Значимость коэффициентов корреляции проверяемся по критерию Стьюдента:

где - среднеквадратическая ошибка коэффициента корреляции, которая определяется по формуле:

Если расчетное значение (выше табличного, то можно сделать заключение о том, что величина коэффициента корреляции является значимой. Табличные значения t находят по таблице значений критериев Стьюдента. При этом учитываются количество степеней свободы (V = п - 1)и уровень доверительной вероятности (в экономических расчетах обычно 0,05 или 0,01). В нашем примере количество степеней свободы равно: п - 1 = 40 - 1 = 39. При уровне доверительной вероятности Р = 0,05; t = 2,02. Поскольку (фактическое (табл. 7.8) во всех случаях выше t-табличного, связь между результативным и факторными показателями является надежной, а величина коэффициентов корреляции - значимой.

Следующий этап корреляционного анализа -расчет уравнения связи (регрессии). Решение проводится обычно шаговым способом. Сначала в расчет принимается один фактор, который оказывает наиболее значимое влияние на результативный показатель, потом второй, третий и т.д. И на каждом шаге рассчитываются уравнение связи, множественный коэффициент корреляции и детерминации, F-отношение (критерий Фишера), стандартная ошибка и другие показатели, с помощью которых оценивается надежность уравнения связи. Величина их на каждом шаге сравнивается с предыдущей. Чем выше величина коэффициентов множественной корреляции, детерминации и критерия Фишера и чем ниже величина стандартной ошибки, тем точнее уравнение связи описывает зависимости, сложившиеся между исследуемыми показателями. Если добавление следующих факторов не улучшает оценочных показателей связи, то надо их отбросить, т.е. остановиться на том уравнении, где эти показатели наиболее оптимальны.

Сравнивая результаты на каждом шаге (табл.7.9), мы можем сделать вывод, что наиболее полно описывает зависимости между изучаемыми показателями пятифакторная модель, полученная на пятом шаге. В результате уравнение связи имеет вид:

Коэффициенты уравнения показывают количественное воздействие каждого фактора на результативный показатель при неизменности других. В данном случае можно дать следующую интерпретацию полученному уравнению: рентабельность повышается на 3,65 % при увеличении материалоотдачи на 1 руб.; на 0,09 % - с ростом фондоотдачи на 1 коп.; на 1,02 %-с повышением среднегодовой выработки продукции на одного работника на 1 млн руб.; на 0,052 %- при увеличении удельного веса продукции высшей категории качества на 1 %. С увеличением продолжительности оборота средств на 1 день рентабельность снижается в среднем на 0,122 %.

Коэффициенты регрессии в уравнении связи имеют разные единицы измерения, что делает их несопоставимыми, если возникает вопрос о сравнительной силе воздействия факторов на результативный показатель. Чтобы привести их в сопоставимый вид, все переменные уравнения регрессии выражают в долях среднеквадратического отклонения, другими словами, рассчитывают стандартизированные коэффициенты регрессии. Их еще называют бетта-коэффициентами по символу, который принят для их обозначения (р).

Бетта-коэффициенты и коэффициенты регрессии связаны следующим отношением:

Смотрите также:


Введение. 2

1. Оценка значимости коэффициентов регрессии и корреляции с помощью f-критерия Стьюдента. 3

2. Расчет значимости коэффициентов регрессии и корреляции с помощью f-критерия Стьюдента. 6

Заключение. 15

После построения уравнения регрессии необходимо сделать проверку его значимости: с помощью специальных критериев установить, не является ли полученная зависимость, выраженная уравнением регрессии, случайной, т.е. можно ли ее использовать в прогнозных целях и для факторного анализа. В статистике разработаны методики строгой проверки значимости коэффициентов регрессии с помощью дисперсионного анализа и расчета специальных критериев (например, F-критерия). Нестрогая проверка может быть выполнена путем расчета среднего относительного линейного отклонения (ё), называемого средней ошибкой аппроксимации:

Перейдем теперь к оценке значимости коэффициентов регрессии bj и построению доверительного интервала для параметров регрессионной модели Ру (J=l,2,..., р).

Блок 5 - оценка значимости коэффициентов регрессий по величине ^-критерия Стьюдента. Расчетные значения ta сравниваются с допустимым значением

Блок 5 - оценка значимости коэффициентов регрессий по величине ^-критерия. Расчетные значения t0n сравниваются с допустимым значением 4,/, которое определяется по таблицам t - распределения для заданной вероятности ошибок (а) и числа степеней свободы (/).

