Представьте себе, что прежде чем отправить электронное письмо приятелю, вы должны достать карту, измерить расстояние до города, где он живет, и если окажется, что это расстояние больше, чем 100 км, вы со вздохом берете карандаш и бумагу и беретесь за обычное «бумажное» письмо — электронная почта дальше, чем на 100 км, не ходит.

Абсурдная ситуация? Но именно так сейчас обстоят дела с передачей квантовых данных по оптоволоконным линиям связи — рекордная дальность передачи здесь до сих пор лишь немного превышает сотню километров, а устойчивая работа на нормальных, не рекордных линиях вообще ограничивается 40 км. Это означает, например, что линию квантовой коммуникации можно организовать внутри Москвы, а вот о передаче данных в Петербург пока нечего и думать. Каковы же перспективы квантовой криптографии в области дальней связи?

Вскрытие на слух

Первый успешный эксперимент по квантовой передаче данных был проведен Беннетом и Жилем Брассаром в конце октября 1989 года, когда защищенная квантовая связь была установлена на расстоянии 32,5 см. Установка меняла поляризацию фотонов, но при этом блок питания шумел по‑разному в зависимости от того, какой была поляризация. Таким образом, окружающие могли свободно различать нули и единицы на слух. Как пишет Брассар, «наш прототип был защищен от любого подслушивающего, который оказался бы глухим». В октябре 2007 года методы квантовой криптографии были впервые применены в широкомасштабном проекте. Система квантовой защищенной связи, разработанная швейцарской компанией Id Quantique, использовалась для передачи данных о результатах голосования на парламентских выборах в швейцарском кантоне Женева. Таким образом, голоса швейцарцев были защищены как никакая другая информация.

Банкноты и блокноты

История квантовой криптографии началась еще в конце 1960-х годов, когда студент Колумбийского университета Стивен Визнер изложил своему бывшему сокурснику Чарльзу Беннету идею квантовых банкнот, которые в принципе нельзя подделать, поскольку это исключают законы природы. Суть идеи состояла в том, чтобы поместить на каждую банкноту несколько квантовых объектов. Это могут быть, например, ловушки с фотонами, каждый из которых поляризован под определенным углом в одном из двух базисов — либо под углом 0 и 90, либо 45 и 135 градусов. Серийный номер напечатан на банкноте, но соответствующая номеру комбинация поляризаций и базисов (фильтров, с помощью которых фотону придается или измеряется его поляризация) при этом известна только банку. Чтобы подделать такую банкноту, фальшивомонетчик должен измерить поляризацию каждого фотона, но он не знает, в каком базисе поляризован каждый из них. Если он ошибется с базисом, то поляризация фотона изменится, и поддельная банкнота будет с неверной поляризацией. Квантовые деньги до сих пор не появились, поскольку пока не удалось создать достаточно надежных ловушек для фотонов. Однако тогда же Визнер предложил использовать тот же самый принцип для защиты информации, и эта технология сейчас уже близка к реализации.


Первый протокол квантового распределения ключей был создан Жилем Брассаром и Чарльзом Беннетом в 1984 году и получил название BB84. Для передачи данных используются фотоны, поляризованные в четырех разных направлениях, в двух базисах — под углом 0 и 90 градусов (обозначается знаком +) либо 45 и 135 градусов (x). Отправитель сообщения A (традиционно его называют «Алиса») поляризует каждый фотон в случайно выбранном базисе, а затем отправляет его получателю B — «Бобу». Боб измеряет каждый фотон, тоже в случайно выбранном базисе. После этого Алиса по открытому каналу сообщает Бобу последовательность своих базисов, и Боб отбрасывает неправильные (не совпавшие) базисы и сообщает Алисе, какие данные «не прошли». При этом сами значения, полученные в результате измерений, они по открытому каналу не обсуждают. Если шпион (его обычно называют «Евой», от английского eavesdropping — подслушивание) захочет перехватить секретный ключ, он должен будет измерять поляризацию фотонов. Поскольку он не знает базиса, он должен будет определять его случайным образом. Если базис будет определен неправильно, то Ева не получит верных данных, а кроме того, изменит поляризацию фотона. Появившиеся ошибки сразу обнаружат и Алиса, и Боб.

