Объемный вес масла для трансформаторов не является фиксированной паспортной величиной. Понятно, что данное масло, как и любая другая жидкость, при ее помещении в различные сосуды будет иметь разный объем. Поэтому поговорим о характеристике паспортной, такой как объемный вес трансформаторного масла.

Определение объемного веса

Начнем с определения. Объемный вес масла – это отношение его веса при температуре +20 ºС к весу воды, занимающей тот же объем, но уже при температуре +4 ºС.

Показатели нормы объемного веса масла для трансформаторов

Данный показатель не является нормированным. При температуре +20 ºС для трансформаторного масла он равен 0,856-0,886. Если производить нагревание, то значение объемного веса будет уменьшаться, а при охлаждении – наоборот увеличиваться.

Коэффициент изменения

Чтобы осуществить определение объемного веса масла при температуре, которая отличается от +20 ºС, нужно при ее повышении отнять, а при понижении добавить коэффициент изменения объемного веса на каждый градус. Обычно для электроизоляционных масел численное значение этого показателя составляет 0,0007 на 1 ºС.

ГОСТ

Можно для определения объемного веса также использовать специальную методику, изложенную в ГОСТ-3900-47. Там же приводится таблица, в которой размещены поправки на температуру, не равную +20 ºС.

Приборы для определения объемного веса трансформаторного масла

На практике наиболее простым способом определения объемного веса является использование прибора ареометра (нефтеденсиметра). Порцию испытуемого масла набирают в стеклянный цилиндр, а потом туда помещают и ареометр. Отсчет ведется по верхнему краю мениска.

Влияние температур

Если температуру масла изменить на +100 ºС, например, от -35 ºС до +65 ºС, то его объем изменится приблизительно на 7%. Учитывая тот факт, что при эксплуатации температура может меняться в более широких пределах, объем расширителя нужно подбирать на уровне 9-10% объема масла.

Вязкость трансформаторного масла является важным физиче­ским параметром, определяет процесс теплоотдачи обмоток и магнитопроводов в трансформаторах и дугогасящую способность выклю­чателей Для хорошей циркуляции масла в трансформаторах, улучшающей охлаждение обмоток и магнитопроводов, необходимы масла с малой вязкостью. В свою очередь у масла, как и других жидких диэлектри­ков, вязкость сильно возрастает при понижении температуры. При температу­ре 20°С вязкость трансформаторного масла должна быть не более 4,2°Э и не выше 2°Э при температуре 50°С.

Для измерения условной вязкости – ВУ масла применяется вискозиметр Энглера, схема которого показана на рис. 3. Латунный сосуд – 2 помещен внутрь металлического сосуда 1 так, чтобы между ними имелось пространство, заполненное водой. Оба сосуда в центре имеют отверстия, сквозь которые пропущена калиброванная трубка – 3

Схема вискозиметра Энглера.

с диа­метром внутреннего отверстия 2-3 мм. Это отверстие закрывается пробкой - 4. Латунный сосуд за­полняется испытуемой жидкостью по указательные штифты – 5. Одно­временное касание маслом всех трех остриев служит признаком правильной установки на столе, неточность установки выправляют установочными винтами на ножках прибора. Наружный сосуд 1 служит водяной баней, отку­да нагретая на электрической плитке вода равномерно передает тепло маслу. Воду перемешивают мешалкой. Благодаря значитель­ной теплоемкости воды не происходит резких колебаний температу­ры масла во время испытаний.

Перед испытаниями трансформаторного масла вискозиметр Энглера должен быть тщательно промыт и просушен. Вставив пробку - 4 в калиброванную трубку - 3 и установив под сливным отверстием мерную колбу с отметкой на узком горлышке объема в 200мл, заливают масло в латунный сосуд. Закрыв крышку, нагревают воду, перемешивая ее мешалкой - 5. Когда установится требуемая температура масла, что отмечается термометром – Т 2, сливают в колбу масло до отметки-200 мл. При этом пену во внимание не принимают. Время вытекания этого объема масла засекают секундомером.