Кроме проверки значимости всей модели, необходимо провести проверки значимости коэффициентов регрессии по /-критерию Стюдента. Минимальное значение коэффициента регрессии Ьг должно соответствовать условию bifob- ^t, где bi - значение коэффициента уравнения регрессии в натуральном масштабе при i-ц факторном признаке; аь. - средняя квадратическая ошибка каждого коэффициента. несопоставимость между собой по своей значимости коэффициентов D;

Дальнейший статистический анализ касается проверки значимости коэффициентов регрессии. Для этого находим значение ^-критерия для коэффициентов регрессии. В результате их сравнения определяется наименьший по величине ^-критерий. Фактор, коэффициенту которого соответствует наименьший ^-критерий, исключается из дальнейшего анализа.

Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стъюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Но о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью f-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки:

Оценка значимости коэффициентов чистой регрессии с помощью /-критерия Стьюдента сводится к вычислению значения

Качество труда - характеристика конкретного труда, отражающая степень его сложности, напряженности (интенсивности), условия и значимость для развития экономики. К.т. измеряется посредством тарифной системы, позволяющей дифференцировать заработную плату в зависимости от уровня квалификации (сложности труда), условий, тяжести труда и его интенсивности, а также значимости отдельных отраслей и производств, районов, территорий для развития экономики страны. К.т. находит выражение в заработной плате работников, складывающейся на рынке труда под воздействием спроса и предложения рабочей силы (конкретные виды труда). К.т. - сложная по структуре

Полученные баллы относительной значимости отдельных экономических, социальных и экологических последствий осуществления проекта дают далее основу для сравнения альтернативных проектов и их вариантов с помощью "комплексного балльного безразмерного критерия социальной и эколого-экономической эффективности" проекта Эк, рассчитываемого (в усредненных баллах значимости) по формуле

Внутриотраслевое регулирование обеспечивает различия в оплате труда работников данной отрасли промышленности в зависимости от значимости отдельных.видов производства данной отрасли, от сложности и условий труда, а также от применяемых форм оплаты труда.

Полученная рейтинговая оценка анализируемого предприятия по отношению к предприятию-эталону без учета значимости отдельных показателей является сравнительной. При сравнении рейтинговых оценок нескольких предприятий наивысший рейтинг имеет предприятие с минимальным значением полученной сравнительной оценки.

Понимание качества товара как меры его полезности ставит практически важный вопрос об её измерении. Его решение достигается изучением значимости отдельных свойств в удовлетворении определенной потребности. Значимость даже одного и того же свойства может быть неодинаковой в зависимости от условий потребления продукта. Следовательно, и полезность товара в разных обстоятельствах её использования различна.

Второй этап работы - изучение статистических данных и выявление взаимосвязи и взаимодействия показателей, определение значимости отдельных факторов и причин изменения общих показателей.

Все рассматриваемые показатели сводятся в один таким образом, что в результате получается комплексная оценка всех анализируемых сторон деятельности предприятия с учетом условий его деятельности, с учетом степени значимости отдельных показателей для различных типов инвесторов:

Коэффициенты регрессии показывают интенсивность влияния факторов на результативный показатель. Если проведена предварительная стандартизация факторных показателей, то Ь0 равняется среднему значению результативного показателя в совокупности. Коэффициенты Ь, Ь2 ..... Ьл показывают, на сколько единиц уровень результативного показателя отклоняется от своего среднего значения, если значения факторного показателя отклоняются от среднего, равного нулю, на одно стандартное отклонение. Таким образом, коэффициенты регрессии характеризуют степень значимости отдельных факторов для повышения уровня результативного показателя. Конкретные значения коэффициентов регрессии определяют по эмпирическим данным согласно методу наименьших квадратов (в результате решения систем нормальных уравнений).

2. Расчет значимости коэффициентов регрессии и корреляции с помощью f-критерия Стьюдента

Рассмотрим линейную форму многофакторных связей не только как наиболее простую, но и как форму, предусмотренную пакетами прикладных программ для ПЭВМ. Если же связь отдельного фактора с результативным признаком не является линейной, то производят линеаризацию уравнения путем замены или преобразования величины факторного признака.

Общий вид многофакторного уравнения регрессии имеет вид:


где k - число факторных признаков.

Чтобы упростить систему уравнений МНК, необходимую для вычисления параметров уравнения (8.32), обычно вводят величины отклонений индивидуальных значений всех признаков от средних величин этих признаков.

Получаем систему k уравнений МНК:

Решая эту систему, получаем значения коэффициентов условно-чистой регрессии b. Свободный член уравнения вычисляется по формуле


Термин «коэффициент условно-чистой регресии» означает, что каждая из величин bj измеряет среднее по совокупности отклонение результативного признака от его средней величины при отклонении данного фактора хj от своей средней величины на единицу его измерения и при условии, что все прочие факторы, входящие в уравнение регрессии, закреплены на средних значениях, не изменяются, не варьируют.

