РОССИЙСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО

ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ "ЕЭС РОССИИ"

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРОВЕДЕНИЮ ИСПЫТАНИЙ ИСТОЧНИКОВ ТЕПЛОВОЙ ЭНЕРГИИ И ТЕПЛОВЫХ СЕТЕЙ В СИСТЕМАХ ЦЕНТРАЛИЗОВАННОГО ТЕПЛОСНАБЖЕНИЯ ПРИ НЕСТАЦИОНАРНЫХ ГИДРАВЛИЧЕСКИХ РЕЖИМАХ ИХ РАБОТЫ

РД 153-34.1-20.365-98

Вводится в действие с 01.06.2000

РАЗРАБОТАНО Открытым акционерным обществом "Фирма по наладке, совершенствованию технологии и эксплуатации электростанций и сетей ОРГРЭС" и ОАО "Объединение ВНИПИэнергопром"

ИСПОЛНИТЕЛИ Е. М. Шмырев, К.Н. Сабуров, А.Р. Симонов (АО "Фирма ОРГРЭС"), Л.П. Канина (ОАО "Объединение ВНИПИэнергопром")

УТВЕРЖДЕНО Департаментом стратегии развития и научно-технической политики РАО "ЕЭС России" 06.07.98

Первый заместитель начальника А.П. БЕРСЕНЕВ

ВВЕДЕНО ВПЕРВЫЕ

Настоящий руководящий документ предназначен для организаций, эксплуатирующих источники тепловой энергии и тепловые сети.

Настоящие Методические указания устанавливают порядок подготовки, проведения и обработки результатов испытаний систем централизованного теплоснабжения (СЦТ) при моделировании в водяной тепловой сети нестационарных гидравлических режимов.

Методические указания распространяются на водяные СЦТ с открытыми и закрытыми системами горячего водоснабжения (ГВС) с температурой теплоносителя не более 150°С и рабочим давлением не более 2,4 МПа (24 кгс/см 2).

Методические указания обязательны для исполнения в дочерних и зависимых акционерных обществах РАО "ЕЭС России", эксплуатирующих тепловые сети и источники тепла.

Методические указания могут быть использованы персоналом:

организаций, эксплуатирующих теплопотребляющие установки и тепловые сети потребителей, подключенные к тепловым сетям или источникам тепловой энергии АО-энерго или дочерних АО-электростанций РАО "ЕЭС России";

проектных, наладочных и других организаций, выполняющих работы на указанных энергообъектах.

Методические указания могут применяться в СЦТ с источниками тепловой энергии, тепловыми сетями, системами теплопотребления, эксплуатируемыми организациями вне зависимости от их форм собственности и ведомственной принадлежности:

на стадиях разработки технических заданий на проектирование, а также выполнения анализа, экспертизы проектов реконструируемых объектов СЦТ при определении необходимости выполнения специальных мероприятий по защите оборудования СЦТ от недопустимых изменений давления сетевой воды;

при выборе оборудования для использования в различных элементах действующих СЦТ с учетом требований безопасности данного оборудования и оборудования других элементов СЦТ;

при определении достаточности уже имеющихся на объектах действующих СЦТ средств защит от недопустимых изменений давления сетевой воды;

при необходимости взаимоувязки действия защитных устройств и средств авторегулирования, расположенных в различных элементах СЦТ, и их взаимного влияния;

при определении объема оснащения различных элементов единой СЦТ средствами защиты от недопустимых изменений давления сетевой воды оборудования.

1. ОБЩИЕ СВЕДЕНИЯ

1.1. Развитие СЦТ при увеличении единичной мощности источников тепловой энергии сопровождалось увеличением объемов циркулирующей воды, протяженности тепловых сетей, количества сетевых и перекачивающих насосов, запорной и регулирующей арматуры и обусловило увеличение вероятности отказов того или иного элемента оборудования. Соответствующие этим отказам неустановившиеся гидравлические процессы, как показал опыт эксплуатации и расчеты, сопровождаются возникновением давлений, недопустимых по условиям прочности оборудования источника тепловой энергии, тепловых сетей и потребителей тепла.

