такие системы просты и удоб­ны, обладают высокой надежностью аутентификации.

    Дактилоскопические системы аутентификации. Одна из основ­ных причин широкого распространения таких систем - наличие больших банков данных отпечатков пальцев. В общем случае биометрическая технология распознавания отпечатков пальцев заменяет защиту доступа с использованием пароля. Большинство систем используют отпечаток одного пальца.

    Основными элементами дактилоскопической системы аутен­тификации являются:

    · сканер;

    · ПО идентификации, формирующее идентификатор пользо­вателя;

    · ПО аутентификации, производящее сравнение отсканиро­ванного отпечатка пальца с имеющимися в БД «паспорта­ми» пользователей.

    Дактилоскопическая система аутентификации работает сле­дующим образом. Сначала проходит регистрация пользователя. Как правило, производится несколько вариантов сканирования в разных положениях пальца на сканере. Понятно, что образцы будут немного отличаться, и поэтому требуется сформировать некоторый обобщенный образец - «паспорт». Результаты запо­минаются в БД аутентификации. При аутентификации производится сравнение отсканированного отпечатка пальца с «паспор­тами», хранящимися в БД.

    Задача формирования «паспорта» и задача распознавания предъявляемого образца - это задачи распознавания образов. Для их решения используются различные алгоритмы, являю­щиеся ноу-хау фирм-производителей подобных устройств.

    Сканеры отпечатков пальцев. Многие производители все чаще переходят от дактилоскопического оборудования на базе оптики к продуктам, основанным на интегральных схемах. По­следние имеют значительно меньшие размеры, чем оптические считыватели, и поэтому их проще реализовать в широком спек­тре периферийных устройств.

    Системы аутентификации по форме ладони используют скане­ры формы ладони, обычно устанавливаемые на стенах. Следует отметить, что подавляющее большинство пользователей предпо­читают системы этого типа.

    Устройства считывания формы ладони создают объемное изо­бражение ладони, измеряя длину пальцев, толщину и площадь поверхности ладони. Этот образец может быть сохранен локально, на индивидуальном сканере ладо­ни либо в централизованной БД.

    По уровню доходов устройства сканирования формы ладони занимают 2-е место среди биометрических устройств, но редко применяются в сетевой среде из-за высокой стоимости и размера. Однако сканеры формы ладони хорошо подходят для вычислительных сред со строгим режимом безопасности и напряженным трафиком. Они достаточно точны и обладают довольно низким коэффициентом ошибочно­го отказа FRR.

    Системы аутентификации по лицу и голосу наиболее доступны из-за их дешевизны, поскольку большинство современных компьютеров имеют видео- и аудиосредства. Системы данного класса применяются при удаленной идентификации субъекта досту­па в телекоммуникационных сетях.

    Технология сканирования черт лица подходит для тех прило­жений, где прочие биометрические технологии непригодны. В этом случае для идентификации и верификации личности ис­пользуются особенности глаз, носа и губ. Производители уст­ройств распознавания черт лица применяют собственные мате­матические алгоритмы для идентификации пользователей

    Технологии распознавания черт лица требуют дальнейшего совершенствования. Большая часть алго­ритмов распознавания черт лица чувствительна к колебаниям в освещении, вызванным изменением интенсивности солнечного света в течение дня. Изменение положения лица также может повлиять на узнаваемость. Различие в положении в 15 % между запрашиваемым изображением и изображением, которое нахо­дится в БД, напрямую сказывается на эффективности: при раз­личии в 45° распознавание становится неэффективным.

    Системы аутентификации по голосу при записи образца и в процессе последующей идентификации опираются на такие осо­бенности голоса, как высота, модуляция и частота звука. Эти по­казатели определяются физическими характеристиками голосового тракта и уникальны для каждого человека. Распознавание голоса применяется вместо набора номера в определенных сис­темах Sprint. Технология распознавания голоса отличается от распознавания речи: последняя интерпретирует то, что говорит абонент, а технология распознавания голоса абонента подтвер­ждает личность говорящего.

    Поскольку голос можно просто записать на пленку или дру­гие носители, некоторые производители встраивают в свои про­дукты операцию запроса отклика. Эта функция предлагает пользователю при входе ответить на предварительно подготовленный и регулярно меняющийся запрос, например такой: «Повторите числа 0, 1, 3».

    Технологии распознавания говорящего имеют некоторые ог­раничения. Различные люди могут говорить похожими голосами, а голос любого человека может меняться со временем в зависи­мости от самочувствия, эмоционального состояния и возраста. Более того, разница в модификации телефонных аппаратов и ка­чество телефонных соединений могут серьезно усложнить распо­знавание.

    Системы аутентификации по узору радужной оболочки и сет­чатки глаз могут быть разделены на два класса:

    · использующие рисунок радужной оболочки глаза;

    · использующие рисунок кровеносных сосудов сетчатки глаза.

    Сетчатка человеческого глаза представляет собой уникаль­ный объект для аутентификации. Рисунок кровеносных сосудов глазного дна отличается даже у близнецов. Поскольку вероят­ность повторения параметров радужной оболочки и сетчатки глаза имеет порядок 10 -78 , такие системы являются наиболее надежными среди всех биометрических систем и применяются там, где требуется высокий уровень безопасности (например, в режимных зонах военных и оборонных объектов).

    Биометрическая аутентификация пользователя может быть использована при шифровании в виде модулей блокировки доступа к секретному ключу, который позволяет воспользоваться этой! информацией только истинному владельцу частного ключа. Вла­делец может затем применять свой секретный ключ для шифрования информации, передаваемой по частным сетям или по Internet. Ахиллесовой пятой многих систем шифрования является проблема безопасного хранения самого криптографического секретного ключа. Зачастую доступ к ключу длиной 128 разрядов (или даже больше) защищен лишь паролем из 6 символов, т. е. 48 разрядов. Отпечатки пальцев обеспечивают намного более высокий уровень защиты и, в отличие от пароля, их невозможно забыть.