Таким образом, в отличие от коэффициента парной регрессии коэффициент условно-чистой регрессии измеряет влияние фактора, абстрагируясь от связи вариации этого фактора с вариацией остальных факторов. Если было бы возможным включить в уравнение регрессии все факторы, влияющие на вариацию результативного признака, то величины bj. можно было бы считать мерами чистого влияния факторов. Но так как реально невозможно включить все факторы в уравнение, то коэффициенты bj. не свободны от примеси влияния факторов, не входящих в уравнение.

Включить все факторы в уравнение регрессии невозможно по одной из трех причин или сразу по ним всем, так как:

1) часть факторов может быть неизвестна современной науке, познание любого процесса всегда неполное;

2) по части известных теоретических факторов нет информации либо таковая ненадежна;

3) численность изучаемой совокупности (выборки) ограничена, что позволяет включить в уравнение регрессии ограниченное число факторов.

Коэффициенты условно-чистой регрессии bj. являются именованными числами, выраженными в разных единицах измерения, и поэтому несравнимы друг с другом. Для преобразования их в сравнимые относительные показатели применяется то же преобразование, что и для получения коэффициента парной корреляции. Полученную величину называют стандартизованным коэффициентом регрессии или?-коэффициентом.


Коэффициент при факторе хj, определяет меру влияния вариации фактора хj на вариацию результативного признака у при отвлечении от сопутствующей вариации других факторов, входящих в уравнение регрессии.

Коэффициенты условно-чистой регрессии полезно выразить в виде относительных сравнимых показателей связи, коэффициентов эластичности:

Коэффициент эластичности фактора хj говорит о том, что при отклонении величины данного фактора от его средней величины на 1% и при отвлечении от сопутствующего отклонения других факторов, входящих в уравнение, результативный признак отклонится от своего среднего значения на ej процентов от у. Чаще интерпретируют и применяют коэффициенты эластичности в терминах динамики: при увеличении фактора х.на 1% его средней величины результативный признак увеличится на е. процентов его средней величины.

Рассмотрим расчет и интерпретацию уравнения многофакторной регрессии на примере тех же 16 хозяйств (табл. 8.1). Результативный признак - уровень валового дохода и три фактора, влияющих на него, представлены в табл. 8.7.

Напомним еще раз, что для получения надежных и достаточно точных показателей корреляционной связи необходима более многочисленная совокупность.


Таблица 8.7

Уровень валового дохода и его факторы

Номера хозяйств

Валовой доход, руб./ra у

Затраты труда, чел.-дни/га х1

Доля пашни,

Надой молока на 1 корову,


Таблица 8.8 Показатели уравнения регрессии


Dependent variable: у

Regression coefficient

Constant-240,112905

Std. error оf est. = 79,243276


Решение проведено по программе «Microstat» для ПЭВМ. Приведем таблицы из распечатки: табл. 8.7 дает средние величины и средние квадратические отклонения всех признаков. Табл. 8.8 содержит коэффициенты регрессии и их вероятностную оценку:

первая графа «var» - переменные, т. е. факторы; вторая графа «regression coefficient» - коэффициенты условно-чистой регрессии bj; третья графа «std. errror» - средние ошибки оценок коэффициентов регрессии; четвертая графа - значения t-критерия Стьюдента при 12 степенях свободы вариации; пятая графа «prob» - вероятности нулевой гипотезы относительно коэффициентов регрессии;

шестая графа «partial r2» - частные коэффициенты детерминации. Содержание и методика расчета показателей в графах 3-6 рассматриваются далее в главе 8. «Constant» - свободный член уравнения регрессии a; «Std. error of est.» - средняя квадратическая ошибка оценки результативного признака по уравнению регрессии. Было получено уравнение множественной регрессии:


у= 2,26x1 - 4,31х2 + 0,166х3 - 240.


Это означает, что величина валового дохода на 1 га сельхозугодий в среднем по совокупности возрастала на 2,26 руб. при увеличении затрат труда на 1 ч/га; уменьшалась в среднем на 4,31 руб. при возрастании доли пашни в сельхозугодиях на 1% и увеличивалась на 0,166 руб. при росте надоя молока на корову на 1 кг. Отрицательная величина свободного члена вполне закономерна, и, как уже отмечено в п. 8.2, результативный признак - валовой доход становится нулевым задолго до достижения нулевых значений факторов, которое в производстве невозможно.

Отрицательное значение коэффициента при х^ - сигнал о существенном неблагополучии в экономике изучаемых хозяйств, где растениеводство убыточно, а прибыльно только животноводство. При рациональных методах ведения сельского хозяйства и нормальных ценах (равновесных или близких к ним) на продукцию всех отраслей, доход должен не уменьшаться, а возрастать с увеличением наиболее плодородной доли в сельхозугодиях - пашни.

