В реактивном двигателе сила тяги, необходимая для движения, создается путем преобразования исходной энергии в кинетическую энергию рабочего тела. В результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде отдачи (струи). Отдача перемещает в пространстве двигатель и конструктивно связанный с ним аппарат. Перемещение происходит в направлении, противоположном истечению струи. В кинетическую энергию реактивной струи могут преобразовываться различные виды энергии: химическая, ядерная, электрическая, солнечная. Реактивный двигатель обеспечивает собственное движение без участия промежуточных механизмов.

Для создания реактивной тяги необходимы источник исходной энергии, которая преобразуется в кинетическую энергию реактивной струи, рабочее тело, выбрасываемое из двигателя в виде реактивной струи, и сам реактивный двигатель, преобразующий первый вид энергии во второй.

Основной частью реактивного двигателя является камера сгорания, в которой создается рабочее тело.

Все реактивные двигатели делятся на два основных класса, в зависимости от того, используется в их работе окружающая среда или нет.

Первый класс – воздушно?реактивные двигатели (ВРД). Все они тепловые, в которых рабочее тело образуется при реакции окисления горючего вещества кислородом окружающего воздуха. Основную массу рабочего тела составляет атмосферный воздух.

В ракетном двигателе все компоненты рабочего тела находятся на борту оснащенного им аппарата.

Существуют также комбинированные двигатели, сочетающие в себе оба вышеназванные типа.

Впервые реактивное движение было использовано в шаре Герона – прототипе паровой турбины. Реактивные двигатели на твердом топливе появились в Китае в X в. н. э. Такие ракеты применялись на Востоке, а затем в Европе для фейерверков, сигнализации, а затем как боевые.

Важным этапом в развитии идеи реактивного движения была идея применения ракеты в качестве двигателя для летательного аппарата. Ее впервые сформулировал русский революционер?народоволец Н. И. Кибальчич, который в марте 1881 г., незадолго до казни, предложил схему летательного аппарата (ракетоплана) с использованием реактивной тяги от взрывных пороховых газов.

H. Е. Жуковский в работах «О реакции вытекающей и втекающей жидкости» (1880?е годы) и «К теории судов, приводимых в движение силой реакции вытекающей воды» (1908 г.) впервые разработал основные вопросы теории реактивного двигателя.

Интересные работы по исследованию полета ракеты принадлежат также известному русскому ученому И. В. Мещерскому, в частности в области общей теории движения тел переменной массы.

В 1903 г. К. Э. Циолковский в своей работе «Исследование мировых пространств реактивными приборами» дал теоретическое обоснование полета ракеты, а также принципиальную схему ракетного двигателя, предвосхищавшую многие принципиальные и конструктивные особенности современных жидкостно?ракетных двигателей (ЖРД). Так, Циолковский предусматривал применение для реактивного двигателя жидкого топлива и подачу его в двигатель специальными насосами. Управление полетом ракеты он предлагал осуществить посредством газовых рулей – специальных пластинок, помещаемых в струе вылетающих из сопла газов.

Особенность жидкостно?реактивного двигателя в том, что в отличие от других реактивных двигателей он несет с собой вместе с топливом весь запас окислителя, а не забирает необходимый для сжигания горючего воздух, содержащий кислород, из атмосферы. Это единственный двигатель, который может быть применен для сверхвысотного полета вне земной атмосферы.

Первую в мире ракету с жидкостным ракетным двигателем создал и запустил 16 марта 1926 г. американец Р. Годдард. Она весила около 5 килограммов, а ее длина достигала 3 м. Топливом в ракете Годдарда служили бензин и жидкий кислород. Полет этой ракеты продолжался 2,5 секунды, за которые она пролетела 56 м.

Систематические экспериментальные работы над этими двигателями начались в 30?х годах XX века.

Первые советские ЖРД были разработаны и созданы в 1930–1931 гг. в ленинградской Газодинамической лаборатории (ГДЛ) под руководством будущего академика В. П. Глушко. Эта серия называлась ОРМ – опытный ракетный мотор. Глушко применил некоторые новинки, например охлаждение двигателя одним из компонентов топлива.

Параллельно разработка ракетных двигателей велась в Москве Группой изучения реактивного движения (ГИРД). Ее идейным вдохновителем был Ф. А. Цандер, а организатором – молодой С. П. Королев. Целью Королева была постройка нового ракетного аппарата – ракетоплана.

В 1933 г. Ф. А. Цандер построил и успешно испытал ракетный двигатель ОР?1, работавший на бензине и сжатом воздухе, а в 1932–1933 гг. – двигатель ОР?2, на бензине и жидком кислороде. Этот двигатель был спроектирован для установки на планере, который должен был совершить полет в качестве ракетоплана.

В 1933 г. в ГИРДе создана и испытана первая советская ракета на жидком топливе.

Развивая начатые работы, советские инженеры в последующем продолжали работать над созданием жидкостных реактивных двигателей. Всего с 1932 по 1941 г. в СССР было разработано 118 конструкций жидкостных реактивных двигателей.

В Германии в 1931 г. состоялись испытания ракет И. Винклера, Риделя и др.

Первый полет на самолете?ракетоплане с жидкостно?реактивным двигателем был совершен в Советском Союзе в феврале 1940 г. В качестве силовой установки самолета был применен ЖРД. В 1941 г. под руководством советского конструктора В. Ф. Болховитинова был построен первый реактивный самолет – истребитель с жидкостно?ракетным двигателем. Его испытания были проведены в мае 1942 г. летчиком Г. Я. Бахчиваджи.

