Широкое применение реактивные двигатели в настоящее время получили в связи с освоением космического пространства. Применяются они также для метеорологических и военных ракет различного радиуса действия. Кроме того, все современные скоростные самолёты оснащены воздушно-реактивными двигателям

В космическом пространстве использовать какие-либо другие двигатели, кроме реактивных, невозможно: нет опоры (твёрдой жидкой или газообразной), отталкиваясь от которой космический корабль мог бы получить ускорение. Применение же реактивных двигателей для самолётов и ракет, не выходящих за пределы атмосферы, связано стем, что именно реактивные двигатели могут обеспечить максимальную скорость полёта.

Устройство реактивного двигателя.


Просто по принципу действия: забортный воздух (в ракетных двигателях - жидкий кислород) засасывается в турбину , там смешивается с топливом и сгорая, в конце турбины образует т.н. “рабочее тело” (реактивная струя), которое и дви­гает машину.

В начале турбины стоит вентилятор , который засасывает воздух из внешней среды в турбины. Основных задач две - первичный забор воздуха и охлаждение всего дв игателя в целом, путем прокачивания воздуха между внешней оболочкой двигателя и внутренними деталями. Это охлаждает камеры смешивания и сгорания и не дает им разрушится.

За вентилятором стоит мощный компрессор , который нагнетает воздух под большим давлением в камеру сгорания.

Камера сгорания смешивает топливо с воздухом. После образования топливо-воздушной смеси, она поджигается. В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объемное расширение. Фактически, реактивный двигатель использует для движения управляемый взрыв. Камера сгорания реактивного двигателя - одна из самых горячих его частей. Ей необходимо постоянное интенсивное охлаждение . Но и этого недостаточно. Температура в ней достигает 2700 градусов, поэтому её часто делают из керамики.

После камеры сгорания, горящая топливо-воздушная смесь направляется непосредственно в турбину . Турбина состоит из сотен лопаток, на которые давит реактивный поток, приводя турбину во вращение. Турбина в свою очередь вращает вал , на котором находятся вентиллятор и компрессор . Таким образом система замыкается и требует лишь подвода топлива и воздуха для своего функционироваия.


Существует два основных класса реактивных двига телей:


Воздушно-реактивные двигатели - реактивный двигатель, в котором атмосферный воздух применяется как основное рабочее тело в термодинамическом цикле, а также при создании реактивной тяги двигателя. Такие двигатели используют энергию окисления горючего кислородом воздуха, забираемого из атмосферы. Рабочее тело этих двигателей представляет собой смесь продуктов горения с остальными компонентами забранного воздуха.

Ракетные двигатели - содержат все компоненты рабочего тела на борту и способны работать в любой среде , в том числе и в безвоздушном пространстве.


Виды реактивных двигателей.

- Классический реактивный двигатель - используется в основном на истребителях в различных модификациях.

К лассический реактивный двигатель

- Турбовинтовой двигатель.

Такие двигатели позволяют большим самолетам летать на приемлемых скоростях и тратить меньше горючего

Двухлопастной турбовинтовой двигатель


- Турбовентиляторный реактивный двигатель.

Этот тип двигателя является более экономичным родственником классического типа. главное отличие в том, что на входе ставится вентилятор большего диаметра , который подает воздух не только в турбину, но и создает достаточно мощный поток вне её . Таким образом достигается повышенная экономичность, за счет улучшения КПД.

Реактивный двигатель был изобретен Гансом фон Охайном (Dr. Hans von Ohain) , выдающимся немецким инженером-конструкторм и Фрэнком Уиттлом (Sir Frank Whittle) . Первый патент на работающий газотурбинный двигатель, был получен в 1930 году Фрэнк Уиттлом. Однако первую рабочую модель собрал именно Охайн.

2 августа 1939 года в небо поднялся первый реактивный самолет – He 178 (Хейнкель 178), снаряженный двигателем HeS 3, разработанный Охайном.

Достаточно просто и одновременно крайне сложно. Просто по принципу действия: забортный воздух (в ракетных двигателях – жидкий кислород) засасывается в турбину, там смешивается с топливом и сгорая, в конце турбины образует т.н. “рабочее тело” (реактивная струя), которое и двигает машину.

Так все просто, но на деле – это целая область науки, ибо в таких двигателях рабочая температура достигает тысяч градусов по Цельсию. Одна из самых главных проблем турбореактивного двигателестроения – создание не плавящихся деталей, из плавящихся металлов. Но для того, что бы понять проблемы конструкторов и изобретателей нужно сначала более детально изучить принципиальное устройство двигателя.

Устройство реактивного двигателя

основные детали реактивного двигателя

В начале турбины всегда стоит вентилятор , который засасывает воздух из внешней среды в турбины. Вентилятор обладает большой площадью и огромным количеством лопастей специальной формы, сделанных из титана. Основных задач две – первичный забор воздуха и охлаждение всего двигателя в целом, путем прокачивание воздуха между внешней оболочкой двигателя и внутренними деталями. Это охлаждает камеры смешивания и сгорания и не дает им разрушится.

Сразу за вентилятором стоит мощный компрессор , который нагнетает воздух под большим давлением в камеру сгорания.

Камера сгорания выполняет еще и роль карбюратора, смешивая топливо с воздухом. После образования топливо воздушной смеси она поджигается. В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объемное расширение. Фактически реактивный двигатель использует для движения управляемый взрыв.