На основе данных предпоследних двух строк табл. 8.7 и табл. 8.8 рассчитаем р-коэффициенты и коэффициенты эластичности согласно формулам (8.34) и (8.35).

Как на вариацию уровня дохода, так и на его возможное изменение в динамике самое сильное влияние оказывает фактор х3 - продуктивность коров, а самое слабое - х2 - доля пашни. Значения Р2/ будут использоваться в дальнейшем (табл. 8.9);


Таблица 8.9 Сравнительное влияние факторов на уровень дохода

Факторы хj


Итак, мы получили, что?-коэффициент фактора хj относится к коэффициенту эластичности этого фактора, как коэффициент вариации фактора к коэффициенту вариации результативного признака. Поскольку, как видно по последней строке табл. 8.7, коэффициенты вариации всех факторов меньше коэффициента вариации результативного признака; все?-коэффициенты меньше коэффициентов эластичности.

Рассмотрим соотношение между парным и условно-чистым коэффициентом регрессии на примере фактора -с,. Парное линейное уравнение связи у с х, имеет вид:


y = 3,886x1 – 243,2


Условно-чистый коэффициент регрессии при x1, составляет только 58% парного. Остальные 42% связаны с тем, что вариации x1 сопутствует вариация факторов x2 x3, которая, в свою очередь, влияет на результативный признака. Связи всех признаков и их коэффициенты парных регрессий представлены на графе связей (рис. 8.2).

Если сложить оценки прямого и опосредованного влияния вариации х1 на у, т. е. произведения коэффициентов парных регрессий по всем «путям» (рис. 8.2), получим: 2,26 + 12,55·0,166 + (-0,00128)·(-4,31) + (-0,00128)·17,00·0,166 = 4,344.

Эта величина даже больше парного коэффициента связи x1 с у. Следовательно, косвенное влияние вариации x1 через не входящие в уравнение признаки-факторы - обратное, дающее в сумме:


1 Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики. Учебник для вузов. - М.: ЮНИТИ, 2008,– 311с.

2 Джонстон Дж. Эконометрические методы. - М.: Статистика, 1980,. – 282с.

3 Доугерти К. Введение в эконометрику. - М.: ИНФРА-М, 2004, – 354с.

4 Дрейер Н., Смит Г., Прикладной регрессионный анализ. - М.: Финансы и статистика, 2006,– 191с.

5 Магнус Я.Р., Картышев П.К., Пересецкий А.А. Эконометрика. Начальный курс.-М.: Дело, 2006, – 259с.

6 Практикум по эконометрике/Под ред. И.И.Елисеевой.- М.: Финансы и статистика, 2004, – 248с.

7 Эконометрика/Под ред. И.И.Елисеевой.- М.: Финансы и статистика, 2004, – 541с.

8 Кремер Н., Путко Б. Эконометрика.- М.:ЮНИТИ-ДАНА,200, – 281с.



Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Как неоднократно отмечалось, для статистического вывода о на­личии или отсутствии корреляционной связи между исследуемыми пе­ременными необходимо произвести проверку значимости выборочного коэффициента корреляции. В связи с тем что надежность статистиче­ских характеристик, в том числе и коэффициента корреляции, зависит от объема выборки, может сложиться такая ситуация, когда величина коэффициента корреляции будет целиком обусловлена случайными колебаниями в выборке, на основании которой он вычислен. При существенной связи между переменными коэффициент корреляции должен значимо отличаться от нуля. Если корреляционная связь меж­ду исследуемыми переменными отсутствует, то коэффициент корреля­ции генеральной совокупности ρ равен нулю. При практических ис­следованиях, как правило, основываются на выборочных наблюдениях. Как всякая статистическая характеристика, выборочный коэффициент корреляции является случайной величиной, т. е. его значения случай­но рассеиваются вокруг одноименного параметра генеральной совокуп­ности (истинного значения коэффициента корреляции). При отсутствии корреляционной связи между переменными у и х коэффициент корре­ляции в генеральной совокупности равен нулю. Но из-за случайного характера рассеяния принципиально возможны ситуации, когда не­которые коэффициенты корреляции, вычисленные по выборкам из этой совокупности, будут отличны от нуля.

Могут ли обнаруженные различия быть приписаны случайным ко­лебаниям в выборке или они отражают существенное изменение усло­вий формирования отношений между переменными? Если значения выборочного коэффициента корреляции попадают в зону рассеяния, обусловленную случайным характером самого показателя, то это не является доказательством отсутствия связи. Самое большее, что при этом можно утверждать, сводится к тому, что данные наблюдений не отрицают отсутствия связи между переменными. Но если значение вы­борочного коэффициента корреляции будет лежать вне упомянутой зоны рассеяния, то делают вывод, что он значимо отличается от нуля, и можно считать, что между переменными у и х существует статистиче­ски значимая связь. Используемый для решения этой задачи критерий, основанный на распределении различных статистик, называется крите­рием значимости.