В это же время состоялся первый полет немецкого истребителя с таким двигателем. В 1943 г. в США провели испытания первого американского реактивного самолета, на котором был установлен жидкостно?реактивный двигатель. В Германии в 1944 г. были построены несколько истребителей с этими двигателями конструкции Мессершмитта и в том же году применены в боевой обстановке на Западном фронте.

Кроме того, ЖРД применялись на немецких ракетах Фау?2, созданных под руководством В. фон Брауна.

В 1950?е годы жидкостно?ракетные двигатели устанавливались на баллистических ракетах, а затем на искусственных спутниках Земли, Солнца, Луны и Марса, автоматических межпланетных станциях.

ЖРД состоит из камеры сгорания с соплом, турбонасосного агрегата, газогенератора или парогазогенератора, системы автоматики, органов регулирования, системы зажигания и вспомогательных агрегатов (теплообменники, смесители, приводы).

Идея воздушно?реактивных двигателей не раз выдвигалась в разных странах. Наиболее важными и оригинальными работами в этом отношении являются исследования, проведенные в 1908–1913 гг. французским ученым Р. Лореном, который, в частности, в 1911 г. предложил ряд схем прямоточных воздушно?реактивных двигателей. Эти двигатели используют в качестве окислителя атмосферный воздух, а сжатие воздуха в камере сгорания обеспечивается за счет динамического напора воздуха.

В мае 1939 г. в СССР впервые состоялось испытание ракеты с прямоточным воздушно?реактивным двигателем конструкции П. А. Меркулова. Это была двухступенчатая ракета (первая ступень – пороховая ракета) с взлетным весом 7,07 кг, причем вес топлива для второй ступени прямоточного воздушно?реактивного двигателя составлял лишь 2 кг. При испытании ракета достигла высоты 2 км.

В 1939–1940 гг. впервые в мире в Советском Союзе проводились летние испытания воздушно?реактивных двигателей, установленных в качестве дополнительных двигателей на самолете конструкции Н. П. Поликарпова. В 1942 г. в Германии испытывались прямоточные воздушно?реактивные двигатели конструкции Э. Зенгера.

Воздушно?реактивный двигатель состоит из диффузора, в котором за счет кинетической энергии набегающего потока воздуха происходит сжатие воздуха. В камеру сгорания через форсунку впрыскивается топливо и происходит воспламенение смеси. Реактивная струя выходит через сопло.

Процесс работы ВРД непрерывен, поэтому в них отсутствует стартовая тяга. В связи с этим при скоростях полета меньше половины скорости звука воздушно?реактивные двигатели не применяются. Наиболее эффективно применение ВРД на сверхзвуковых скоростях и больших высотах. Взлет самолета с воздушно?реактивным двигателем происходит при помощи ракетных двигателей на твердом или жидком топливе.

Большее развитие получила другая группа воздушно?реактивных двигателей – турбокомпрессорные двигатели. Они подразделяются на турбореактивные, в которых тяга создается струей газов, вытекающих из реактивного сопла, и турбовинтовые, в которых основная тяга создается воздушным винтом.

В 1909 г. проект турбореактивного двигателя был разработан инженером Н. Герасимовым. В 1914 г. лейтенант русского морского флота М. Н. Никольской сконструировал и построил модель турбовинтового авиационного двигателя. Рабочим телом для приведения в действие трехступенчатой турбины служили газообразные продукты сгорания смеси скипидара и азотной кислоты. Турбина работала не только на воздушный винт: отходящие газообразные продукты сгорания, направленные в хвостовое (реактивное) сопло, создавали реактивную тягу дополнительно к силе тяги винта.

В 1924 г. В. И. Базаров разработал конструкцию авиационного турбокомпрессорного реактивного двигателя, состоявшую из трех элементов: камеры сгорания, газовой турбины, компрессора. Поток сжатого воздуха здесь впервые делился на две ветви: меньшая часть шла в камеру сгорания (к горелке), а большая подмешивалась к рабочим газам для понижения их температуры перед турбиной. Тем самым обеспечивалась сохранность лопаток турбины. Мощность многоступенчатой турбины расходовалась на привод центробежного компрессора самого двигателя и отчасти на вращение воздушного винта. Дополнительно к винту тяга создавалась за счет реакции струи газов, пропускаемых через хвостовое сопло.

В 1939 г. на Кировском заводе в Ленинграде началась постройка турбореактивных двигателей конструкции А. М. Люльки. Его испытаниям помешала война.

В 1941 г. в Англии был впервые осуществлен полет на экспериментальном самолете?истребителе, оснащенном турбореактивным двигателем конструкции Ф. Уиттла. На нем был установлен двигатель с газовой турбиной, которая приводила в действие центробежный компрессор, подающий воздух в камеру сгорания. Продукты сгорания использовались для создания реактивной тяги.

В турбореактивном двигателе воздух, поступающий при полете, сжимается сначала в воздухозаборнике, а затем в турбокомпрессоре. Сжатый воздух подается в камеру сгорания, куда впрыскивается жидкое топливо (чаще всего – авиационный керосин). Частичное расширение газов, образовавшихся при сгорании, происходит в турбине, вращающей компрессор, а окончательное – в реактивном сопле. Между турбиной и реактивным двигателем может быть установлена форсажная камера, предназначенная для дополнительного сгорания топлива.