Идеи Визнера, однако, были признаны далеко не сразу. Еще в начале 1970-х годов Визнер отправил свою статью о квантовой криптографии в журнал IEEE Transactions on Information Theory, но редакторам и рецензентам язык статьи показался слишком сложным. Лишь в 1983 году эта статья увидела свет в журнале ACM Newsletter Sigact News, и именно она стала первой в истории публикацией об основах квантовой криптографии.

Первоначально Визнер и Беннет рассматривали вариант передачи зашифрованных сообщений с помощью квантовых «носителей», при этом подслушивание портило бы сообщение и не давало возможности его прочесть. Затем они пришли к улучшенному варианту — использованию квантовых каналов для передачи одноразовых «шифроблокнотов» — шифровальных ключей.


Закрытый конверт

Квантовые системы связи основаны на использовании квантовых свойств носителей информации. Если в обычных телекоммуникационных сетях данные кодируются в амплитуде и частоте излучения или электрических колебаний, то в квантовых — в амплитуде электромагнитного поля или в поляризации фотонов. Разумеется, потребуется значительно более дорогая и сложная аппаратура, но эти ухищрения оправданны: дело в том, что передача информации по квантовым каналам обеспечивает стопроцентную защиту от «прослушки». Согласно законам квантовой механики измерение свойств того или иного квантового объекта, например измерение поляризации фотона, неминуемо меняет его состояние. Получатель увидит, что состояние фотонов изменилось, и предотвратить это нельзя в принципе — таковы фундаментальные законы природы. Это можно описать такой аналогией: представьте себе, что вы пересылаете письмо в закрытом конверте. Если кто-то откроет письмо и прочитает его, цвет бумаги изменится, и получатель неминуемо поймет, что послание читал кто-то третий.

Самая ценная информация — это шифровальные ключи. Если ключ имеет длину, равную самому сообщению или еще длиннее, то расшифровать послание, не зная ключа, в принципе невозможно. Остается организовать защищенную передачу ключей, а это как раз и обеспечивают квантовые линии связи. Однако пока дистанция передачи данных для таких линий слишком коротка: из-за тепловых шумов, потерь, дефектов в оптоволокне фотоны не «выживают» на больших расстояниях.

Самая ценная информация — шифровальные ключи. Если ключ имеет длину, равную самому сообщению или еще длиннее, то расшифровать послание, не зная ключа, невозможно.

Квантовые ключи

Множество исследовательских групп по всему миру разрабатывают устройства «восстановления» квантовых данных — так называемые квантовые повторители, которые способны «оживлять» фотоны. Группа исследователей из Российского квантового центра под руководством профессора Александра Львовского нашла способ восстанавливать свойства фотонов и подтвердила в эксперименте работоспособность этого метода. Ученые занимались изучением феномена квантовой запутанности, при котором состояния двух или нескольких объектов — атомов, фотонов, ионов — оказываются связаны. Если состояние одного из пары запутанных фотонов измерить, то состояние второго немедленно станет определенным, причем состояния их обоих будут связаны однозначно — например, если один фотон окажется поляризован вертикально, то второй — горизонтально и наоборот.


«Если распределять пары запутанных фотонов между двумя удаленными партнерами, то они оба получают одну и ту же последовательность, которую можно использовать как шифровальный ключ, поскольку это истинно случайная последовательность, которую нельзя угадать или рассчитать. Если же кто-то попытается подсмотреть запутанные фотоны, корреляция между ними потеряется и из них больше нельзя будет извлечь ключ», — объясняет Александр Львовский.

Задача состоит в том, чтобы сохранить состояние квантовой запутанности при передаче на большие расстояния. До сих пор с этим возникали большие проблемы. По оптоволоконным сетям до сих пор не удавалось передавать запутанные фотоны на расстояние больше 100 км. На больших расстояниях квантовые данные просто теряются в шумах. В обычных телекоммуникационных сетях используют разные типы повторителей или усилителей сигнала, которые усиливают амплитуду сигнала и убирают шумы, но в случае с квантовыми данными этот подход не работает. Фотон нельзя «усилить», при попытке измерить его параметры состояние фотона изменится, а значит, все преимущества квантовой криптографии исчезают.