Процедура проверки значимости начинается с формулировки ну­левой гипотезы H 0 . В общем виде она заключается в том, что между па­раметром выборки и параметром генеральной совокупности нет каких- либо существенных различий. Альтернативная гипотеза H 1 состоит в том, что между этими параметрами имеются существенные различия. Например, при проверке наличия корреляции в генеральной совокуп­ности нулевая гипотеза заключается в том, что истинный коэффициент корреляции равен нулю (Н0 : ρ = 0). Если в результате проверки ока­жется, что нулевая гипотеза не приемлема, то выборочный коэффи­циент корреляции r ух значимо отличается от нуля (нулевая гипотеза отвергается и принимается альтернативная Н1). Другими словами, предположение о некоррелированности случайных переменных в ге­неральной совокупности следует признать необоснованным. И нао­борот, если на основе критерия значимости нулевая гипотеза прини­мается, т. е. r ух лежит в допустимой зоне случайного рассеяния, то нет оснований считать сомнительным предположение о некоррелиро­ванности переменных в генеральной совокупности.

При проверке значимости исследователь устанавливает уровень значимости α, который дает определенную практическую уверенность в том, что ошибочные заключения будут сделаны только в очень ред­ких случаях. Уровень значимости выражает вероятность того, что ну­левая гипотеза Н0 отвергается в то время, когда она в действительности верна. Ясно, что имеет смысл выбирать эту вероятность как можно меньшей.

Пусть известно распределение выборочной характеристики, яв­ляющейся несмещенной оценкой параметра генеральной совокупности. Выбранному уровню значимости α соответствуют под кривой этого распределения заштрихованные площади (см. рис. 24). Незаштрихованная площадь под кривой распределения определяет вероятность Р = 1 - α. Границы отрезков на оси абсцисс под заштрихованными площадями называют критическими значениями, а сами отрезки обра­зуют критическую область, или область отклонения гипотезы.

При процедуре проверки гипотезы выборочную характеристику, вычисленную по результатам наблюдений, сравнивают с соответствую­щим критическим значением. При этом следует различать односторон­нюю и двустороннюю критические области. Форма задания критической области зависит от постановки задачи при статистическом исследова­нии. Двусторонняя критическая область необходима в том случае, когда при сравнении параметра выборки и параметра генеральной со­вокупности требуется оценить абсолютную величину расхождения между ними, т. е. представляют интерес как положительные, так и от­рицательные разности между изучаемыми величинами. Когда же надо убедиться в том, что одна величина в среднем строго больше или мень­ше другой, используется односторонняя критическая область (право- или левосторонняя). Вполне очевидно, что для одного и того же критического значения уровень значимости при использовании одно­сторонней критической области меньше, чем при использовании дву­сторонней. Если распределение выборочной характеристики симметрично,

Рис. 24. Проверка нулевой гипотезы H0

то уровень значимости двусторонней критической области равен α, а односторонней - (см. рис. 24). Ограничимся лишь общей по­становкой проблемы. Более подробно с теоретическим обоснованием проверки статистических гипотез можно познакомиться в специальной литературе. Далее мы лишь укажем критерии значимости для различ­ных процедур, не останавливаясь на их построении.

Проверяя значимость коэффициента парной корреляции, устанав­ливают наличие или отсутствие корреляционной связи между исследуе­мыми явлениями. При отсутствии связи коэффициент корреляции гене­ральной совокупности равен нулю (ρ = 0). Процедура проверки на­чинается с формулировки нулевой и альтернативной гипотез:

Н0 : различие между выборочным коэффициентом корреляцииr и ρ = 0 незначимо,

Н1 : различие междуr и ρ = 0 значимо, и следовательно, между переменнымиу и х имеется существенная связь. Из альтернативной ги­потезы следует, что нужно воспользоваться двусторонней критической областью.

В разделе 8.1 уже упоминалось, что выборочный коэффициент кор­реляции при определенных предпосылках связан со случайной вели­чиной t , подчиняющейся распределению Стьюдента сf = п - 2 сте­пенями свободы. Вычисленная по результатам выборки статистика

сравнивается с критическим значением, определяемым по таблице рас­пределения Стьюдента при заданном уровне значимости α и f = п - 2 степенях свободы. Правило применения критерия заключается в сле­дующем: если |t | >tf , то нулевая гипотеза на уровне значимостиα отвергается, т. е. связь между переменными значима; если |t | ≤tf , то нулевая гипотеза на уровне значимостиαпринимается. Отклонение значенияr от ρ = 0 можно приписать случайной вариации. Данные выборки характеризуют рассматриваемую гипотезу как весьма возмож­ную и правдоподобную, т. е. гипотеза об отсутствии связи не вызывает возражений.