Вязкостью масла в градусах Энглера называется отношение времени истечения 200 миллилитров масла, нагретого до температуры 50 0 С, к времени истечения такого же объема дистиллированной воды при температуре 20 0 С.

Время истечения 200 мл. воды при температуре 20 0 С называют водным числом прибора.

Наряду с условной вязкостью различают динамическую и кине­матическую. Динамическая вязкость -η вычисляется по формуле:

, Па. с,

где f – сила в (Н), действующая на твердый шарик.

Эта сила равна весу твердого шарика за вычетом (на основании закона Архимеда) веса жидкости объема шарика; r, - радиус шарика, мм; V - скорость движения шарика, м/с;

,

где k - поправочный коэффициент, учитывающий влияние стенок сосуда; r, - радиус сосуда, м; l. - высота сосуда, м; ν - кинематическая вязкость,м/с вычисляется по формуле:

,

где ρ - плотность испытуемой жидкости, кг/м 3 . Кинематическую вязкость часто измеряют в стоксах (Ст) = 10 -4 м 2 /с.

Для измерения вязкости кроме вискозиметра Энглера ис­пользуют шариковые вискозиметры, ротационные, пластовискозиметры, электроротационные и капиллярные.

Шариковые вискозиметры основаны на измерении скорости по­гружении стального шарика в испытуемой жидкости.

Ротационные вискозиметры конструктивно состоят из двух ци­линдров: наружного неподвижного и внутреннего, вращающегося во­круг вертикальной оси под действием определенной силы. Про­странство между ними заполнено испытуемой жидкостью. По затрате мощности на вращение внутреннего цилиндра или по степени замед­ления вращения его определяют вязкость жидкости. При определен­ном конструктивном исполнении ротационного вискозиметра можно совместить определение вязкости и удельного электрического со­противления испытуемой жидкости по току утечки между цилиндра­ми.

Пластовискозиметры способны, наряду с вязкостью, опреде­лять предел прочности.

Электроротационные вискозиметры позволяют непосредственно отсчитывать величину вязкости по шкале измерительного прибора.

Капилярные вискозиметры служат для измерения кинемати­ческой вязкости.

От кинематической вязкости (м 2 /с) к условной вязкости (°Э) можно перейти, используя таблицу 2.

Таблица 2

Кинематическая вязкость Град Э Кинематическая вязкость Град Э Кинематическая вязкость Град Э
м 2 /с сСт ВУ м 2 /с сСт ВУ м 2 /с сСт ВУ
0.000001 1.00 1.00 0.000024 24.0 3.43 0.000054 54.0 7.33
0.000002 2.00 1.10 0.000025 25.0 3.56 0.000055 55.0 7.47
0.000003 3.00 1.20 0.000026 26.0 3.68 0.000056 56.0 7.60
0.000004 4.00 1.29 0.000027 27.0 3.81 0.000057 57.0 7.73
0.0000045 4.5 1.34 0.000028 28.0 3.95 0.000058 58.0 7.86
0.000005 5.0 1.39 0.000029 29.0 4.07 0.000059 59.0 8.00
0.0000055 5.5 1.43 0.000030 30.0 4.20 0.000060 60.0 8.13
0.000006 6.0 1.48 0.000031 31.0 4.33 0.000061 61.0 8.26
0.0000065 6.5 1.53 0.000032 32.0 4.46 0.000062 62.0 8.40
0.000007 7.0 1.57 0.000033 33.0 4.59 0.000063 63.0 8.53
0.0000075 7.5 1.62 0.000034 34.0 4.72 0.000064 64.0 8.66
0.000008 8.0 1.67 0.000035 35.0 4.85 0.000065 65.0 8.80
0.0000085 8.5 1.62 0.000036 36.0 4.98 0.000066 66.0 8.93
0.000009 9.0 1.76 0.000037 37.0 5.11 0.000067 67.0 9.06
0.0000095 9.5 1.81 0.000038 38.0 5.24 0.000068 68.0 9.20
0.000010 10.0 1.86 0.000039 39.0 5.37 0.000069 69.0 9.34
0.000015 15.0 2.37 0.000045 45.0 6.16 0.000075 75.0 10.15
0.000020 20.0 2.95 0.000050 50.0 6.81 . 0.000080 80.0 10.8


При > 8 . 10 –5 м 2 /с (80 сСт) переход от одной системы к другой производится по формуле.