Камера сгорания реактивного двигателя одна из самых горячих его частей – её необходимо постоянно интенсивное охлаждение. Но и этого недостаточно. Температура в ней достигает 2700 градусов, поэтому её часто делают из керамики.

После камеры сгорания горящая топливо-воздушная смесь направляется непосредственно в турбину.

Турбина состоит из сотен лопаток, на которые давит реактивный поток, приводя турбину во вращение. Турбина в свою очередь вращает вал, на котором “сидят” вентиллятор и компрессор. Таким образом система замыкается и требует лишь подвода топлива и воздуха для своего функционироваия.

После турбины поток направляется в сопло. Сопло реактивного двигателя – последняя, но далеко не по значению часть реактивного двигателя. Оно формирует непосредственно реактивную струю. В сопло направляется холодный воздух, нагнетаемый вентиллятором для охлаждения внутренних деталей двигателя. Этот поток ограничивает манжету сопла от сверхгорячего реактивного потока и ее дает ей расплавится.

Отклоняемый вектор тяги

Сопла у реактивных двигателей бывают самые разные. Самым передовым считает подвижное сопло, стоящее на двигателях с отклоняемым вектором тяги. Оно может сжиматься и расширятся, а также отклонятся на значительные углы, регулируя и направляя непосредственно реактивный поток . Это делает самолеты с двигателями с отклоняемым вектором тяги очень маневренными, т.к. маневрирование происходит не только благодаря механизмам крыла, но и непосредственно двигателем.

Типы реактивных двигателей

Существует несколько основных типом реактивных двигателей.

Классический реактивный двигатель самолета F-15

Классический реактивный двигатель – принципиальное устройство которого мы описыали выше. Используется в основном на истребителях в различных модификациях.

Турбовинтовой двигатель . В этом типе двигателя мощность турбины через понижающий редуктор направляется на вращение классического винта. Такие двигатели позволят большим самолетам летать на приемлемых скоростях и тратить меньше горючего. Нормальной крейсерской скоростью турбовинтового самолета считается 600-800 км/ч.

Этот тип двигателя является более экономичным родственником классического типа. главное отличие в том, что на входе ставится вентилятор большего диаметра, который подает воздух не только в турбину, но и создает достаточно мощный поток вне её. Таким образом достигается повышенная экономичность, за счет улучшения КПД.

Используется на лайнерах и больших самолетах.

Прямоточный воздушно-реактивный двигатель (Ramjet)

Работает без подвижных деталей. Воздух нагнетается в камеру сгорания естественным способом, за счет торможения потока об обтекатель входного отверстия.

Использовался на поездах, самолетах, БЛА, и в боевых ракетах, а также на велосипедах и скутерах.

И напоследок – видео работы реактивного двигателя:

Картинки взяты из различных источников. Русификация картинок – Лаборатори 37.

Еще в начале XX в. российский ученый К.Э. Циолковский предсказал, что вслед за эрой винтовых аэропланов наступит эра аэропланов реактивных. Он считал, что только с реактивным двигателем можно достичь сверхзвуковых скоростей.

В 1937 г. молодой и талантливый конструктор A.M. Люлька предложил проект первого советского турбореактивного двигателя. По его расчетам, такой двигатель мог разогнать самолет до небывалых в ту пору скоростей — 900 км/ч! Это казалось фантастикой, и к предложению молодого конструктора отнеслись настороженно. Но, тем не менее, работы по этому двигателю начались, и к середине 1941 г. он был уже практически готов. Однако началась война, и конструкторское бюро, где работал A.M. Люлька, эвакуировали в глубь СССР, а самого конструктора переключили на работу над танковыми двигателями.

Но A.M. Люлька был не одинок в своем стремлении создать реактивный авиационный двигатель. Перед самой войной инженеры из конструкторского бюро В.Ф. Болховитинова — А.Я. Березняк и А.М. Исаев — предложили проект истребителя-перехватчика «БИ-1» с жидкостным реактивным двигателем.

Проект был одобрен, и конструкторы приступили к работе. Несмотря на все трудности первого периода Великой Отечественной войны, опытный «БИ-1» все же был построен.

15 мая 1942 г. первый в мире ракетный истребитель был поднят в воздух летчиком-испытателем ЕЯ. Бахчиванджи. Испытания продолжались до конца 1943 г. и, к сожалению, закончились катастрофой. В одном из испытательных полетов Бахчиванджи достиг скорости 800 км/ч. Но на этой скорости самолет вдруг вышел из повиновения и устремился к земле. Новая машина и ее отважный испытатель погибли.

Первый самолет с реактивным двигателем «Messer-schmitt Ме-262» появился в небе перед самым концом второй мировой войны. Он производился на хорошо замаскированных заводах, размешенных в лесу. Один из таких заводов в Горгау — в 10 км к запалу от Аугсбурга по автобану — поставлял крылья, носовую и хвостовую секции самолета на другой «лесной» завод неподалеку, который осуществлял финальную сборку и поднимал готовые самолеты прямо с автобана. Крыша строений красилась в зеленый цвет, и обнаружить такой «лесной» завод с воздуха было почти невозможно. Хотя союзникам удалось засечь взлеты «Ме-262» и разбомбить несколько неукрытых самолетов, расположение завода они смогли установить только, после того, как заняли лес.