Процедура проверки гипотезы значительно упрощается, если вместо статистики t воспользоваться критическими значениями коэф­фициента корреляции, которые могут быть определены через квантили распределения Стьюдента путем подстановки в (8.38)t = tf , а иr = ρ f , а:

(8.39)

Существуют подробные таблицы критических значений, выдержка из которых приведена в приложении к данной книге (см. табл. 6). Правило проверки гипотезы в этом случае сводится к следующему: если r > ρ f , а, то можем утверждать, что связь между переменными су­щественная. Еслиr rf , то результаты наблюдений считаем непро­тиворечащими гипотезе об отсутствии связи.

Задание . По территориям региона приводятся данные за 199Х г.;
Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., х Среднедневная заработная плата, руб., у
1 78 133
2 82 148
3 87 134
4 79 154
5 89 162
6 106 195
7 67 139
8 88 158
9 73 152
10 87 162
11 76 159
12 115 173
Требуется:
1. Построить линейное уравнение парной регрессии у от х.
2. Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации.
3. Оценить статистическую значимость параметров регрессии и корреляции.
4. Выполнить прогноз заработной платы у при прогнозном значении среднедушевого прожиточного минимума х, составляющем 107% от среднего уровня.
5. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.

Решение находим с помощью калькулятора .
Использование графического метода .
Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс - индивидуальные значения факторного признака X.
Совокупность точек результативного и факторного признаков называется полем корреляции .
На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.
Линейное уравнение регрессии имеет вид y = bx + a + ε
Здесь ε - случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения ε i для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:
1) по наблюдениям x i и y i можно получить только оценки параметров α и β
2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;
Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где e i – наблюдаемые значения (оценки) ошибок ε i , а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.
Для оценки параметров α и β - используют МНК (метод наименьших квадратов).
Система нормальных уравнений.
Для наших данных система уравнений имеет вид
Из первого уравнения выражаем а и подставим во второе уравнение
Получаем b = 0.92, a = 76.98
Уравнение регрессии:
y = 0.92 x + 76.98

1. Параметры уравнения регрессии.
Выборочные средние.



Выборочные дисперсии:


Среднеквадратическое отклонение


Коэффициент корреляции
Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

Линейный коэффициент корреляции принимает значения от –1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока :
0.1 < r xy < 0.3: слабая;
0.3 < r xy < 0.5: умеренная;
0.5 < r xy < 0.7: заметная;
0.7 < r xy < 0.9: высокая;
0.9 < r xy < 1: весьма высокая;
В нашем примере связь между среднедневной заработной платы и среднедушевым прожиточным минимумом высокая и прямая.
1.2. Уравнение регрессии (оценка уравнения регрессии).

Линейное уравнение регрессии имеет вид y = 0.92 x + 76.98
Коэффициентам уравнения линейной регрессии можно придать экономический смысл.
Коэффициент b = 0.92 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 руб. среднедушевого прожиточного минимума в день среднедневная заработная плата повышается в среднем на 0.92.
Коэффициент a = 76.98 формально показывает прогнозируемый уровень Среднедневная заработная плата, но только в том случае, если х=0 находится близко с выборочными значениями.
Подставив в уравнение регрессии соответствующие значения х, можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.
Связь между среднедневной заработной платы и среднедушевого прожиточного минимума в день определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе - обратная). В нашем примере связь прямая.
Коэффициент эластичности.
Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.
Для этих целей вычисляются коэффициенты эластичности и бета - коэффициенты. Коэффициент эластичности находится по формуле:


Он показывает, на сколько процентов в среднем изменяется результативный признак у при изменении факторного признака х на 1%. Он не учитывает степень колеблемости факторов.
Коэффициент эластичности меньше 1. Следовательно, при изменении среднедушевого прожиточного минимума в день на 1%, среднедневная заработная плата изменится менее чем на 1%. Другими словами - влияние среднедушевого прожиточного минимума Х на среднедневную заработную плату Y не существенно.
Бета – коэффициент показывает, на какую часть величины своего среднего квадратичного отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных:

Т.е. увеличение x на величину среднеквадратического отклонения этого показателя приведет к увеличению средней среднедневной заработной платы Y на 0.721 среднеквадратичного отклонения этого показателя.
1.4. Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации.