Квантовые повторители

Ученые из разных стран пытаются разработать технологию квантовых повторителей — устройств, способных «воссоздавать» квантовую информацию, не разрушая ее. Группа Львовского, кажется, нащупала путь, который может привести к успеху. Еще в 2002 году он и его коллеги обнаружили любопытный эффект, который был назван «квантовым катализом», по аналогии с химическим термином, где определенные реакции могут идти только в присутствии особого вещества — катализатора. В их эксперименте световой импульс смешивался со «вспомогательным» одиночным фотоном на частично пропускающем свет зеркале. Затем этот фотон «удаляли». Казалось бы, состояние светового импульса не должно было меняться. Но, в силу парадоксальных свойств квантовой интерференции, фотон менял его в сторону «усиления» квантовых свойств.

«В то время это явление выглядело не более чем курьезным феноменом, каковых в квантовой физике множество. Теперь же оказалось, что оно имеет важное практическое применение — позволяет восстановить запутанность квантовых состояний света», — говорит Александр Львовский.


В своей новой работе, отчет о которой был опубликован в журнале Nature Photonics, ученые научились заново запутывать «распутавшиеся» фотоны. В качестве источника запутанных фотонов в эксперименте они использовали нелинейный кристалл титанил-фосфата калия с периодической доменной структурой. Его «обстреливали» пикосекундными импульсами света, которые генерировал титан-сапфировый лазер. В результате в кристалле рождались запутанные пары фотонов, которые ученые отправляли в два разных оптических канала. В одном из них свет подвергался 20-кратному ослаблению с помощью затемненного стекла, в результате чего уровень запутанности падал почти до нуля. Это соответствует уровню потерь в 65 км обычного оптоволоконного кабеля. Затем ослабленный сигнал направляли на светоделитель, где и проходил процесс квантового катализа. Ученые из группы Львовского называют этот процесс «квантовой дистилляцией», поскольку на выходе остается меньше фотонов, зато их уровень запутанности возрастает почти до исходного. «Из миллиона слабо запутанных пар фотонов получается одна сильно запутанная. Но при этом уровень корреляции восстанавливается до первичной, и хотя скорость передачи данных несколько снижается, мы можем получить устойчивую связь на значительно большем расстоянии», — говорит коллега Львовского Александр Уланов.


Не только для шпионов

На основе этой технологии можно будет создавать квантовые повторители, пригодные для коммерческого использования. «Для этого есть и другие методы, но как их использовать в условиях существующих источников квантовой запутанности, непонятно. Это оказывается непропорционально дорого. Возможно, наш повторитель будет и проще, и дешевле», — говорит Львовский. По его мнению, при благоприятных условиях первый прототип такого повторителя может быть создан через четыре-пять лет. А появление его на рынке может открыть дорогу действительно массовому применению квантовой криптографии, что серьезно изменит жизнь не только военных или банкиров.

«Это касается каждого из нас. Квантовая криптография — это не только какие-то военные или шпионские секреты, это номера кредитных карточек, это истории болезни. У каждого из нас масса конфиденциальной информации, и чем более открытым становится мир, тем важнее для нас контролировать доступ к ней», — говорит Львовский. Использование квантовых методов передачи шифровальных ключей может серьезно ослож­нить жизнь злоумышленников, у которых теперь не будет возможности перехватить и расшифровать информацию.

Есть ли будущее у квантовой криптографии? Хотя классическая криптография и не сдает свои позиций, ее будущее целиком зависит от развития алгоритмов квантового распределения ключа.

Квантовая криптография - это один из тех удивительных инструментов, который был обнаружен еще задолго до того, как в нем появилась практическая необходимость. Некоторые компании уже сейчас предлагают криптографические решения, обладающие свойством “доказуемой безопасности” и основанные на фундаментальных принципах квантовой механики. Но, несмотря на все уверения подобных компаний, можно найти публикации, в которых описываются практически осуществимые способы того, как пассивный нарушитель Ева может подслушать, о чем щебечут Алиса и Боб по квантовому каналу.