Сейчас турбореактивными двигателями оснащено большинство военных и гражданских самолетов, а также некоторые вертолеты.

В турбовинтовом двигателе основная тяга создается воздушным винтом, а дополнительная (около 10 %) – струей газов, вытекающих из реактивного сопла. Принцип действия турбовинтового двигателя схож с турбореактивным, с той разницей, что турбина вращает не только компрессор, но и воздушный винт. Эти двигатели применяются в дозвуковых самолетах и вертолетах, а также для движения быстроходных судов и автомобилей.

Наиболее ранние реактивные твердотопливные двигатели использовались в боевых ракетах. Их широкое применение началось в XIX в., когда во многих армиях появились ракетные части. В конце XIX в. были созданы первые бездымные порохи, с более устойчивым горением и большей работоспособностью.

В 1920–1930?е годы велись работы по созданию реактивного оружия. Это привело к появлению реактивных минометов – «катюш» в Советском Союзе, шестиствольных реактивных минометов в Германии.

Получение новых видов пороха позволило применять реактивные твердотопливные двигатели в боевых ракетах, включая баллистические. Кроме этого они применяются в авиации и космонавтике как двигатели первых ступеней ракет?носителей, стартовые двигатели для самолетов с прямоточными воздушно?реактивными двигателями и тормозные двигатели космических аппаратов.

Реактивный твердотопливный двигатель состоит из корпуса (камеры сгорания), в котором находится весь запас топлива и реактивного сопла. Корпус выполняется из стали или стеклопластика. Сопло – из графита, тугоплавких сплавов, графита.

Зажигание топлива производится воспламенительным устройством.

Регулирование тяги производится изменением поверхности горения заряда или площади критического сечения сопла, а также впрыскиванием в камеру сгорания жидкости.

Направление тяги может меняться газовыми рулями, отклоняющейся насадкой (дефлектором), вспомогательными управляющими двигателями и т. п.

Реактивные твердотопливные двигатели очень надежны, могут долго храниться, а следовательно, постоянно готовы к запуску.

Отличное определение

Неполное определение ↓

В науке реактивным движением называют движение тела, возникающее при отделении от него некоторой его части. Что это означает?

Можно привести простые примеры. Представьте себе, что Вы находитесь в лодке посреди озера. Лодка неподвижна. Но вот Вы берете со дна лодки увесистый камень и с силой кидаешь его в воду. Что произойдет тогда? Лодка начнет медленно двигаться. Другой пример. Надуем резиновый шарик, а потом позволим воздуху свободно выходить из него. Сдувающийся шарик полетит в сторону, противоположную той, в которую устремится струя воздуха. Сила действия равна силе противодействия. Вы с силой бросили камень, но та же сила заставила лодку двигаться в противоположную сторону.

На этом законе физики и построен реактивный двигатель. В жаропрочной камере сгорает топливо. Образующийся при сгорании раскаленный расширяющийся газ с силой вырывается из сопла. Но та же сила толкает сам двигатель (вместе с ракетой или самолетом в противоположную сторону). Эта сила называется тягой.

Принцип реактивного движения известен человечеству давно — простые ракеты делали еще древние китайцы. Но вот для того, чтобы в небо поднялись современные самолеты и ракеты, инженерам пришлось решить немало технических задач, и сегодняшние реактивные двигатели являются достаточно сложными устройствами.

Давайте попробуем заглянуть внутрь реактивных двигателей, применяемых в авиации. О двигателях космических ракет поговорим как-нибудь в другой раз.

Итак сегодня реактивные самолеты летают на трех типах двигателей:

Турбореактивный двигатель;

Турбовентиляторный двигатель;

Турбовинтовой двигатель.

Как они устроены и чем отличаются друг от друга? Начнем с самого простого — турбореактивного . Само название этого устройства подсказывает нам ключевое слово«турбина» . Турбина — это вал, вокруг которого закреплены лопатки — металлические «лепестки» развернутые под углом. Если на турбину вдоль вала направить поток воздуха (или воды, например) она начнет вращаться. Если, наоборот, начать вращать вал турбины, ее лопасти станут гнать вдоль вала поток воздуха или воды.

Горение — это соединение топлива с кислородом, газом, которого в обычном воздухе не так уж много. Точнее, его вполне достаточно, для того, чтобы мы с вами им дышали. Но для «дыхания» камеры сгорания реактивного двигателя кислород слишком сильно растворен в воздухе .

Что надо сделать, чтобы затухший костер вновь разгорелся? Правильно! Подуть на него или помахать над ним, например, листом фанеры. Силой нагнетая воздух, вы «подкармливаете» тлеющие угли кислородом и пламя загорается вновь. То же самое делает турбина в турбореактивном двигателе.

Когда самолет движется вперед, струя воздуха попадает в двигатель. Здесь воздух встречается с вращающимися с огромной скоростью турбинами компрессора. Слово «компрессор» можно перевести на русский язык как «сжиматель». Лопатки турбин компрессора сжимают воздух примерно в 30 раз и «проталкивают» его в камеру сгорания. Раскаленный газ, получившийся в ходе сгорания топлива устремляется дальше, к соплу. Но на его пути оказывается еще одна турбина. Попадая на ее лопатки, струя газа заставляет ее вал вращаться. Но к этому же валу прикреплены турбины компрессора. Получается такой своеобразный «тяни-толкай» . Компрессор накачивает воздух в двигатель, смесь сжатого воздуха и топлива сгорает, выделяя раскаленный газ, а газ на пути к соплу вращает турбины компрессора.