Поскольку ошибка меньше 15%, то данное уравнение можно использовать в качестве регрессии.
Коэффициент детерминации.
Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.
Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.
R 2 = 0.72 2 = 0.5199
т.е. в 51.99 % случаев изменения среднедушевого прожиточного минимума х приводят к изменению среднедневной заработной платы y. Другими словами - точность подбора уравнения регрессии - средняя. Остальные 48.01% изменения среднедневной заработной платы Y объясняются факторами, не учтенными в модели.

x y x 2 y 2 x o y y(x) (y i -y cp) 2 (y-y(x)) 2 (x i -x cp) 2 |y - y x |:y
78 133 6084 17689 10374 148,77 517,56 248,7 57,51 0,1186
82 148 6724 21904 12136 152,45 60,06 19,82 12,84 0,0301
87 134 7569 17956 11658 157,05 473,06 531,48 2,01 0,172
79 154 6241 23716 12166 149,69 3,06 18,57 43,34 0,028
89 162 7921 26244 14418 158,89 39,06 9,64 11,67 0,0192
106 195 11236 38025 20670 174,54 1540,56 418,52 416,84 0,1049
67 139 4489 19321 9313 138,65 280,56 0,1258 345,34 0,0026
88 158 7744 24964 13904 157,97 5,06 0,0007 5,84 0,0002
73 152 5329 23104 11096 144,17 14,06 61,34 158,34 0,0515
87 162 7569 26244 14094 157,05 39,06 24,46 2,01 0,0305
76 159 5776 25281 12084 146,93 10,56 145,7 91,84 0,0759
115 173 13225 29929 19895 182,83 297,56 96,55 865,34 0,0568
1027 1869 89907 294377 161808 1869 3280,25 1574,92 2012,92 0,6902

2. Оценка параметров уравнения регрессии.
2.1. Значимость коэффициента корреляции.

По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=10 находим t крит:
t крит = (10;0.05) = 1.812
где m = 1 - количество объясняющих переменных.
Если t набл > t критич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку t набл > t крит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически - значим.
В парной линейной регрессии t 2 r = t 2 b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

2.3. Анализ точности определения оценок коэффициентов регрессии.
Несмещенной оценкой дисперсии возмущений является величина:


S 2 y = 157.4922 - необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).

12.5496 - стандартная ошибка оценки (стандартная ошибка регрессии).
S a - стандартное отклонение случайной величины a.


S b - стандартное отклонение случайной величины b.


2.4. Доверительные интервалы для зависимой переменной.
Экономическое прогнозирование на основе построенной модели предполагает, что сохраняются ранее существовавшие взаимосвязи переменных и на период упреждения.
Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.
Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя.
(a + bx p ± ε)
где

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X p = 94

(76.98 + 0.92*94 ± 7.8288)
(155.67;171.33)
С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.
2.5. Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
1) t-статистика. Критерий Стьюдента.
Проверим гипотезу H 0 о равенстве отдельных коэффициентов регрессии нулю (при альтернативе H 1 не равно) на уровне значимости α=0.05.
t крит = (10;0.05) = 1.812


Поскольку 3.2906 > 1.812, то статистическая значимость коэффициента регрессии b подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).


Поскольку 3.1793 > 1.812, то статистическая значимость коэффициента регрессии a подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).
Доверительный интервал для коэффициентов уравнения регрессии.
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(b - t крит S b ; b + t крит S b)
(0.9204 - 1.812 0.2797; 0.9204 + 1.812 0.2797)
(0.4136;1.4273)

(a - t lang=SV>a)
(76.9765 - 1.812 24.2116; 76.9765 + 1.812 24.2116)
(33.1051;120.8478)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
2) F-статистики. Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с k1=(m) и k2=(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H 0: R 2 =0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:


где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=10, Fkp = 4.96
Поскольку фактическое значение F > Fkp, то коэффициент детерминации статистически значим (Найденная оценка уравнения регрессии статистически надежна).

Следует отметить, что истинным показателем степени линейной связи переменных является теоретический коэффициент корреляции , который рассчитывается на основании данных всей генеральной совокупности (т.е. всех возможных значений показателей):

где - теоретический показатель ковариции , который вычисляется как математическое ожидание произведений отклонений СВ
иот их математических ожиданий.

Как правило, теоретический коэффициент корреляции мы рассчитать не можем. Однако из того, что выборочный коэффициент не равен нулю
не следует, что теоретический коэффициент также
(т.е. показатели могут быть линейно независимыми). Т.о. по данным случайной выборки нельзя утверждать, что связь между показателями существует.

Выборочный коэффициент корреляции является оценкой теоретического коэффициента, т.к. он рассчитывается лишь для части значений переменных.

Всегда существует ошибка коэффициента корреляции . Эта ошибка - расхождение между коэффициентом корреляции выборки объемом и коэффициентом корреляции для генеральной совокупности определяется формулами:

при
; и
при
.