Терзаемый любопытством, я запрыгнул на парижский скоростной поезд, чтобы совершить путешествие в саму колыбель квантовой криптографии: в Женеву. Именно в Женеве в реальных условиях была продемонстрирована работа алгоритма квантового распределения ключа (quantum key distribution - QKD). Именно в Женеве находится компания Id Quantique, которая специализируется на изготовлении продуктов безопасности, работающих по принципам квантовой физики. Именно Женева – резиденция исследовательского центра квантовой оптики GAP-Optique (при Женевском университете).

Моя цель понять, так что же такое квантовая криптография? Кто покупает QKD-системы? Зачем? Как повсеместное внедрение QKD отразится на противостоянии белых и черных хакеров. Каковы направления будущих исследований QKD?

Квантовый нарушитель

Пока поезд на всех парах мчался к пункту моего назначения, я размышлял (надо сказать, с долей неохоты) о современной криптографии. Существует множество способов защищать информацию, но меня интересовали только коммерческие асимметричные системы. Все криптографические системы можно разделить на два класса: симметричные и асимметричные. В асимметричных системах у меня есть два ключа: один из которых закрытый и я храню его дома под подушкой; второй ключ – открытый. Теперь, чтобы отправить мне зашифрованное сообщение, вам нужно зашифровать его отрытым ключом, я же смогу расшифровать сообщение, воспользовавшись своим закрытым ключом.

Простые числа (Внимание: дальше много математики)

В стойкой асимметричной системе нарушитель не сможет вычислить закрытый ключ, если ему известен только открытый ключ. Алгоритм RSA (названный в честь тройки своих создателей) считается стойкой асимметричной системой. Давайте взглянем, как работает RSA.

Сначала выберем два простых числа p и q , например, p = 13 и q = 17 . Перемножив два числа, мы получим pq = 221 .

Нам также понадобится второе чиcло: произведение p -1 и q -1 , (p -1)(q -1)=192 . Теперь в диапазоне от 1 до 192 выберем любое число, которое было бы взаимно простым с 221. Давайте в качестве такого числа возьмем 7.

Для того чтобы вычислить ключи, последовательно будем находить значения выражения (p ‑1)(q -1)(1,2,3,…) + 1 до тех пор, пока мы не получим число, которое нацело делится на выбранное ранее число (в нашем случае на 7). При вычислении выражения у нас получится следующий ряд: 193, 385, 578… 385 делится на 7, и в результате дает 55.

Итак, мы получили два ключа: {7, 221} и {55, 221}. Но, не зная простых чисел, перемножением которых получено число 221, нам не удастся вычислить один ключ, зная только другой. Тем не менее, мы знаем произведение простых множителей, так что в качестве варианта можно попробовать факторизовать 221 и найти те самые простые множители.

Оказывается, разложение на множители не такая уж и простая задача. Я написал простенький скрипт, который позволяет узнать, как время нахождения простых множителей зависит от размера факторизируемого числа. Скрипт не оптимизирован и в нем используется метод перебора. Время загрузки Питона и необходимых библиотек ничтожно мало по сравнению со временем работы самого скрипта. Но тут важно скорее не само время работы, а то, насколько быстро время разложения на множители возрастает при увеличении размера факторизуемого числа.

В идеальной ситуации, когда размер факторизуемого числа увеличивается на порядок, время нахождения простых множителей должно увеличиваться как минимум на порядок. В частности для моего скрипта, чтобы увеличить время факторизации на один порядок, нужно увеличить на порядок каждый из простых множителей (или увеличить произведение на два порядка).

Но наше преимущество перед нарушителем заключается в том, что время генерации ключа практически не зависит от размера простых множителей. Следовательно, чтобы сделать факторизацию практически неосуществимой, мы можем просто выбрать простые числа достаточно большой длины. И именно поэтому битовая длина ключей в ассиметричных системах такая большая.