Возникает интересный вопрос — как же завести такой двигатель? Ведь пока сжатый воздух не поступит в камеру сгорания, топливо не начнет гореть. Значит не будет раскаленного газа, который станет вращать турбину компрессора. Но пока турбина компрессора не закрутится, не будет сжатого воздуха.

Оказывается, двигатель запускается с помощью электромотора , который соединен с валом турбины. Электромотор заставляет вращаться компрессор, и как только в камере сгорание появится необходимое давление воздуха, туда поступает топливо и срабатывает зажигание. Реактивный двигатель заработал!

Устройство турбореактивного двигателя.

Турбореактивные двигатели отличаются большой мощностью и относительно мало весят. Поэтому их обычно устанавливают на сверхзвуковых военных самолетах, а также на сверхзвуковых пассажирских лайнерах. Но есть у таких моторов и серьезные недостатки — они сильно шумят и сжигают слишком много топлива.

Поэтому, на самолетах, летающих на дозвуковых скоростях (меньше 1200 километров в час) ставятся так называемые .

Устройство турбовентиляторного двигателя.

Отличаются они от турбореактивного двигателя тем, что впереди, до компрессора, на валу закреплена еще одна турбина с большими лопатками — вентилятор. Именно она первой встречает поток встречного воздуха и с силой гонит его назад. Часть этого воздуха, как и в турбореактивном двигателе, поступает в компрессор и дальше, в камеру сгорания, а другая часть «обтекает» камеру и тоже отбрасывается назад, создавая дополнительную тягу. Точнее говоря, для турбовентиляторного двигателя основная реактивная тяга (примерно 3/4) создается как раз этим самым потоком воздуха, который гонит вентилятор. И лишь 1/4 тяги дают вырывающиеся из сопла раскаленные газы.

Такой мотор гораздо меньше шумит и сжигает значительно меньше топлива, что очень важно для самолетов, используемых для перевозки пассажиров.

Устройство турбовинтового двигателя.

вращение вала турбины передаются на пропеллер — воздушный винт, который толкает самолет вперед. Винт с огромными лопастями не может вращаться с такой же бешеной скоростью, как вал турбины. Поэтому пропеллер с валом соединяет редуктор, понижающий скорость вращения. И хотя турбовинтовой двигатель «съедает» мало топлива, а значит делает стоимость перелета дешевле, он не может разогнать самолет до большой скорости. Поэтому в наши дни такие моторы используются в основном в транспортной авиации и на небольших пассажирских самолетах, совершающих местные рейсы.

Для опыта Вам понадобятся:

1. нитка покрепче;

2. широкая соломинка для коктейля;

3. воздушный шарик продолговатой формы;

4. моток скотча;

5. бельевая прищепка.

Натяните нитку (можно под углом), продев ее предварительно сквозь соломинку. Надуй шарик, а чтобы он не сдулся, защипните его бельевой прищепкой как показано на рисунке слева. Теперь примотайте шарик к соломинке скотчем. Реактивный двигатель готов!

На старт! Разожмите прищепку. Из шарика вырвется струя воздуха, а сам он, вместе с соломинкой заскользит вперед по нитке.

©При частичном или полном использовании данной статьи - активная гиперссылка ссылка на сайт ОБЯЗАТЕЛЬНА

Реактивное движение - это такой процесс, при котором от определенного тела с некоторой скоростью отделяется одна из его частей. Сила, которая возникает при этом, работает сама по себе, без малейшего контакта с внешними телами. Реактивное движение стало толчком к созданию реактивного двигателя. Принцип работы его основан именно на этой силе. Как же действует такой двигатель? Попробуем разобраться.

Исторические факты

Идею использования реактивной тяги, которая позволила бы преодолеть силу притяжения Земли, выдвинул в 1903 году феномен российской науки - Циолковский. Он опубликовал целое исследование на данную тему, но оно не было воспринято серьезно. Константин Эдуардович, пережив смену политического строя, потратил годы трудов, чтобы доказать всем свою правоту.

Сегодня очень много слухов о том, что первым в данном вопросе был революционер Кибальчич. Но завещание этого человека к моменту публикации трудов Циолковского было погребено вместе с Кибальчичем. Кроме того, это был не полноценный труд, а лишь эскизы и наброски - революционер не смог подвести надежную базу под теоретические выкладки в своих работах.

Как действует реактивная сила?

Чтобы понять принцип работы реактивного двигателя, нужно понимать, как действует эта сила.

Итак, представим выстрел из любого огнестрельного оружия. Это наглядный пример действия реактивной силы. Струя раскаленного газа, который образовался в процессе сгорания заряда в патроне, отталкивает оружие назад. Чем мощнее заряд, тем сильнее будет отдача.

А теперь представим процесс зажигания горючей смеси: он проходит постепенно и непрерывно. Именно так выглядит принцип работы прямоточного реактивного двигателя. Подобным образом работает ракета с твердотопливным реактивным двигателем - это наиболее простая из его вариаций. С ней знакомы даже начинающие ракетомоделисты.