Первооткрыватель реактивного двигателя англичанин Фрэнк Уитл получил свой патент еще в 7 930 г. Первый реактивный самолет «Gloster» был построен в 1941 г. ив мае прошел испытания. Правительство от него отказалось — недостаточно мощный. Полностью раскрыли потенциал этого изобретения лишь немцы, в 1942 г. собравшие «Messerschmitt Ме-262», на котором и воевали вплоть до конца войны. Первым советским реактивным самолетом был «МиГ-9», а его «потомок» — «МиГ-15» — вписал много славных страниц в боевую историю войны в Корее (1950—1953).

В эти же годы в фашистской Германии, утратившей на советско-германском фронте превосходство в воздухе, все более интенсивно развертываются работы над реактивными самолетами. Гитлер надеялся, что с помощью этих самолетов он снова перехватит инициативу в войне и добьется победы.

В 1944 г. самолет «Messerschmitt Ме-262», оснащенный реактивным двигателем, был запущен в серийное производство и вскоре появился на фронте. Немецкие летчики с большой опаской относились к этой необычной машине, не имеющей привычного винта. Кроме этого на скорости, близкой к 800 км/ч, ее затягивало в пикирование, и вывести машину из этого состояния было невозможно. В авиационных частях далее появилась строжайшая инструкция — ни в коем случае не доводить скорость до 800 км/ч.

Тем не менее, даже с таким ограничением «Ме-262» превосходил по скорости все другие истребители тех лет. Это позволило командующему гитлеровской истребительной авиацией генералу Голланду заявить, что «Ме-262» — «единственный шанс организовать реальное сопротивление противнику».

На Восточном фронте «Ме-262» появились в самом конце войны. В связи с этим конструкторские бюро получили срочное задание создать аппараты для борьбы с немецкими реактивными самолетами.

А.И. Микоян и П.О. Сухой в помощь обычному поршневому мотору, расположенному в носовой части аппарата, добавили мотокомпрессорный мотор конструкции К.В. Холщевникова, установив его в хвосте самолета. Дополнительный двигатель должен был запускаться, когда самолету требовалось придать значительное ускорение. Это было продиктовано тем обстоятельством, что двигатель К.В. Холщевникова работал не более трех-пяти минут.

Первым закончил работу над скоростным истребителем А.И. Микоян. Его самолет «И-250» совершил полет в марте 1945 г. В ходе испытаний этой машины была зарегистрирована рекордная скорость 820 км/ч, впервые достигнутая в СССР. Истребитель П.О. Сухого «Су-5» поступил на испытания в апреле 1945 г., и на нем после включения дополнительного хвостового двигателя была получена скорость, превышающая 800 км/ч.

Однако обстоятельства тех лет не позволили запустить новые скоростные истребители в серийное производство. Во-первых, война закончилась, даже хваленый «Ме-262» не помог вернуть фашистам утраченное превосходство в воздухе.

Во-вторых, мастерство советских пилотов позволило доказать всему миру, что даже реактивные самолеты можно сбивать, управляя обыкновенным серийным истребителем.

Параллельно с разработкой самолета, оснащенного «толкающим» мотокомпрессорным двигателем, в конструкторском бюро П.О. Сухого был создан истребитель «Су-7», в котором совместно с поршневым мотором работал жидкостно-реактивный «РД-1», разработанный конструктором В.П. Глушко.

Полеты на «Су-7» начались в 1945 г. Испытывал его пилот Г. Комаров. При включении «РД-1» скорость самолета увеличивалась в среднем на 115 км/ч. Это был неплохой результат, однако вскоре испытания пришлось прекратить из-за частого выхода из строя реактивного двигателя.

Аналогичная ситуация сложилась в конструкторских бюро С.А. Лавочкина и АС. Яковлева. На одном из опытных самолетов «Ла-7Р» ускоритель взорвался в полете, летчику-испытателю чудом удалось спастись. А вот при испытании «Як-3» с ускорителем «РД-1» самолет взорвался и его пилот погиб. Участившиеся катастрофы привели к тому, что испытания самолетов с «РД-1» были прекращены. К тому же стало ясно, на смену поршневым должны были прийти новые двигатели — реактивные.

После поражения Германии в качестве трофеев СССР достались немецкие реактивные самолеты с двигателями. Западным же союзникам попали не только образцы реактивных самолетов и их двигателей, но и их разработчики и оборудование фашистских заводов.

Для накопления опыта в реактивном самолетостроении было принято решение использовать немецкие двигатели «JUMO-004» и «BMW-003», а затем на их основе создать собственные. Эти двигатели получили наименование «РД-10» и «РД-20». Кроме этого конструкторам A.M. Люльке, А.А. Микулину, В.Я. Климову было поручено создать «полностью советский» авиационный реактивный двигатель.

Пока у «двигателистов» шла работа, П.О. Сухой разработал реактивный истребитель «Су-9». Его конструкция была выполнена по схеме двухмоторных самолетов — два трофейных двигателя «JUMO-004» («РД-10») размещались под крыльями.

Наземные испытания реактивного мотора «РА- 7» проводились на летном поле аэродрома в Тушино. Во время работы он издавал страшный шум и выбрасывал из своего сопла клубы дыма и огня. Грохот и зарево от пламени были заметны даже у московской станции метро «Сокол». Не обошлось и без курьеза. Однажды на аэродром примчалось несколько пожарных машин, вызванных москвичами тушить пожар.

Самолет «Су-9» трудно было назвать просто истребителем. Летчики обычно называли его «тяжелым истребителем», так как более точное название — истребитель-бомбардировщик — появилось только к середине 50-х гг. Но по своему мощному пушечному и бомбовому вооружению «Су-9» вполне можно было считать прототипом такого самолета.