Шор in da house

Хорошо, мой скрипт действительно не отличается изысканностью. Другие бы попытались, и я не сомневаюсь, нашли бы способ оптимизировать скрипт. Но, так или иначе, никакая оптимизация не спасет от достаточно большой пары простых чисел. И вот тут на сцену выходят квантовые информационные технологии. Шор обнаружил, что на квантовом компьютере задачу разложения на множители можно решить за полиномиальное время. С тех пор алгоритм Шора стал источником развития как технологии QKD, так и классической криптографии.

В гонке вооружений между белыми и черными шляпами индустрия infosec рассматривает квантовое шифрование и распределение квантовых ключей (QKD). Однако это может быть только часть ответа.

Квантовое шифрование, также называемое квантовой криптографией, применяет принципы квантовой механики для шифрования сообщений таким образом, что они никогда не читаются кем-либо за пределами предполагаемого получателя. Он использует множественные состояния квантов в сочетании с его «теорией изменений», что означает, что ее невозможно бессознательно прервать.

Шифрование существует с самого начала, от ассирийцев, защищающих их коммерческую тайну изготовления керамики для немцев, защищающих военные секреты с Enigma. Сегодня он находится под угрозой больше, чем когда-либо прежде. Вот почему некоторые люди ищут квантовое шифрование для защиты данных в будущем.

Вот как шифрование работает на «традиционных» компьютерах: двоичные цифры (0 и 1) систематически отправляются из одного места в другое, а затем расшифровываются симметричным (закрытым) или асимметричным (общедоступным) ключом. Симметричные ключевые шифры, такие как Advanced Encryption Standard (AES), используют один и тот же ключ для шифрования сообщения или файла, в то время как асимметричные шифры, такие как RSA, используют два связанных ключа — частный и открытый. Открытый ключ является общим, но секретный ключ хранится в секрете, чтобы расшифровать информацию.

Однако криптографические протоколы с открытым ключом, такие как криптография Diffie-Hellman, RSA и криптография с эллиптической кривой (ECC), которые выживают на основе того, что они полагаются на большие простые числа, которые трудно поддаются анализу, все чаще находятся под угрозой. Многие в промышленности считают, что их можно обойти с помощью нападений на конечных или боковых каналах, таких как атаки «человек-в-середине», шифрование и бэкдоры. В качестве примеров этой хрупкости RSA-1024 больше не считается безопасным с помощью NIS , в то время как атаки на боковых каналах оказались эффективными до RSA-40963.

Кроме того, беспокойство заключается в том, что эта ситуация только ухудшится с квантовыми компьютерами. Полагают, что они будут находиться где угодно от пяти до 20 лет, квантовые компьютеры потенциально смогут быстро преобразовывать простые числа. Когда это произойдет, каждое шифрованное сообщение, зависящее от шифрования с открытым ключом (с использованием асимметричных клавиш), будет нарушено.

«Квантовые компьютеры вряд ли будут взламывать симметричные методы (AES, 3DES и т. Д.), Но могут взломать общедоступные методы, такие как ECC и RSA», — говорит Билл Бьюкенен, профессор Школы вычислительной техники в Университете Эдинбурга Нейпир в Шотландии. «Интернет часто преодолевает проблемы с взломом при увеличении размеров ключей, поэтому я ожидаю увеличения размеров ключей, чтобы продлить срок хранения для RSA и ECC».

Может ли квантовое шифрование быть долгосрочным решением?

Квантовое шифрование

Криптография Q uantum может, в принципе, позволять вам шифровать сообщение таким образом, чтобы он никогда не читался кем-либо за пределами предполагаемого получателя. Квантовая криптография определяется как «наука об использовании квантовомеханических свойств для выполнения криптографических задач», а определение непрофессионала заключается в том, что множественные состояния квантов в сочетании с его «теорией изменений» означают, что ее невозможно бессознательно прервать.