В качестве горючего для реактивных двигателей вначале применяли дымный порох. Реактивные двигатели, принцип работы которых был уже более совершенен, требовали топлива с основой из нитроцеллюлозы, которая растворялась в нитроглицерине. В больших агрегатах, запускающих ракеты, выводящие шаттлы на орбиту, сегодня используют специальную смесь полимерного горючего с перхлоратом аммония в качестве окислителя.

Принцип действия РД

Теперь стоит разобраться с принципом работы реактивного двигателя. Для этого можно рассмотреть классику - жидкостные двигатели, которые практически не изменились со времен Циолковского. В этих агрегатах применяется топливо и окислитель.

В качестве последнего используется жидкий кислород либо же азотная кислота. В качестве горючего применяют керосин. Современные жидкостные двигатели криогенного типа потребляют жидкий водород. Он при окислении кислородом увеличивает удельный импульс (на целых 30 процентов). Идея о том, что можно использовать водород, также родилась в голове Циолковского. Однако на тот момент по причине чрезвычайной взрывоопасности пришлось искать другое горючее.

Принцип работы состоит в следующем. Компоненты поступают в камеру сгорания из двух отдельных баков. После смешивания они превращаются в массу, которая при сгорании выделяет огромное количество тепла и десятки тысяч атмосфер давления. Окислитель подается в камеру сгорания. Топливная смесь по мере прохождения между сдвоенными стенками камеры и сопла охлаждает эти элементы. Далее горючее, подогретое стенками, попадет через огромное количество форсунок в зону воспламенения. Струя, которая формируется при помощи сопла, вырывается наружу. За счет этого и обеспечивается толкающий момент.

Кратко принцип работы реактивного двигателя можно сравнить с паяльной лампой. Однако последняя устроена значительно проще. В схеме ее работы нет различных вспомогательных систем двигателя. А это компрессоры, нужные для создания давления впрыска, турбины, клапана, а также прочие элементы, без которых реактивный двигатель просто невозможен.

Несмотря на то что жидкостные двигатели потребляют очень много горючего (расход топлива составляет примерно 1000 грамм на 200 килограммов груза), их до сих пор используют в качестве маршевых агрегатов для ракеты-носителей и маневровых для орбитальных станций, а также других аппаратов космического назначения.

Устройство

Устроен типичный реактивный двигатель следующим образом. Основные его узлы - это:

Компрессор;

Камера для сгорания;

Турбины;

Выхлопная система.

Рассмотрим данные элементы более подробно. Компрессор представляет собой несколько турбин. Их задача - всасывать и сжимать воздух по мере того, как он проходит через лопасти. В процессе сжатия повышается температура и давление воздуха. Часть такого сжатого воздуха подается в камеру сгорания. В ней воздух смешивается с топливом и происходит воспламенение. Этот процесс еще больше увеличивает тепловую энергию.

Смесь выходит из камеры сгорания на высокой скорости, а затем расширяется. Далее она следует еще через одну турбину, лопасти которой вращаются за счет воздействия газов. Эта турбина, соединяясь с компрессором, находящимся в передней части агрегата, и приводит его в движение. Воздух, нагретый до высоких температур, выходит через выпускную систему. Температура, уже достаточно высокая, продолжает расти за счет эффекта дросселирования. Затем воздух выходит окончательно.

Мотор самолета

В самолетах также используются эти двигатели. Так, например, в огромных пассажирских лайнерах устанавливают турбореактивные агрегаты. Они отличаются от обычных наличием двух баков. В одном находится горючее, а в другом - окислитель. В то время как турбореактивный мотор несет только топливо, а в качестве окислителя используется воздух, нагнетаемый из атмосферы.

Турбореактивный мотор

Принцип работы реактивного двигателя самолета основан на той же реактивной силе и тех же законах физики. Самая важная часть - это лопасти турбины. От размеров лопасти зависит итоговая мощность.

Именно благодаря турбинам вырабатывается тяга, которая нужная для ускорения самолетов. Каждая из лопастей в десять раз мощнее обыкновенного автомобильного ДВС. Турбины установлены после камеры сгорания там, где наиболее высокое давление. А температура здесь может достигать полутора тысяч градусов.

Двухконтурный РД

Эти агрегаты имеют массу преимуществ перед турбореактивными. Например, значительно меньший расход топлива при той же мощности.

Но сам двигатель имеет более сложную конструкцию и больший вес.

Да и принцип работы двухконтурного реактивного двигателя немного другой. Воздух, захватываемый турбиной, частично сжимается и подается в первый контур на компрессор и на второй - к неподвижным лопастям. Турбина при этом работает в качестве компрессора низкого давления. В первом контуре двигателя воздух сжимается и подогревается, а затем посредством компрессора высокого давления подается в камеру сгорания. Здесь происходит смесь с топливом и воспламенение. Образуются газы, которые подаются на турбину высокого давления, за счет чего и вращаются лопасти турбины, подающие, в свою очередь, вращательное движение на компрессор высокого давления. Затем газы проходят через турбину низкого давления. Последняя приводит в действие вентилятор и, наконец, газы попадают наружу, создавая тягу.

Синхронные РД

Это электрические моторы. Принцип работы синхронного реактивного двигателя аналогичен работе шагового агрегата. Переменный ток подается на статор и создает магнитное поле вокруг ротора. Последний вращается за счет того, что пытается минимизировать магнитное сопротивление. Эти моторы не имеют отношения к освоению космоса и запуску шаттлов.