У такого размещения моторов были как недостатки, так и преимущества. К недостаткам можно отнести большое лобовое сопротивление, создаваемое расположенными под крыльями моторами. Но с другой стороны, размещение двигателей в специальных подвесных мотогондолах открывало к ним беспрепятственный доступ, что было немаловажно при ремонте и регулировке.

Кроме реактивных двигателей самолет «Су-9» содержал много «свежих» конструкторских решений. Так, например, П.О. Сухой установил на свой самолет стабилизатор, управляемый специальным электромеханизмом, стартовые пороховые ускорители, катапультируемое сиденье летчика и устройство по аварийному сбросу фонаря, прикрывающего кабину летчика, воздушные тормоза с посадочным щитком, тормозной парашют. Можно сказать, что «Су-9» был целиком создан из новшеств.

Вскоре опытный вариант истребителя «Су-9» был построен. Однако было обращено внимание на то, что выполнение виражей на нем для летчика физически тяжелое.

Стало очевидным, что с возрастанием скоростей и высоты полета летчику все труднее будет справляться с управлением, и тогда в систему управления самолетом было введено новое устройство — бустер-усилитель, наподобие гидроусилителя руля. Но в те годы применение сложного гидравлического устройства на самолете вызвало споры. Даже опытные авиаконструкторы отнеслись к нему скептически.

И все же бустер установили на «Су-9». Сухой первым полностью переложил усилия с ручки управления самолетом на гидросистему. Положительная реакция пилотов не заставила себя ждать. Управление самолетом стало более приятным и неутомительным. Маневр упростился и стал возможен на всех скоростях полета.

Следует добавить, что добиваясь совершенства конструкции, П.О. Сухой «проиграл» в соревновании бюро Микояна и Яковлева. Первые реактивные истребители СССР — «МиГ-9» и «Як-15» взлетели в воздух в один день — 26 апреля 1946 г. Они приняли участие в воздушном параде в Тушино и тут же были запущены в серию. А «Су-9» появился в воздухе только в ноябре 1946 г. Однако он очень понравился военным и в 1947 г. был рекомендован для серийного производства. Но в серию он не пошел — авиационные заводы уже были загружены работой по выпуску реактивных «МиГов» и «Яков». Да и П.О. Сухой к тому времени уже заканчивал работу над новой, более совершенной машиной — истребителем «Су-11».

Такое название для этой главы выбрано не случайно. Именно так, опираясь крыльями на воздух, как это делают птицы, взлетели в небо первые самолеты, открыв новую эру на земле — эру авиации. И не случайно слово «авиация» в переводе с латинского обозначает — птица. Ведь именно мечта людей летать, как птицы, и послужила толчком к зарождению…

Еще в 1914 г. норвежский исследователь Фритьоф Нансен в своей книге «В страну будущего» высказался о том, что авиация будет играть важную роль в освоении Севера, в частности в развитии судоходства через Карское море и устья рек Обь и Енисей. Почти в то же время русскими летчиками были предприняты первые попытки пролететь над Северным морским…

В один из осенних дней 1797 г. французский воздухоплаватель Жак Гарнерен поднялся на воздушном шаре над парком Монсо близ Парижа, затем оставил шар и опустился на землю на парашюте собственной конструкции. Считается, что именно в этот день впервые в истории человек доверил этому необычному приспособлению свою жизнь. Возможно, это так, но сама идея спуска с…

Летом 1936 г. технический департамент Германии подготовил задание на новый двухместный гидросамолет. Заказ на его разработку осенью 1936 г. получили две немецкие авиастроительные компании «Arado» и «Focke-Wulf». Традиционно считалось, что для создания небольшого поплавкового самолета требуется использование схемы биплана. По такому пути пошел и Курт Танк при разработке своего «Fw-62». Конструкторское бюро «Arado», не отличавшееся…

Ничто в мире не случается вдруг. Каждому явлению предшествует длительная подготовка. Так и историческому полету аппарата братьев Райт предшествовали многолетние опыты и эксперименты других людей, порой весьма далеких от авиации. Об одном из таких людей, летательный аппарат которого молено считать переходной моделью между аппаратами авиации и воздухоплавания, пойдет этот рассказ. В 1897 г. в небо…

Пожалуй, именно в 20—40-х гг. XX в. воздухоплавание во всем мире получило наибольшее развитие. В СССР еще до появления ЦАГИ, 23 марта 1918 г. была создана «Летучая лаборатория». В ее задачи входили всесторонние экспериментальные исследования в области воздухоплавания и авиации. Летучая лаборатория, руководимая Н.Е. Жуковским, стала первым советским научным авиационным институтом. В 1919 г. было…

Сейчас речь пойдет о самолетах гражданской авиации. Такие самолеты используются для перевозок пассажиров, багажа, почты и других грузов, а также в сельском хозяйстве, строительстве, для охраны лесов, обслуживания экспедиций, оказания медицинской помощи населению и проведения санитарных мероприятий, экспериментальных и научно-исследовательских работ, учебных, культурно-просветительных и спортивных мероприятий, поисково-спасательных и аварийно-спасательных работ и оказания помощи в случае…