Это так, как недавно показала BBC в видео, например, держа мороженое на солнце. Выньте это из коробки, выставите солнце, и мороженое будет заметно отличаться от предыдущего. В статье 2004 Стэнфорда это объясняет это лучше, говоря: «Квантовая криптография, которая использует фотоны и опирается на законы квантовой физики вместо« чрезвычайно больших чисел », — это новейшее открытие, которое, как представляется, гарантирует конфиденциальность даже при условии, что подслушивающие устройства с неограниченными вычислениями полномочия «.

Бьюкенен видит множество рыночных возможностей. «Применение квантового шифрования дает возможность заменить существующие методы туннелирования, такие как SSL и Wi-Fi криптография, для создания полного сквозного шифрования по оптоволоконным сетям. Если оптоволоконный кабель используется по всему соединению, поэтому нет необходимости применять шифрование на любом другом уровне, поскольку связь будет защищена на физическом уровне ».

Квантовое шифрование действительно является распределением квантовых ключей
Алан Вудворд, приглашенный профессор кафедры вычислительной техники Университета Суррея, говорит, что квантовое шифрование неверно понято, и люди на самом деле означают квантовое распределение ключей (QKD), «теоретически-безопасное решение для ключевой проблемы обмена». С QKD , фотоны, распределенные в микроскопической квантовой шкале, могут быть горизонтальными или вертикально поляризованными, но «наблюдение за ним или измерение его нарушают квантовое состояние». Это, говорит Вудворд, основано на «теореме о клонировании» в квантовой физике.

«Посмотрев на ошибки степени, вы увидите, что это было нарушено, поэтому вы не доверяете сообщению», — говорит Вудворд, добавив, что как только у вас есть ключ, вы можете вернуться к симметричному шифрованию ключей. QKD, в конечном счете, в конечном счете о замене инфраструктуры открытых ключей (PKI).

Бьюкенен видит огромный потенциал для QKD: «В настоящее время мы не обеспечиваем надлежащую защиту сообщений на физическом уровне от сквозной доставки. С Wi-Fi безопасность обеспечивается только через беспроводной канал. Чтобы обеспечить безопасность связи, мы затем накладываем другие методы туннелирования на коммуникации, например, с помощью VPN или с помощью SSL. Благодаря квантовому шифрованию мы могли бы обеспечить полное сквозное соединение без необходимости использования SSL или VPN ».

Каковы приложения QKD?

Как отмечает Вудворд, QKD уже имеется в продаже, от таких поставщиков, как Toshiba, Qubitekk и ID Quantique. Тем не менее QKD продолжает оставаться дорогостоящим и требует независимой инфраструктуры, в отличие от пост-квантового шифрования, которое может работать по уже существующим сетям.

Именно здесь Китай «украл марш» в привлечении QKD на рынок. Ранее в этом году австрийским и китайским ученым удалось провести первый квантовый зашифрованный видеозвонок, сделав его «по крайней мере в миллион раз безопаснее», чем обычное шифрование. В эксперименте китайцы использовали свой китайский спутник Mikaeus, специально запущенный для проведения экспериментов по квантовой физике, и использовали запутанные пары из Вены в Пекин с ключевыми скоростями до 1 Мбит / с.

Вудворд говорит, что все, что использует шифрование с открытым ключом, может использовать QKD, и одна из причин, по которым китайцы могут быть заинтересованы в этом, — это если они считают, что это физически безопасно, защищая их от НСА и национальных государств. « Не может быть бэкдоров, нет умного математического трюка», — говорит он, ссылаясь на атаку эллиптической кривой. «Это зависит от законов физики, которые намного проще, чем законы математики».

В конечном счете, он ожидает, что он будет использоваться в правительственных, банковских и других высокопроизводительных приложениях. «Сегодня несколько компаний продают оборудование, и это работает, но это дорого, но затраты могут снизиться. Люди, вероятно, увидят это с точки зрения безопасности, например, банковское дело и правительство ».