Толкающая двигатель в противоположном направлении. Для разгона рабочего тела может использоваться как расширение газа , нагретого тем или иным способом до высокой температуры (т. н. тепловые реактивные двигатели ), так и другие физические принципы, например, ускорение заряженных частиц в электростатическом поле (см. ионный двигатель).

Реактивный двигатель сочетает в себе собственно двигатель с движителем , то есть он создаёт тяговое усилие только за счёт взаимодействия с рабочим телом, без опоры или контакта с другими телами. По этой причине чаще всего он используется для приведения в движение самолётов , ракет и космических аппаратов .

Классы реактивных двигателей

Существует два основных класса реактивных двигателей:

  • Воздушно-реактивные двигатели - тепловые двигатели , которые используют энергию окисления горючего кислородом воздуха , забираемого из атмосферы . Рабочее тело этих двигателей представляет собой смесь продуктов горения с остальными компонентами забранного воздуха.
  • Ракетные двигатели - содержат все компоненты рабочего тела на борту и способны работать в любой среде, в том числе и в безвоздушном пространстве.

Составные части реактивного двигателя

Любой реактивный двигатель должен иметь, по крайней мере, две составные части:

  • Камера сгорания («химический реактор») - в нем происходит освобождение химической энергии топлива и её преобразование в тепловую энергию газов .
  • Реактивное сопло («газовый туннель») - в котором тепловая энергия газов переходит в их кинетическую энергию , когда из сопла газы вытекают наружу с большой скоростью, тем создавая реактивную тягу .

Основные технические параметры реактивного двигателя

Основным техническим параметром, характеризующим реактивный двигатель, является тяга (иначе - сила тяги) - усилие, которое развивает двигатель в направлении движения аппарата.

Ракетные двигатели помимо тяги характеризуются удельным импульсом , являющимся показателем степени совершенства или качества двигателя. Этот показатель является также мерой экономичности двигателя. В приведённой ниже диаграмме в графической форме представлены верхние значения этого показателя для разных типов реактивных двигателей, в зависимости от скорости полёта, выраженной в форме числа Маха , что позволяет видеть область применимости каждого типа двигателей.

История

Реактивный двигатель был изобретен Гансом фон Охайном (Dr. Hans von Ohain), выдающимся немецким инженером-конструктором и Фрэнком Уиттлом (Sir Frank Whittle). Первый патент на работающий газотурбинный двигатель был получен в 1930 году Фрэнком Уиттлом. Однако первую рабочую модель собрал именно Охайн.

2 августа 1939 года в Германии в небо поднялся первый реактивный самолет - Хейнкель He 178 , оснащённый двигателем HeS 3 , разработанный Охайном.

См. также


Wikimedia Foundation . 2010 .

  • Воздушно-реактивный двигатель
  • Газотурбинный двигатель

Смотреть что такое "Реактивный двигатель" в других словарях:

    РЕАКТИВНЫЙ ДВИГАТЕЛЬ - РЕАКТИВНЫЙ ДВИГАТЕЛЬ, двигатель, который обеспечивает продвижение вперед, быстро выпуская струю жидкости или газа в направлении, противоположном направлению движения. Чтобы создать высокоскоростной поток газов, в реактивном двигателе горючее… … Научно-технический энциклопедический словарь

    Реактивный двигатель - двигатель, создающий необходимую для движения силу тяги путём преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела (См. Рабочее тело); в результате истечения рабочего тела из сопла двигателя образуется… … Большая советская энциклопедия

    РЕАКТИВНЫЙ ДВИГАТЕЛЬ - (двигатель прямой реакции) двигатель, тяга которого создается реакцией (отдачей) вытекающего из него рабочего тела. Подразделяются на воздушно реактивные и ракетные двигатели … Большой Энциклопедический словарь

    Реактивный двигатель - двигатель, преобразующий какой либо вид первичной энергии в кинетическую энергию рабочего тела (реактивной струи), которая создает реактивную тягу. В реактивном двигателе сочетаются собственно двигатель и движитель. Основной частью любого… … Морской словарь

    РЕАКТИВНЫЙ ДВИГАТЕЛЬ - РЕАКТИВНЫЙ двигатель, двигатель, тяга которого создается прямой реакцией (отдачей) истекающего из него рабочего тела (например, продуктов сгорания химического топлива). Подразделяются на ракетные двигатели (если запасы рабочего тела размещаются… … Современная энциклопедия

    Реактивный двигатель - РЕАКТИВНЫЙ ДВИГАТЕЛЬ, двигатель, тяга которого создается прямой реакцией (отдачей) истекающего из него рабочего тела (например, продуктов сгорания химического топлива). Подразделяются на ракетные двигатели (если запасы рабочего тела размещаются… … Иллюстрированный энциклопедический словарь

    РЕАКТИВНЫЙ ДВИГАТЕЛЬ - двигатель прямой реакции, реактивная (см.) которого создаётся отдачей вытекающей из него струи рабочего тела. Различают воздушно реактивные и ракетные (см.) … Большая политехническая энциклопедия

    реактивный двигатель - — Тематики нефтегазовая промышленность EN jet engine … Справочник технического переводчика