Поплавковый патрульный бомбардировщик-торпедоносец «N-3PB» стал первым серийным самолетом, разработанным американской фирмой «Northrop Aircraft Inc». Самолет строился по заказу норвежских ВМС, нуждающихся в поплавковом патрульном самолете. Работы над самолетом были начаты в 1939 г., и уже 1 ноября 1940 г. первый самолет совершил полет на озере Эльсинор в Калифорнии. Несмотря на достаточно мощное вооружение, состоящее из…

Задолго до того дня, когда в свой первый полет отправился самолет братьев Райт, «воздухоплавательный снаряд», построенный российским изобретателем Александром Федоровичем Можайским (1825—1890), оторвался от поверхности земли. Этот аппарат, на который конструктором был получен патент, имел все основные черты современного самолета. Как же случилось, что американские, а не российские изобретатели стали «крестными отцами» авиации? Александр Федорович…

Война — это всегда горе и слезы, но люди слишком быстро забывают об этом. Прошло каких-нибудь два десятка лет со времени окончания первой мировой, а на пороге уже стояла новая война — вторая мировая. 1 сентября 1939 г. немецкие войска вторглись в Польшу, и весь мир оказался втянутым в новую кровопролитную войну. В 1937 г….

В реактивном двигателе сила тяги, необходимая для движения, создается путем преобразования исходной энергии в кинетическую энергию рабочего тела. В результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде отдачи (струи). Отдача перемещает в пространстве двигатель и конструктивно связанный с ним аппарат. Перемещение происходит в направлении, противоположном истечению струи. В кинетическую энергию реактивной струи могут преобразовываться различные виды энергии: химическая, ядерная, электрическая, солнечная. Реактивный двигатель обеспечивает собственное движение без участия промежуточных механизмов.

Для создания реактивной тяги необходимы источник исходной энергии, которая преобразуется в кинетическую энергию реактивной струи, рабочее тело, выбрасываемое из двигателя в виде реактивной струи, и сам реактивный двигатель, преобразующий первый вид энергии во второй.

Основной частью реактивного двигателя является камера сгорания, в которой создается рабочее тело.

Все реактивные двигатели делятся на два основных класса, в зависимости от того, используется в их работе окружающая среда или нет.

Первый класс – воздушно?реактивные двигатели (ВРД). Все они тепловые, в которых рабочее тело образуется при реакции окисления горючего вещества кислородом окружающего воздуха. Основную массу рабочего тела составляет атмосферный воздух.

В ракетном двигателе все компоненты рабочего тела находятся на борту оснащенного им аппарата.

Существуют также комбинированные двигатели, сочетающие в себе оба вышеназванные типа.

Впервые реактивное движение было использовано в шаре Герона – прототипе паровой турбины. Реактивные двигатели на твердом топливе появились в Китае в X в. н. э. Такие ракеты применялись на Востоке, а затем в Европе для фейерверков, сигнализации, а затем как боевые.

Важным этапом в развитии идеи реактивного движения была идея применения ракеты в качестве двигателя для летательного аппарата. Ее впервые сформулировал русский революционер?народоволец Н. И. Кибальчич, который в марте 1881 г., незадолго до казни, предложил схему летательного аппарата (ракетоплана) с использованием реактивной тяги от взрывных пороховых газов.

H. Е. Жуковский в работах «О реакции вытекающей и втекающей жидкости» (1880?е годы) и «К теории судов, приводимых в движение силой реакции вытекающей воды» (1908 г.) впервые разработал основные вопросы теории реактивного двигателя.

Интересные работы по исследованию полета ракеты принадлежат также известному русскому ученому И. В. Мещерскому, в частности в области общей теории движения тел переменной массы.

В 1903 г. К. Э. Циолковский в своей работе «Исследование мировых пространств реактивными приборами» дал теоретическое обоснование полета ракеты, а также принципиальную схему ракетного двигателя, предвосхищавшую многие принципиальные и конструктивные особенности современных жидкостно?ракетных двигателей (ЖРД). Так, Циолковский предусматривал применение для реактивного двигателя жидкого топлива и подачу его в двигатель специальными насосами. Управление полетом ракеты он предлагал осуществить посредством газовых рулей – специальных пластинок, помещаемых в струе вылетающих из сопла газов.

Особенность жидкостно?реактивного двигателя в том, что в отличие от других реактивных двигателей он несет с собой вместе с топливом весь запас окислителя, а не забирает необходимый для сжигания горючего воздух, содержащий кислород, из атмосферы. Это единственный двигатель, который может быть применен для сверхвысотного полета вне земной атмосферы.

Первую в мире ракету с жидкостным ракетным двигателем создал и запустил 16 марта 1926 г. американец Р. Годдард. Она весила около 5 килограммов, а ее длина достигала 3 м. Топливом в ракете Годдарда служили бензин и жидкий кислород. Полет этой ракеты продолжался 2,5 секунды, за которые она пролетела 56 м.

Систематические экспериментальные работы над этими двигателями начались в 30?х годах XX века.

Первые советские ЖРД были разработаны и созданы в 1930–1931 гг. в ленинградской Газодинамической лаборатории (ГДЛ) под руководством будущего академика В. П. Глушко. Эта серия называлась ОРМ – опытный ракетный мотор. Глушко применил некоторые новинки, например охлаждение двигателя одним из компонентов топлива.

Параллельно разработка ракетных двигателей велась в Москве Группой изучения реактивного движения (ГИРД). Ее идейным вдохновителем был Ф. А. Цандер, а организатором – молодой С. П. Королев. Целью Королева была постройка нового ракетного аппарата – ракетоплана.