Масляные выключатели и реакторную аппаратуру. В реакторном оборудовании они служат средой для гашения дуги.

Требования

Электроизоляционные качества, которыми обладают трансформаторные масла, зависят от диэлектрических потерь. Диэлектрическую прочность масел для трансформаторов способны сильно уменьшить вода и разнообразные волокна. Следовательно, этих веществ в его составе быть не должно. Важным параметром является температура застывания. Чтобы сохранить подвижность на холоде, этот показатель у рабочей жидкости должен составлять - 45 °С и ниже. Чтобы тепло отводилось с максимальной эффективностью, жидкость должна иметь минимальную вязкость при температуре вспышки, которая для различных марок не должна быть меньше 150-95 °С.

Самый важный параметр, которым обладают трансформаторные масла, это устойчивость к окислению, или свойство поддерживать постоянство характеристик при работе в течение длительного времени. Большая часть используемых сортов трансформаторных масел стабилизированы такими присадками против окисления, как ионол или агидол-1. Их действие основано на возможности вступать в реакцию с активными пероксидными радикалами, образующимися во время прохождения цепной реакции оксидирования углеводородов. Стабилизированные ионолом жидкости для трансформатора чаще всего окисляются с явно выраженным периодом индукции.

В начальной стадии масла, сохраняющие восприимчивость к присадкам, окисляются очень медленно, поскольку все появляющиеся в масле очаги окисления подавляются ингибитором. Когда присадка истощается, скорость окисления приближается к той, с какой окисляется исходное масло. Присадка тем действеннее, чем более длителен индукционный цикл окисления. Эффект от действия присадки определяется углеводородным составом трансформаторного масла и примесями прочих соединений неуглеводородного происхождения, усиливающих окисление масла (это азотистые основания, нафтеновые кислоты, кислородсодержащие продукты оксидирования).

Трансформаторные масла призваны изолировать части и узлы силовых трансформаторов, которые находятся под воздействием напряжения, отвести тепло от деталей, подвергающихся нагреву в процессе их работы, и защитить изоляцию от воздействия влаги.

Параметры

Масло трансформаторное, характеристики которого полностью определяются его содержанием, в свою очередь, в значительной мере зависит от химического состава исходного сырья и используемых методов очистки. В применяемых марках трансформаторных масел имеются отличия по химическому составу и эксплуатационным характеристикам, и предназначены они для различных целей. Для новых масляных трансформаторов требуются лишь совершенно свежие масла, которые до того не находились в эксплуатации. У каждой партии жидкости, которая используется для заливки, должен иметься сертификат фирмы-производителя. До того как залить трансформаторное масло, поступающее с нефтеперерабатывающего завода, в силовой трансформатор, необходимо провести его очистку от влаги, газов и механических примесей.

Влага может содержаться в трансформаторном масле в различной форме. Это может быть осадок, эмульсия и раствор. Трансформаторное масло перед заливкой подвергается полной очистке от влаги, содержащейся в масле в состоянии эмульсии и в форме отстоя. В качестве раствора влага не влияет в значительной степени на тангенс угла потерь и электрическую прочность, правда, содействует увеличению окисляемости жидкости для трансформаторов и ухудшению стабильности ее состава. В связи с этим получение значений напряжения пробива и тангенса угла потерь, удовлетворяющих нормам, не может служить критерием полной очистки.

Важным параметром является плотность трансформаторного масла. Ее необходимо знать, чтобы рассчитать массу продукта, поступившего на пред-приятие. Плотность трансформаторного масла позволяет узнать его углеводородный состав.