    реактивный двигатель - двигатель, тяга которого создаётся реакцией (отдачей) вытекающей из него струи рабочего тела. Под рабочим телом применительно к двигателям понимают вещество (газ, жидкость, твёрдое тело), с помощью которого тепловая энергия, выделяющаяся при… … Энциклопедия техники

    реактивный двигатель - (двигатель прямой реакции), двигатель, тяга которого создаётся реакцией (отдачей) вытекающего из него рабочего тела. Подразделяются на воздушно реактивные и ракетные двигатели. * * * РЕАКТИВНЫЙ ДВИГАТЕЛЬ РЕАКТИВНЫЙ ДВИГАТЕЛЬ (двигатель прямой… … Энциклопедический словарь

Книги

  • Авиамодельный пульсирующий воздушно-реактивный двигатель , В. А. Бородин. В книге освещаются конструкция, эксплуатация и элементарная теория пульсирующего ВРД. Книга иллюстрирована схемами реактивных летающих моделей самолетов. Воспроизведено в оригинальной…

сайт и «Ростех» вспоминают людей, которые заставили ракеты летать.

Истоки

«Ракета сама собой не полетит» — эту фразу приписывают многим известным ученым. И Сергею Королеву, и Вернеру фон Брауну, и Константину Циолковскому. Считается, что идею полета ракеты сформулировал чуть ли ни сам Архимед, но даже он не представлял себе как заставить ее полететь.

Константин Циолковский

К настоящему времени существует много разновидностей ракетных двигателей. Химические, ядерные, электрические, даже плазменные. Впрочем, ракеты появились задолго до того, как человек изобрел первый двигатель. Слова «ядерный синтез» или «химическая реакция» едва ли говорили что-то жителям Древнего Китая. А ведь ракеты появились именно там. Точную дату назвать сложно, но, предположительно, произошло это в годы правления династии Хань (III-II вв. до н. э.). К тем временам относятся и первые упоминания о порохе. Ракета, которая поднималась вверх благодаря силе, возникшей при взрыве пороха, использовалась в те времена исключительно в мирных целях — для фейерверков. Ракеты эти, что характерно, имели собственный запас горючего, в данном случае, пороха.

Конрад Хаас считается создателем первой боевой ракеты


Следующий шаг был сделан только в 1556 году немецким изобретателем Конрадом Хаасом, который был специалистом по огнестрельному оружию в армии Фердинанда I — Императора Священной Римской Империи. Хаас считается создателем первой боевой ракеты. Хотя, строго говоря, изобретатель не создал ее, а лишь заложил теоретические основы. Именно Хаасу принадлежала идея многоступенчатой ракеты.



Многоступенчатая ракета в представлении Конрада Хааса

Ученый подробным образом описал механизм создания летательного аппарата из двух ракет, которые разделялись бы в полете. «Такой аппарат, — уверял он, — мог бы развивать огромную скорость». Идеи Хааса вскоре развил польский генерал Казимир Семенович.




Титульный лист книги, в которой Казимир Семенович описал ракеты

В 1650 году он предложил проект создания трехступенчатой ракеты. В жизнь, впрочем, эта идея воплощена так и не была. То есть, конечно, была, но только в ХХ веке, через несколько столетий после смерти Семеновича.

Ракеты в армии

Военные, разумеется, никогда не упустят возможность принять на вооружение новый вид разрушительного оружия. В XIX веке у них появилась возможность применить в бою ракету. В 1805 году британский офицер Уильям Конгрив продемонстрировал в Королевском Арсенале созданные им пороховые ракеты небывалой по тем временам мощности. Существует предположение, что большинство идей Конгрив «украл» у ирландского националиста Роберта Эммета, применившего некое подобие ракеты во время восстания 1803 года. Спорить на эту тему можно вечно, но тем не менее ракета, которую взяли на вооружение британские войска, называется ракетой Конгрива, а не ракетой Эммета.


Военные начали использовать ракеты на заре XIX века


Запуск Ракеты Конгрива, 1890

Оружие многократно применялось во время Наполеоновских войн. В России пионером ракетостроения считается генерал-лейтенант Александр Засядко.


Александр Засядко

Он не только усовершенствовал ракету Конгрива, но и задумался над тем, что энергию этого разрушительного оружия можно было бы использовать и в мирных целях. Засядко, например, первым высказал идею, что с помощью ракеты можно было бы совершить полет в космос. Инженер даже точно подсчитал, сколько пороха понадобиться, чтобы ракета достигла Луны.


Засядко первым предложил использовать ракеты для полета в космос

На ракете — в космос

Идеи Засядко легли в основу многих работ Константина Циолковского. Этот знаменитый ученый и изобретатель теоретически обосновал возможность полета в космос при помощи ракетных технологий. Правда, в качестве топлива он предлагал использовать не порох, а смесь жидкого кислорода с жидким водородом. Аналогичные идеи высказывал младший современник Циолковского Герман Оберт.




Герман Оберт

Он также разрабатывал идею межпланетных перелетов. Оберт прекрасно понимал сложность задачи, но его работы вовсе не носили фантастический характер. Ученый, в частности, предложил идею ракетного двигателя. Он даже проводил экспериментальные испытания подобных устройств. В 1928 году Оберт познакомился с молодым студентом Вернером фон Брауном. Этому юному физику из Берлина в скором времени предстояло совершить прорыв в ракетостроении и воплотить в жизнь многие идеи Оберта. Но об этом позже, ибо за два года до встречи двух этих ученых была запущена первая в истории ракета на жидком топливе.