Проверка значимости коэффициента линейной корреляции означает проверку того, насколько мы можем доверять выборочным данным.

С этой целью проверяется нулевая гипотеза
о том, что значение коэффициента корреляции для генеральной совокупности равно нулю, т.е.в генеральной совокупности отсутствует корреляция . Альтернативной является гипотеза
.

Для проверки этой гипотезы рассчитывается - статистика (-критерий) Стьюдента:

.

Которая имеет распределение Стьюдента с
степенями свободы 1 .

По таблицам распределения Стьюдента определяется критическое значение
.

Если рассчитанное значение критерия
, то нуль-гипотеза отвергается, то есть вычисленный коэффициент корреляции значимо отличается от нуля с вероятностью
.

Если же
, тогда нулевая гипотеза не может быть отвергнута. В этом случае не исключается, что истинное значение коэффициента корреляции равно нулю, т.е. связь показателей можно считать статистически незначимой.

Пример 1 . В таблице приведены данные за 8 лет о совокупном доходе и расходах на конечное потребление.

Изучить и измерить тесноту взаимосвязи между заданными показателями.

Тема 4. Парная линейная регрессия. Метод наименьших квадратов

Коэффициент корреляции указывает на степень тесноты взаимосвязи между двумя признаками, но он не дает ответа на вопрос, как изменение одного признака на одну единицу его размерности влияет на изменение другого признака. Для того чтобы ответить на этот вопрос, пользуются методами регрессионного анализа.

Регрессионный анализ устанавливает форму зависимости между случайной величиной и значениями переменной величины
, причем, значения
считаются точно заданными.

Уравнение регрессии – это формула статистической связи между переменными.

Если эта формула линейна, то речь идет о линейной регрессии. Формула статистической связи двух переменных называется парной регрессией (нескольких переменных – множественной ).

Выбор формулы зависимости называется спецификацией уравнения регрессии. Оценка значений параметров выбранной формулы называется параметризацией .

Как же оценить значения параметров и проверить надёжность сделанных оценок?

Рассмотрим рисунок

    На графике (а) взаимосвязь х и у близка к линейной, прямая линия 1 здесь близка к точкам наблюдений и последние отклоняются от неё лишь в результате сравнительно небольших случайных воздействий.

    На графике (б) реальная взаимосвязь величин х и у описывается нелинейной функцией 2, и какую бы мы ни провели прямую линию (например, 1), отклонения точек от неё будут неслучайными.

    На графике (в) взаимосвязь между переменными х и у отсутствует, и результаты параметризации любой формулы зависимости будут неудачными.

Начальным пунктом эконометрического анализа зависимостей обычно является оценка линейной зависимости переменных. Всегда можно попытаться провести такую прямую линию, которая будет «ближайшей» к точкам наблюдений по их совокупности (например, на рисунке (в) лучшей будет прямая 1, чем прямая 2).

Теоретическое уравнение парной линейной регрессии имеет вид:


,

где
называютсятеоретическими параметрами (теоретическими коэффициентами ) регрессии; -случайным отклонением (случайной ошибкой ).

В общем виде теоретическую модель будем представлять в виде:

.

Для определения значений теоретических коэффициентов регрессии необходимо знать все значения переменных Х и Y , т.е. всю генеральную совокупность, что практически невозможно.

Задача состоит в следующем: по имеющимся данным наблюдений
,
необходимо оценить значения параметров
.

Пусть а оценка параметра
,b оценка параметра .

Тогда оценённое уравнение регрессии имеет вид:
,

где
теоретические значения зависимой переменнойy , - наблюдаемые значения ошибок. Это уравнение называетсяэмпирическим уравнением регрессии . Будем его записывать в виде
.

В основе оценки параметров линейной регрессии лежит Метод Наименьших Квадратов (МНК) – это метод оценивания параметров линейной регрессии, минимизирующий сумму квадратов отклонений наблюдений зависимой переменной от искомой линейной функции.

Функция Q является квадратичной функцией двух параметров a и b . Т.к. она непрерывна, выпукла и ограничена снизу (
), поэтому она достигает минимума. Необходимым условием существования минимума является равенство нулю её частных производных поa и b :


.

Разделив оба уравнения системы на n , получим:


или

Иначе можно записать:

и  средние квадратические отклонения значений тех же признаков.

Т.о. линия регрессии проходит через точку со средними значениями х и у
, акоэффициент регрессии b пропорционален показателю ковариации и коэффициенту линейной корреляции.

Если кроме регрессии Y на X для тех же эмпирических значений найдено уравнение регрессии X на Y (
, где
), то произведение коэффициентов
:

.

Коэффициент регрессии  это величина, показывающая, на сколько единиц размерности изменится величина при изменении величинына одну единицу ее размерности. Аналогично определяется коэффициент.