При значении давления, равном атмосферному, в растворенном состоянии в масле трансформатора может быть до 10 % воздуха. Если силовые трансформаторы оснащены пленочной и азотной защитой, то перед заливкой специальное масло должно подвергнуться дегазации, чтобы достичь остаточного содержания газа, не превышающего 0,1 % массы.

После того как очистка произведена, механических примесей в масле быть не должно.

Измерение параметров масла

Проверку параметров масел проводят, анализируя их электроизоляционные и физико-химические характеристики:

  • электрическую прочность;
  • тангенс угла потерь;
  • замер влагосодержания;
  • замер содержания газа в масле посредством абсорбциометра состоит в определении степени изменения остаточного давления в некоторой емкости после того, как в нее залиты пробы испытуемой жидкости;
  • измерение количественного состава механических примесей путем пропускания образца, растворенного в бензине, сквозь бумажный фильтр без содержания золы.

Способ определения влагосодержания масла базируется на том, что происходит выделение водорода в ходе реакции влаги, находящейся в масле, с гидридом кислорода.

Испытания трансформаторного масла

Перед тем как вводить в эксплуатацию трансформаторы, производится испытание трансформаторного масла.

Для трансформаторного оборудования, всех номинальных напряжений испытания масла из бака РПН производятся в полном соответствии с руководством предприятия-производителя. Масло для оборудования, имеющего мощность до 630 кВА, которое устанавливается в электрических сетях, разрешается не подвергать испытаниям.

Трансформаторное масло проверяется заказчиками в сертифицированной лаборатории, которая аттестована на право его испытывать.

Центрифугирование

Такой метод обработки трансформаторного масла состоит в удалении влаги и взвешенных частиц под воздействием центробежных сил. Таким образом удаляется только влага, которая находится в форме эмульсии, и частицы в твердом состоянии. Удельная масса частиц при центрифугировании должна быть больше, чем у трансформаторного масла, подвергаемого обработке. Этим способом очищают преимущественно жидкость для силовых трансформаторов, имеющих напряжение до 35 кВ, или производят ее предварительную обработку.

Фильтрование

Метод состоит в пропускании масла через перегородки пористого типа, задерживающие все содержащиеся в нем примеси.

Адсорбционная обработка

Метод очистки трансформаторного масла посредством адсорбции базируется на поглощении воды и других примесей разнообразными адсорбентами. В их качестве используются синтетические цеолиты, имеющие высокую поглощающую способность, особенно по отношению к частицам воды. Очистка трансформаторного масла цеолитами дает возможность удалить из его состава влагу, находящуюся в состоянии раствора.

Вакуумная обработка

Базовым элементом метода очистки стал дегазатор. Сырое масло сначала подогревается до температуры 50-60 °C. После этого происходит распыление масла в дегазаторе на первой его ступени. Далее оно тончайшей струйкой стекает вдоль поверхности колец Рашига. При этом первая ступень подвергается вакуумированию посредством вакуум-насоса. Выделяемые водяные и газовые пары откачиваются через воздушный фильтр и цеолитовый патрон. Из емкости дегазатора первой ступени масло самотеком проходит во вторую ступень, где оно окончательно осушается и дегазуется. На завершающем этапе трансформаторное масло проходит сквозь фильтр тонкой очистки, подаваясь в трансформатор.

Отработанное масло

Отработанное трансформаторное масло регенерируется на серийных маслорегенерационных установках с использованием силикогеля.

Трансформаторное масло ГК

Указанную маркировку техническая жидкость получила на основании способа ее производства. Масло трансформаторное ГК получают по технологии гидрокрекинга. Сырьем для его изготовления служат парафинистые сернистые нефти. Этот вид масла имеет высокие изоляционные свойства и рекомендуется к использованию в разнообразном высоковольтном оборудовании. Масло трансформаторное ГК содержит присадку ионол и обладает лучшими антиокислительными свойствами.

Характеристики трансформаторного масла.

В связи с тем, что характеристики трансформаторного масла в процессе эксплуатации ухудшаются, его качество приходится периодически проверять. Такие проверки осуществляют обычно один раз в три года, делая сокращенный анализ масла.