В 1933 г. Ф. А. Цандер построил и успешно испытал ракетный двигатель ОР?1, работавший на бензине и сжатом воздухе, а в 1932–1933 гг. – двигатель ОР?2, на бензине и жидком кислороде. Этот двигатель был спроектирован для установки на планере, который должен был совершить полет в качестве ракетоплана.

В 1933 г. в ГИРДе создана и испытана первая советская ракета на жидком топливе.

Развивая начатые работы, советские инженеры в последующем продолжали работать над созданием жидкостных реактивных двигателей. Всего с 1932 по 1941 г. в СССР было разработано 118 конструкций жидкостных реактивных двигателей.

В Германии в 1931 г. состоялись испытания ракет И. Винклера, Риделя и др.

Первый полет на самолете?ракетоплане с жидкостно?реактивным двигателем был совершен в Советском Союзе в феврале 1940 г. В качестве силовой установки самолета был применен ЖРД. В 1941 г. под руководством советского конструктора В. Ф. Болховитинова был построен первый реактивный самолет – истребитель с жидкостно?ракетным двигателем. Его испытания были проведены в мае 1942 г. летчиком Г. Я. Бахчиваджи.

В это же время состоялся первый полет немецкого истребителя с таким двигателем. В 1943 г. в США провели испытания первого американского реактивного самолета, на котором был установлен жидкостно?реактивный двигатель. В Германии в 1944 г. были построены несколько истребителей с этими двигателями конструкции Мессершмитта и в том же году применены в боевой обстановке на Западном фронте.

Кроме того, ЖРД применялись на немецких ракетах Фау?2, созданных под руководством В. фон Брауна.

В 1950?е годы жидкостно?ракетные двигатели устанавливались на баллистических ракетах, а затем на искусственных спутниках Земли, Солнца, Луны и Марса, автоматических межпланетных станциях.

ЖРД состоит из камеры сгорания с соплом, турбонасосного агрегата, газогенератора или парогазогенератора, системы автоматики, органов регулирования, системы зажигания и вспомогательных агрегатов (теплообменники, смесители, приводы).

Идея воздушно?реактивных двигателей не раз выдвигалась в разных странах. Наиболее важными и оригинальными работами в этом отношении являются исследования, проведенные в 1908–1913 гг. французским ученым Р. Лореном, который, в частности, в 1911 г. предложил ряд схем прямоточных воздушно?реактивных двигателей. Эти двигатели используют в качестве окислителя атмосферный воздух, а сжатие воздуха в камере сгорания обеспечивается за счет динамического напора воздуха.

В мае 1939 г. в СССР впервые состоялось испытание ракеты с прямоточным воздушно?реактивным двигателем конструкции П. А. Меркулова. Это была двухступенчатая ракета (первая ступень – пороховая ракета) с взлетным весом 7,07 кг, причем вес топлива для второй ступени прямоточного воздушно?реактивного двигателя составлял лишь 2 кг. При испытании ракета достигла высоты 2 км.

В 1939–1940 гг. впервые в мире в Советском Союзе проводились летние испытания воздушно?реактивных двигателей, установленных в качестве дополнительных двигателей на самолете конструкции Н. П. Поликарпова. В 1942 г. в Германии испытывались прямоточные воздушно?реактивные двигатели конструкции Э. Зенгера.

Воздушно?реактивный двигатель состоит из диффузора, в котором за счет кинетической энергии набегающего потока воздуха происходит сжатие воздуха. В камеру сгорания через форсунку впрыскивается топливо и происходит воспламенение смеси. Реактивная струя выходит через сопло.

Процесс работы ВРД непрерывен, поэтому в них отсутствует стартовая тяга. В связи с этим при скоростях полета меньше половины скорости звука воздушно?реактивные двигатели не применяются. Наиболее эффективно применение ВРД на сверхзвуковых скоростях и больших высотах. Взлет самолета с воздушно?реактивным двигателем происходит при помощи ракетных двигателей на твердом или жидком топливе.

Большее развитие получила другая группа воздушно?реактивных двигателей – турбокомпрессорные двигатели. Они подразделяются на турбореактивные, в которых тяга создается струей газов, вытекающих из реактивного сопла, и турбовинтовые, в которых основная тяга создается воздушным винтом.

В 1909 г. проект турбореактивного двигателя был разработан инженером Н. Герасимовым. В 1914 г. лейтенант русского морского флота М. Н. Никольской сконструировал и построил модель турбовинтового авиационного двигателя. Рабочим телом для приведения в действие трехступенчатой турбины служили газообразные продукты сгорания смеси скипидара и азотной кислоты. Турбина работала не только на воздушный винт: отходящие газообразные продукты сгорания, направленные в хвостовое (реактивное) сопло, создавали реактивную тягу дополнительно к силе тяги винта.

В 1924 г. В. И. Базаров разработал конструкцию авиационного турбокомпрессорного реактивного двигателя, состоявшую из трех элементов: камеры сгорания, газовой турбины, компрессора. Поток сжатого воздуха здесь впервые делился на две ветви: меньшая часть шла в камеру сгорания (к горелке), а большая подмешивалась к рабочим газам для понижения их температуры перед турбиной. Тем самым обеспечивалась сохранность лопаток турбины. Мощность многоступенчатой турбины расходовалась на привод центробежного компрессора самого двигателя и отчасти на вращение воздушного винта. Дополнительно к винту тяга создавалась за счет реакции струи газов, пропускаемых через хвостовое сопло.