Эра ракетостроения

Произошло это знаменательное событие 16 марта 1926 года. А главным героем стал американский физик и инженер Роберт Годдард. Еще в 1914 году он запатентовал многоступенчатую ракету. Вскоре ему удалось воплотить в жизнь идею, предложенную Хаасом почти за четыреста лет до этого. В качестве топлива Годдард предлагал использовать бензин и оксид азота. После серии неудачных запусков, он добился успеха. 16 марта 1926 года на ферме своей тетушки Годдард запустил в небо ракету размером с человеческую руку. За две с небольшим секунды она взлетела в воздух на 12 метров. Любопытно, что позднее на основе трудов Годдарда будет создана Базука.




Роберт Годдард и его ракета

Открытия Годдарда, Оберта и Циолковского имели большой резонанс. В США, Германии и Советском Союзе стали стихийно возникать общества любителей ракетостроения. В СССР уже в 1933 году был создан Реактивный институт. В том же году появился и принципиально новый тип оружия — реактивные снаряды. Установка для их запуска вошла в историю под именем «Катюша».




Залп «Катюш»

В Германии развитием идей Оберта занимался уже знакомый нам Вернер фон Браун. Он создавал ракеты для германской армии и не оставил этого занятия после прихода к власти нацистов. Более того, Браун получил от них баснословное финансирование и неограниченные возможности для работы.


Вернер фон Браун с моделью «Фау-2» в руках

При создании новых ракет использовался рабский труд. Известно, что Браун пытался протестовать против этого, но получил в ответ угрозу, что сам может оказаться на месте подневольных работников. Так была создана баллистическая ракета, появление которой предсказал еще Циолковский. Первые испытания прошли в 1942 году. В 1944-м баллистическая ракета дальнего действия «Фау-2» была принята на вооружение Вермахтом. С ее помощью обстреливали, в основном, территорию Великобритании (до Лондона с территории Германии ракета долетала за 6 минут). «Фау-2» несла страшные разрушения и вселяла страх в сердца людей. Ее жертвами стали как минимум 2700 мирных жителей Туманного Альбиона. В британской прессе «Фау-2» именовали «крылатым ужасом».

Нацисты использовали рабский труд для создания ракет

После войны

Американские и советские военные с 1944 года вели «охоту» за Брауном. Обе страны были заинтересованы в его идеях и разработках. Ключевую роль в решении этого вопроса сыграл сам ученый. Еще весной 1945 он собрал свою команду на совет, на котором решался вопрос о том, кому по окончании войны лучше сдаться в плен. Ученые пришли к выводу, что сдаваться лучше американцам. Сам Браун оказался в плену почти случайно. Его брат Магнус, увидев американского военного, подбежал к нему и сказал: «Меня зовут Магнус фон Браун, мой брат изобрел «Фау-2», мы хотим сдаться».

Р-7 Королёва — первая ракета, использованная для полета в космос

В США Вернер фон Браун продолжил работу над ракетами. Теперь однако он трудился в основном для мирных целей. Именно он дал колоссальный толчок к развитию американской космической отросли, сконструировав для США первые ракеты-носители (разумеется, создавал Браун и боевые баллистические ракеты). Его команда в феврале 1958 запустила в космос первый американский искусственный спутник Земли. Советский Союз опередил США с запуском спутника почти на полгода. 4 октября 1957 года на орбиту Земли был выведен первый искусственный спутник. При его запуске была использована советская ракета Р-7, созданная Сергеем Королевым.




Сергей Королев

Р-7 стала первой в мире межконтинентальной баллистической ракетой, а также первой ракетой, использованной для космического полета.

Ракетные двигатели в России

В 1912 году в Москве был открыт завод по производству авиационных двигателей. Предприятие входило во французское общество «Гном». Здесь создавались, в том числе, и моторы для самолетов Российской Империи в годы Первой мировой. Завод успешно пережил Революцию, получил новое название «Икар» и продолжил работу уже при советской власти.


Завод по производству авиационных двигателей появился в России в 1912-м


Авиационные двигатели создавались тут и в 1930-е, и в 1940-е, военные, годы. Моторы, которые производились на «Икаре», ставились на передовые советские самолеты. А уже в 1950-е предприятие стало выпускать турборакетные двигатели, в том числе и для космической отрасли. Сейчас завод принадлежит ОАО «Кузнецов», которое получило свое название в честь выдающегося советского авиаконструктора Николая Дмитриевича Кузнецова. Предприятие входит в структуру госкорпорации «Ростех».


Современное состояние

«Ростех» продолжает выпуск ракетных двигателей, в том числе и для ракетной отрасли. В последние годы объемы производства растут. В прошлом году появилась информация о том, что заказов на производство двигателей «Кузнецов» получил аж на 20 лет вперед. Двигатели создаются не только для космической отрасли, но также для авиации, энергетики и грузовых железнодорожных перевозок.


В 2012-м «Ростех» испытал лунный двигатель


В 2012-м «Ростехом» были проведены испытания лунного двигателя. Специалистам удалось возродить технологии, которые создавались для советской лунной программы. Сама программа, как мы знаем, в итоге была свернута. Но забытые, вроде бы, наработки теперь обрели новую жизнь. Ожидается, что лунный двигатель получит широкое применение в российской космической программе.