Основными характеристиками трансформаторного масла являются:

  • Кислотное число , определяет количество едкого калия (в миллиграммах), которое требуется для нейтрализации всех свободных кислот. Кислотное число характеризует степень старения (окисления) трансформаторного масла.
  • Реакция водной вытяжки , характеризует наличие в масле нерастворимых кислот и щелочей. В годном для эксплуатации трансформаторе реакция водной вытяжки должна быть нейтральна. Кислоты оказывают разрушительное действие на материалы, из которых изготовлен трансформатор (вызывают коррозию металла трансформатора, разрушают изоляцию его обмоток).
  • Температура вспышки масла не должна быть ниже установленных значений во избежание воспламенения масла при повышении температуры, вызванном перегрузкой трансформатора. Для обычных трансформаторных масел значение температуры вспышки лежит в диапазоне 130-150 °С.
  • Содержание механических примесей . Примеси появляются в результате растворения красок, лаков и изоляции; в виде угля который образуется при электрической дуге. Механические примеси в масле могут содержаться в виде осадка или в взвешенном состоянии и вызывают перекрытие между изолированными друг от друга элементами, понижают электрическую прочность масла.
  • Электрическая прочность определяется пробивным напряжением трансформаторного масла. Пробивное напряжение свежего сухого масла должно быть не ниже 30 кВ. Снижение значения пробивного напряжения говорит о наличии примесей в масле (волокна, воздух, вода и т.д.)
  • Тангенс угла диэлектрических потерь характеризует изоляционные свойства трансформаторного масла (показывает насколько масло хороший диэлектрик). Загрязнение и старение трансформаторного масла в процессе его эксплуатации ведет к повышению диэлектрических потерь в масле.
  • Влагосодержание в трансформаторном масле характеризует интенсивность старения изоляции под воздействием значительных температур (т.е. говорит о систематических перегрузках трансформатора), а также свидетельствует о нарушении герметичности трансформатора.
  • Вязкость характеризует подвижность масла и должна быть небольшой, для того чтобы масло хорошо циркулировало и отводило тепло.
  • Температура застывания масла . При низкой температуре окружающей среды повышается вязкость масла и ухудшается его циркуляция, что приводит к перегреву и ускорению старения изоляции, а также может привести к повреждению подвижных элементов конструкции трансформатора (РПН, масляный насос). По нормам температура застывания масла трансформаторов должна быть не выше – 45° С.
  • Цвет . Свежее масло имеет обычно светло-желтый цвет. В процессе эксплуатации масло темнеет и приобретает темно-коричневую окраску. Изменение цвета масла происходит под влиянием его нагрева и загрязнения смолами и осадками.
  • Кроме перечисленных существуют и другие характеристики трансформаторных масел: плотность, газосодержание, стабильность, температура самовоспламенения и т.д.

Трансформаторное масло представляет собой очищенную фракцию нефти, то есть является минеральным маслом. Его получают посредством перегонки нефти, где данная фракция кипит при 300 - 400°С. В зависимости от сорта исходного сырья свойства трансформаторных масел получаются различными. Масло отличается сложным углеводородным составом, где средний вес молекул варьируется от 220 до 340 а.е.м. В таблице приведены основные компоненты и их процент в составе трансформаторного масла.

Свойства трансформаторного масла, как электрического изолятора, определяются главным образом значением . Поэтому наличие воды и волокон в масле полностью исключается, поскольку любые механические примеси ухудшают данный показатель.

Температура застывания трансформаторного масла - от -45°С и ниже, это важно для обеспечения его подвижности в низкотемпературных условиях эксплуатации. Эффективному отводу тепла способствует наиболее низкая вязкость масла даже при температурах от 90 до 150°С в случае вспышек. Для разных марок масел эта температура может быть 150°С, 135°С, 125°С, 90°С, не ниже.

Крайне важным свойством трансформаторных масел является их стабильность в условиях окисления, трансформаторное масло должно сохранять требуемые параметры на длительный период работы.