В 1939 г. на Кировском заводе в Ленинграде началась постройка турбореактивных двигателей конструкции А. М. Люльки. Его испытаниям помешала война.

В 1941 г. в Англии был впервые осуществлен полет на экспериментальном самолете?истребителе, оснащенном турбореактивным двигателем конструкции Ф. Уиттла. На нем был установлен двигатель с газовой турбиной, которая приводила в действие центробежный компрессор, подающий воздух в камеру сгорания. Продукты сгорания использовались для создания реактивной тяги.

В турбореактивном двигателе воздух, поступающий при полете, сжимается сначала в воздухозаборнике, а затем в турбокомпрессоре. Сжатый воздух подается в камеру сгорания, куда впрыскивается жидкое топливо (чаще всего – авиационный керосин). Частичное расширение газов, образовавшихся при сгорании, происходит в турбине, вращающей компрессор, а окончательное – в реактивном сопле. Между турбиной и реактивным двигателем может быть установлена форсажная камера, предназначенная для дополнительного сгорания топлива.

Сейчас турбореактивными двигателями оснащено большинство военных и гражданских самолетов, а также некоторые вертолеты.

В турбовинтовом двигателе основная тяга создается воздушным винтом, а дополнительная (около 10 %) – струей газов, вытекающих из реактивного сопла. Принцип действия турбовинтового двигателя схож с турбореактивным, с той разницей, что турбина вращает не только компрессор, но и воздушный винт. Эти двигатели применяются в дозвуковых самолетах и вертолетах, а также для движения быстроходных судов и автомобилей.

Наиболее ранние реактивные твердотопливные двигатели использовались в боевых ракетах. Их широкое применение началось в XIX в., когда во многих армиях появились ракетные части. В конце XIX в. были созданы первые бездымные порохи, с более устойчивым горением и большей работоспособностью.

В 1920–1930?е годы велись работы по созданию реактивного оружия. Это привело к появлению реактивных минометов – «катюш» в Советском Союзе, шестиствольных реактивных минометов в Германии.

Получение новых видов пороха позволило применять реактивные твердотопливные двигатели в боевых ракетах, включая баллистические. Кроме этого они применяются в авиации и космонавтике как двигатели первых ступеней ракет?носителей, стартовые двигатели для самолетов с прямоточными воздушно?реактивными двигателями и тормозные двигатели космических аппаратов.

Реактивный твердотопливный двигатель состоит из корпуса (камеры сгорания), в котором находится весь запас топлива и реактивного сопла. Корпус выполняется из стали или стеклопластика. Сопло – из графита, тугоплавких сплавов, графита.

Зажигание топлива производится воспламенительным устройством.

Регулирование тяги производится изменением поверхности горения заряда или площади критического сечения сопла, а также впрыскиванием в камеру сгорания жидкости.

Направление тяги может меняться газовыми рулями, отклоняющейся насадкой (дефлектором), вспомогательными управляющими двигателями и т. п.

Реактивные твердотопливные двигатели очень надежны, могут долго храниться, а следовательно, постоянно готовы к запуску.

Отличное определение

Неполное определение ↓

Идеи создания теплового двигателя, к которому относится и реактивный двигатель, известны человеку с древнейших времен. Так, в трактате Герона Александрийского под названием «Пневматика» присутствует описание Эолипила – шара «Эола». Данная конструкция представляла собой не что иное, как паровую турбину, в которой пар подавался через трубки в бронзовую сферу и, вырываясь из нее, эту сферу и раскручивал. Вероятнее всего, устройство использовалось для развлечений.

Шар «Эола» Несколько дальше продвинулись китайцы, создавшие в XIII веке некое подобие «ракет». Используемая изначально в качестве фейерверка, в скором времени новинка была взята на вооружение и применялась в боевых целях. Не обошел стороной идею и великий Леонардо, вознамерившийся при помощи горячего воздуха, подаваемого на лопасти, вращать вертел для жарки. Впервые идею газотурбинного двигателя предложил в 1791 году английский изобретатель Дж. Барбер: конструкция его ГТД была оснащена газогенератором, поршневым компрессором, камерой сгорания и газовой турбиной. Использовал в качестве силовой установки для своего самолета, разработанного в 1878 году, тепловой двигатель и А.Ф. Можайский: два паросиловых двигателя приводили в движение пропеллеры машины. Из-за низкого КПД желаемого эффекта достичь не удалось. Другой русский инженер – П.Д. Кузьминский – в 1892 году разработал идею газотурбинного двигателя, в котором топливо сгорало при постоянном давлении. Начав реализацию проекта в 1900 году, он решил установить ГТД с многоступенчатой газовой турбиной на небольшой катер. Однако смерть конструктора помешала закончить начатое. Более интенсивно за создание реактивного двигателя принялись лишь в ХХ веке: сначала теоретически, а через несколько лет – уже и практически. В 1903 году в работе «Исследование мировых пространств реактивными приборами» К.Э. Циолковским были разработаны теоретические основы жидкостных ракетных двигателей (ЖРД) с описанием основных элементов реактивного двигателя, использующего жидкое топливо. Идея создания воздушно-реактивного двигателя (ВРД) принадлежит Р. Лорину, запатентовавшему проект в 1908 году. При попытке создания двигателя, после обнародования чертежей устройства в 1913 году, изобретатель потерпел неудачу: скорости, необходимой для функционирования ВРД, достигнуть так и не удалось. Попытки создания газотурбинных двигателей продолжались и далее. Так, в 1906 году русский инженер В.В. Караводин разработал, а через два года и построил бескомпрессорный ГТД с четырьмя камерами прерывистого сгорания и газовой турбиной. Однако мощность, развиваемая устройством, даже при 10000 об/мин не превышала 1,2 квт (1,6 л.с.). Создал газотурбинный двигатель прерывистого горения и немецкий конструктор Х. Хольварт. Построив ГТД в 1908 году, к 1933 году, после многолетних работ по его совершенствованию, он довёл КПД двигателя до 24%. Тем не менее, идея не нашла широкого применения.