Другие примеры включают:

  • Исследователи из Оксфордского университета, Nokia и Bay Photonics изобрели систему, которая позволяет шифровать платежные реквизиты, а затем безопасно передавать квантовые ключи между смартфоном и платежным терминалом точки продажи (POS), в то же время мониторинг для любые попытки взломать передачи.
    С 2007 года Швейцария использует квантовую криптографию для проведения безопасного онлайн-голосования на федеральных и региональных выборах. В Женеве голоса зашифровываются на центральной станции подсчета голосов, прежде чем результаты будут передаваться по выделенной линии оптического волокна в удаленное хранилище данных. Результаты защищаются с помощью квантовой криптографии, а наиболее уязвимая часть транзакции данных — когда голосование переходит от счетной станции к центральному репозиторию — является бесперебойным.
  • Компания под названием Quintessence Labs работает над проектом NASA, который обеспечит безопасную связь с Землей со спутниками и астронавтами.
    Небольшое шифровальное устройство, называемое QKarD, может позволить работникам умных сетей отправлять полностью безопасные сигналы с использованием общедоступных сетей передачи данных для управления интеллектуальными электрическими сетями.
  • Поскольку он документирует в этой статье Wired , Дон Хейфорд работает с ID Quantique для создания 650-километровой связи между штаб-квартирой Battelle и Вашингтоном. В прошлом году Battelle использовал QKD для защиты сетей в штаб-квартире Columbus, штат Огайо.

Практические проблемы и вмешательство государства

Однако квантовое шифрование не обязательно является серебряной пулей для обеспечения информационной безопасности. Вудворд цитирует частоту ошибок в шумной, турбулентной вселенной для ненадежности, а также технические трудности при создании одиночных фотонов, необходимых для QKD. Кроме того, QKD на основе волокон может двигаться только на определенном расстоянии, поэтому вам необходимо иметь повторители, которые, таким образом, представляют собой «слабые места».

Бьюкенен отмечает, что инфраструктурная проблема тоже нуждается в широкополосном волокне из конца в конец. «Мы все еще далеки от волоконных систем от конца до конца, так как последняя миля канала связи часто по-прежнему основана на меди. Наряду с этим мы соединяем гибридные системы связи, поэтому мы не можем обеспечить физический канал связи для сквозных соединений ».

Это также не серебряная пуля. Некоторые исследователи недавно обнаружили проблемы безопасности с теоремой Белла, в то время как участие правительства может быть сложным. В конце концов, это эпоха, когда политики не понимают шифрования, где агентства стремятся нарушить сквозное шифрование и поддержать бэкдоры крупными техническими компаниями.

Возможно, неудивительно, что недавно Центр национальной безопасности Великобритании пришел к такому проклятому завершению недавнего доклада о QKD. «QKD имеет фундаментальные практические ограничения, не затрагивает значительную часть проблемы безопасности, [и] плохо понимается с точки зрения потенциальных атак. Напротив, постквантовая криптография с открытым ключом, по-видимому, обеспечивает гораздо более эффективные смягчения для реальных систем связи от угрозы будущих квантовых компьютеров »,

Будущее шифрования может быть гибридным

Вудвард упоминает «бит битвы между криптографами и физиками», особенно по поводу того, что составляет так называемую «абсолютную безопасность». Таким образом, они разрабатывают разные методы, и Вудвард признает, что он не может понять, как они идут придти вместе.

NSA в прошлом году начал планировать переход на квантово-устойчивое шифрование, в то время как Национальный институт стандартов и технологий (NIST) проводит конкурс, чтобы стимулировать работу после квантовых алгоритмов. Есть усилия ЕС по постквантовому и квантовому, в то время как Google полагался на постквантовую решетку для своей системы New Hope на Chrome .

«Я ожидаю, что это будет комбинация как [пост-квантов, так и QKD]. Вы увидите QKD, где имеет смысл тратить больше денег на инфраструктуру, но математические подходы к подобным вам и мне в конечных точках », — говорит Вудворд. Например, он ожидает, что QKD будет «частью путешествия», возможно, от самого себя до сервера WhatsApp, но с постквантом от сервера ко мне как получателю.

Квантовое распределение ключей, безусловно, является прекрасной возможностью для индустрии информационной безопасности, но нам придется подождать немного, прежде чем широко распространенное внедрение становится реальностью.