Что касается конкретно РФ, то здесь все сорта трансформаторных масел, применяемых на промышленном оборудовании, обязательно ингибированы антиокислительной присадкой - ионолом (2,6-дитретичный бутилпаракрезол, известный еще как агидол-1). Присадка взаимодействует с активными пероксидными радикалами, возникающими в цепи окислительной реакции углеводородов. Так, ингибированные трансформаторные масла имеют при окислении ярко выраженный индукционный период.

Сначала восприимчивые к присадкам масла окисляются медленно, поскольку возникающие цепи окисления прерываются ингибитором. Когда присадка истощена, масло окисляется с обычной скоростью, как без присадки. Чем больше индукционный период окисления масла, тем выше и эффективность присадки.

Немало эффективность присадки связана и с углеводородным составом масла, и с наличием примесей неуглеводородного рода, способствующих окислению, коими могут выступать азотистые основания, нефтеновые кислоты и кислородосодержащие продукты окисления масла.

Когда нефтяной дистиллят очищают, содержание ароматических углеводородов снижается, устраняются неуглеводородные включения, и в итоге стабильность ингибированного ионолом трансформаторного масла повышается. Между тем, существует международный стандарт «Спецификация на свежие нефтяные изоляционные масла для трансформаторов и выключателей».




Трансформаторное масло обладает горючестью, оно биоразлагаемо, почти не обладает токсичностью и не вредит озоновому слою. Плотность трансформаторного масла лежит в пределах от 840 до 890 килограмм на кубометр. Одно из важнейших свойств - вязкость. Чем выше вязкость, тем выше электрическая прочность. Вместе с тем, для нормальной работы в и в выключателях, масло не должно быть очень вязким, иначе охлаждение трансформаторов не будет эффективным, а выключатель не сможет быстро разорвать дугу.




Здесь нужен компромисс относительно вязкости. Обычно кинематическая вязкость при температуре 20°С, у большинства трансформаторных масел лежит в диапазоне от 28 до 30 мм2/с.




Прежде чем заполнить маслом аппарат, масло очищают при помощи глубокой термовакуумной обработки. Согласно действующему руководящему документу "Объем и нормы испытаний электрооборудования" (РД 34.45-51.300-97), концентрация воздуха в трансформаторном масле, заливаемом в трансформаторы с азотной или пленочной защитой, в герметичные измерительные трансформаторы и в герметичные вводы, не должна быть выше 0,5 (определяется методом газовой хроматографии), а максимальное содержание воды - 0,001% массы.

Для силовых трансформаторов без пленочной защиты и для негерметичных вводов допустимо содержание воды не более 0,0025% массы. Что касается содержания механических примесей, определяющего класс чистоты масла, то оно не должно быть для оборудования напряжением до 220кВ хуже 11-го, а для оборудования напряжением выше 220 кВ - не хуже 9-го. Пробивное напряжение, в зависимости от рабочего напряжения, приведено в таблице.


Когда масло залито, то пробивное напряжение на 5 кВ ниже, чем у масла до заливки в оборудование. Допустимо снижение класса чистоты на 1 и увеличение процента воздуха на 0,5%.

Условия окисления (метод определения стабильности - по ГОСТу 981-75)






Температура застывания масла определяется при испытаниях, когда пробирку с загустевшим маслом наклоняют на 45°, и масло остается на том же уровне в течение минуты. Для свежих масел эта температура не должна быть ниже -45°С.

Данный параметр имеет ключевое значение для . Тем не менее, в разных климатических зонах требования к температуре застывания различны. Например, в южных регионах допускается применять трансформаторное масло с температурой застывания -35°С.

В зависимости от условий эксплуатации оборудования, нормативы могут варьироваться, возможны в некоторых пределах отступления. Так, например, арктические сорта трансформаторного масла не должны застывать при температуре выше -60°С, а температура вспышки снижается до -100°С (температура вспышки - температура, при которой нагретое масло производит пары, становящиеся легко воспламеняемыми при перемешивании с воздухом).