В.П. Глушко Идея же турбореактивного двигателя была озвучена в 1909 году русским инженером Н.В. Герасимовым, получившим патент на газотурбинный двигатель для создания реактивной тяги. Работы по реализации этой идеи не прекращались в России и впоследствии: в 1913 году М.Н. Никольской проектирует ГТД мощностью 120 квт (160 л.с.) с трёхступенчатой газовой турбиной; в 1923 году В.И. Базаров предлагает принципиальную схему газотурбинного двигателя, близкую по схеме современным турбовинтовым двигателям; в 1930 году В.В. Уваров совместно с Н.Р. Брилингом проектирует, а в 1936 году и реализует газотурбинный двигатель с центробежным компрессором. Огромный вклад в создание теории реактивного двигателя внесли работы русских ученых С.С. Неждановского, И.В. Мещерского, Н.Е. Жуковского. французского учёного Р. Эно-Пельтри, немецкого учёного Г. Оберта. На создание воздушно-реактивного двигателя повлияла и работа известного советского ученого Б.С. Стечкина, который опубликовал в 1929 году свой труд «Теория воздушно-реактивного двигателя». Не останавливались работы по созданию и жидкостного реактивного двигателя: в 1926 году американский ученый Р. Годдард осуществил запуск ракеты на жидком топливе. Работы над этой темой происходили и в Советском Союзе: в период с 1929 по 1933 год В.П. Глушко разработал и испытал в действии в Газодинамической лаборатории электротермический реактивный двигатель. Им же в этот период были созданы и первые отечественные жидкостные реактивные двигатели – ОРМ, ОРМ-1, ОРМ-2. Наибольший вклад в практическое воплощение реактивного двигателя внесли немецкие конструкторы и ученые. Имея поддержку и финансирование со стороны государства, рассчитывавшего этим путем добиться технического превосходства в грядущей войне, инженерный корпус III Рейха с максимальной отдачей и в короткие сроки подошел к созданию боевых комплексов, имевших в своей основе идеи реактивного движения. Концентрируя внимание на авиационной составляющей, можно сказать, что уже 27 августа 1939 года летчик-испытатель фирмы Heinkel флюг-капитан Э. Варзиц поднял в воздух He.178 – реактивный самолет, технологические наработки которого были впоследствии использованы при создании истребителей Heinkel He.280 и Messerschmitt Me.262 Schwalbe. Установленный на Heinkel He.178 двигатель Heinkel Strahltriebwerke HeS 3 конструкции Х.-И. фон Охайна хоть и не обладал высокой мощностью, но сумел открыть эру реактивных полетов боевой авиации. Достигнутая He.178 максимальная скорость в 700км/ч с использованием двигателя, мощность которого не превышала 500 кгс, говорила о многом. Впереди лежали безграничные возможности, которые лишали будущего поршневые моторы. Созданная в Германии целая серия реактивных двигателей, например, Jumo-004 производства фирмы Junkers, позволила ей уже в конце Второй мировой войны обладать серийными реактивными истребителями и бомбардировщиками, опередив другие страны в этом направлении на несколько лет. После поражения III Рейха именно немецкие технологии дали толчок развитию реактивного самолетостроения во многих странах мира. Единственной страной, сумевшей ответить на немецкий вызов, была Великобритания: созданный Ф. Уиттлом турбореактивный двигатель Rolls-Royce Derwent 8 был установлен на истребителе Gloster Meteоr.

Трофейный Jumo 004 Первым в мире турбовинтовым двигателем стал венгерский двигатель Jendrassik Cs-1 конструкции Д. Ендрашика, построившего его в 1937 году на заводе Ganz в Будапеште. Несмотря на возникшие в ходе внедрения проблемы, двигатель предполагалось устанавливать на венгерский двухмоторный штурмовик Varga RMI-1 X/H, специально сконструированный для этого авиаконструктором Л. Варго. Однако довести работы до конца венгерские специалисты так и не сумели – предприятие было перенацелено на выпуск немецких моторов Daimler-Benz DB 605, выбранных для установки на венгерские Messerschmitt Me.210. Перед началом войны в СССР продолжались работы по созданию различных типов реактивных двигателей. Так, в 1939 году прошли испытания ракеты, на которых стояли прямоточные воздушно-реактивные двигатели конструкции И.А. Меркулова. В том же году на ленинградском Кировском заводе начались работы по постройке первого отечественного турбореактивного двигателя конструкции А.М. Люльки. Однако начавшаяся война прекратила опытные работы над двигателем, направив всю мощность производства на нужды фронта. Настоящая эра реактивных двигателей началась после завершения Второй мировой войны, когда за короткий промежуток времени был покорен не только звуковой барьер, но и земное притяжение, что позволило вывести человечество в космическое пространство.