Вы читаете гостевой пост Романа Душкина (Blogspot , ЖЖ , Twitter). Также вас могут заинтересовать другие заметки за авторством Романа:

  • Алгоритм Шора, его реализация на языке Haskell и результаты некоторых опытов ;
  • Факторизация числа при помощи квантового алгоритма Гровера ;
  • Квантовый зоопарк: карта отношений квантовых алгоритмов ;
  • … и далее по ссылкам;

Если вы интересуетесь криптографией, попробуйте еще обратить внимание на заметки Эллиптическая криптография на практике и Памятка по созданию безопасного канала связи моего авторства.

Вся история криптографии основывается на постоянном противоборстве криптографов м криптоаналитиков. Первые придумывают методы сокрытия информации, а вторые тут же находят методы взлома. Тем не менее, теоретически показано, что победа в такой гонке вооружений всегда останется на стороне криптографов, поскольку имеется абсолютно невзламываемый шифр — одноразовый блокнот. Так же есть некоторые очень сложно взламываемые шифры, для получения скрытой информации без пароля из которых у криптоаналитика практически нет шансов. К таким шифрам относятся перестановочные шифры посредством решеток Кардано, шифрование при помощи редких текстов в виде ключей и некоторые другие.

Все перечисленные методы достаточно просты для применения, в том числе и одноразовый блокнот. Но все они обладают существенным недостатком, который называется проблемой распределения ключей . Да, одноразовый блокнот невозможно взломать. Но чтобы использовать его, необходимо иметь очень мощную инфраструктуру по распространению этих самых одноразовых блокнотов среди всех своих адресатов, с которыми ведется секретная переписка. То же самое касается и других подобных методов шифрования. То есть перед тем, как начать обмен шифрованной информацией по открытым каналам, необходимо по закрытому каналу передать ключ. Даже если ключом обмениваться при личной встрече, у криптоаналитика всегда имеются возможности по альтернативному способу добывания ключений (от ректального криптоанализа не защищен практически никто).

Обмен ключами при личной встрече — это очень неудобная штука, которая серьезно ограничивает использование абсолютно невзламываемых шифров. Даже государственные аппараты очень небедных государств позволяют себе это только для очень немногих серьезных людей, занимающих сверхответственные должности.

Однако, в конце концов, был разработан протокол обмена ключами, который позволил сохранять секрет при передаче ключа по открытому каналу (протокол Диффи-Хеллмана). Это был прорыв в классической криптографии, и по сей день этот протокол с модификациями, защищающими от атак класса MITM , используется для симметричного шифрования. Сам протокол основан на гипотезе о том, что обратная задача для вычисления дискретного логарифма является очень сложной. Другими словами, этот стойкость этого протокола зиждется только на том, что на сегодняшний день не существует вычислительных мощностей или эффективных алгоритмов для дискретного логарифмирования.

Проблемы начнутся тогда, когда будет реализован квантовый компьютер достаточной мощности. Дело в том, что Питер Шор разработал квантовый алгоритм , который решает не только задачу факторизации, но и задачу поиска дискретного логарифма. Для этого квантовая схема незначительно изменяется, а принцип работы остается тем же. Так что хитроумный изобретатель одним ударом убил двух криптографических зайцев — асимметричную криптографию RSA и симметричную криптографию Диффи-Хеллмана. Все пойдет прахом, как только на свет появится он, универсальный квантовый компьютер (не факт, что его еще нет; просто мы можем об этом даже и не знать).

Но модель квантовых вычислений как повергла криптографов в шок и трепет, так и дала им новую надежду. Именно квантовая криптография позволила придумать новый метод распределения ключей, в котором отсутствуют многие проблемы схемы Диффи-Хеллмана (например, простая атака MITM абсолютно не поможет в силу чисто физических ограничений квантовой механики). Более того, квантовая криптография устойчива и к квантовым алгоритмам поиска ключей, так как основана на совершенно ином аспекте квантовой механики. Так что сейчас мы изучим квантовый метод секретного обмена ключами по открытому каналу.