Вообще, температура вспышки не должна быть ниже 135°С. Также важны такие характеристики, как температура воспламенения (масло воспламеняется и горит при ней в течение 5 и более секунд) и температура самовоспламенения (при температуре 350-400°С масло воспламеняется даже в закрытом тигле при наличии воздуха).

Трансформаторное масло обладает теплопроводностью от 0,09 до 0,14 Вт/(м×К), и она снижается с ростом температуры. Теплоемкость же с ростом температуры возрастает, и может быть от 1.5 кДж/(кГ×К) до 2.5 кДж/(кГ×К).

С коэффициентом теплового расширения связаны нормативы по размерам расширительного бака, и данный коэффициент находится в районе 0,00065 1/К. Удельное сопротивление трансформаторного масла при 90°С и в условиях напряженности электрического поля 0.5 МВ/м в любом случае не должно быть выше 50 Гом*м.

Равно как и вязкость, удельное сопротивление масла с ростом температуры снижается. Диэлектрическая проницаемость - в пределах от 2,1 до 2,4. Тангенс угла диэлектрических потерь, как было сказано выше, связан с наличием примесей, так для чистого масла он не превышает 0,02 при 90°С в условиях частоты поля 50 Гц, а в окисленном масле может превышать 0.2.

Электрическую прочность масла измеряют во время испытаний на пробой 2,5 мм разрядника с диаметром электродов 25,4 мм. Результат не должен быть ниже 70 кВ, и тогда электрическая прочность составит не менее 280 кВ/см.


Несмотря на принятые меры, трансформаторное масло может поглощать газы, и растворять в себе значительное их количество. В обычных условиях в одном кубическом сантиметре масла легко растворится 0,16 миллилитров кислорода, 0,086 миллилитров азота и 1,2 миллилитра углекислоты. Очевидно, кислород начнет окислять мало. Если газы наоборот выделяются, это признак появления дефекта обмотки. Так, по наличию растворенных в трансформаторном масле газов, посредством хроматографического анализа выявляют дефекты трансформаторов.

Сроки службы трансформаторов и масла не связаны напрямую. Если трансформатор способен работать безотказно лет 15, то масло каждый год желательно очищать, а через 5 лет - регенерировать. Однако, для предотвращения быстрого истощения ресурса масла предусмотрены вполне определенные меры, принятие которых значительно продлит срок службы трансформаторного масла:

    Установка расширителей с фильтрами для поглощения воды и кислорода, а также выделяемых из масла газов;

    Избегание рабочего перегрева масла;

    Периодические чистки;

    Непрерывная фильтрация масла;

    Введение антиокислителей.

Высокие температуры, реакции масла с проводниками и диэлектриками, - все это способствует окислению, которое и призвана предотвращать антиокислительная присадка, о которой упоминалось в начале. Но регулярная очистка все равно требуется. Качественная очистка масла возвращает его в пригодное для использования состояние.

Что же может послужить поводом для изъятия из эксплуатации трансформаторного масла? Это могут быть загрязнения масла постоянными веществами, наличие которых не привело к глубоким изменениям в масле, и тогда достаточно провести механическую очистку. Вообще, существует несколько методов очистки: механический, теплофизический (перегонка) и физико-химический (адсорбция, коагуляция).

Если произошла авария, резко снизилось пробивное напряжение, появился нагар, или хроматографический анализ выявил неполадки, трансформаторное масло очищают прямо в трансформаторе или в выключателе, просто отключив аппарат от сети.

При регенерации отработанного трансформаторного масла получают до 3 фракций базовых масел для приготовления других товарных масел, таких как моторные, гидравлические, трансмиссионные масла, смазочно-охлаждающие жидкости и пластичные смазки. В среднем после регенерации получается 70-85% масла, в зависимости от применяемого технологического способа. Химическая регенерация является при этом более дорогостоящей. При регенерации трансформаторного масла возможно получить до 90% базового масла идентичного по качеству свежему.