1.2. Неустановившимся движением жидкости называется такое движение, при котором какая-нибудь из его характеристик в точках рассматриваемого пространства (скорость, давление и др.) изменяются с течением времени.

1.3. Неустановившийся гидравлический режим, определяющий переход гидравлической системы от одного стационарного режима к другому (например, послеаварийному стационарному гидравлическому режиму), называется переходным гидравлическим режимом.

1.4. В зависимости от инерционных свойств трубопроводной системы и характеристик возмущающего воздействия неустановившиеся (переходные) гидравлические процессы могут иметь характер гидравлического удара или квазистационарного режима. Первые характеризуются существенными значениями мгновенных давлений и вызываются, как правило, аварийным отключением (включением) сетевых и перекачивающих насосных агрегатов под нагрузкой, несанкционированным закрытием (открытием) запорно-регулирующей арматуры, вызванными разрывами трубопроводов, понижением давления в отдельных точках системы до давления насыщения водяного пара. Квазистационарные режимы вызываются монотонными длительными возмущениями, например плановым закрытием головных задвижек трубопроводов при отключении магистралей.

1.5. Наибольшую опасность для оборудования СЦТ представляют гидравлические режимы, имеющие характер гидравлического удара. Процессы изменения расходов и давлений, происходящие в этих режимах, развиваются за относительно короткие промежутки времени (0,5-30 с) и со значительными амплитудами.

1.6. Возможность возникновения неустановившихся гидравлических режимов в СЦТ, сопровождающихся возникновением недопустимых давлений, обусловливает необходимость применения методов защиты в указанных режимах.

Выбор защитных устройств и мероприятий при неустановившихся гидравлических режимах в СЦТ необходимо базировать на данных расчетных или экспериментальных исследований неустановившихся гидравлических режимов при наиболее часто встречающихся в практике эксплуатации возмущениях, вызванных отказами в работе оборудования СЦТ. При этом рассматривается, как правило, задача комплексной защиты СЦТ.

Под "комплексной защитой" оборудования СЦТ понимается система защит, предотвращающая возникновение недопустимых давлений на оборудовании водоподогревательной установки источника тепловой энергии, тепловых сетей, систем теплопотребления.

1.7. Разработано и экспериментально апробировано несколько методик расчета переходных гидравлических режимов в СЦТ, позволяющих выполнять расчетное исследование.

В частности, ОАО "Объединение ВНИПИэнергопром" с участием СЭИ СО РАН разработаны методика и программа гидравлического расчета параметров переходных гидравлических режимов, которая с достаточной точностью позволяет моделировать гидродинамические процессы в СЦТ при различных возмущениях исходных режимов работы системы. С помощью программы осуществляются расчеты в СЦТ различной степени сложности.

На основе указанной методики разработана упрощенная методика определения параметров нестационарных процессов СЦТ и , которая имеет ограниченное применение в основном в СЦТ с одним источником тепловой энергии и ограниченным количеством насосных станций.

В АО "Фирма ОРГРЭС" используется программа "DROP" теплогидравлического расчета параметров переходных режимов СЦТ, в том числе с учетом возможного вскипания и последующей нестационарной конденсации сетевой воды, разработанная на базе программного комплекса "ROSA" Научно-исследовательским и конструкторским институтом энерготехники (Минатом России).

Кроме того, АО "Фирма ОРГРЭС", "Уралтехэнерго" и другими наладочными организациями разрабатываются рекомендации по системам защит на основании данных экспериментальных исследований.

Для определения комплексной системы защит СЦТ от недопустимых изменений давлений в зависимости от конфигурации СЦТ, протяженности тепловых сетей, количества источников тепловой энергии, насосных станций в тепловых сетях, сложности рельефа местности следует применять расчетный, экспериментальный или совместный расчетно-экспериментальный метод.

Использование в ряде случаев только экспериментального метода ограничено следующим:

необходимостью значительного объема измерений и приборного обеспечения соответствующих работ, что возможно только при развитой системе телемеханизации, причем с обеспечением достаточной точности измерений и скорости опроса первичных преобразователей; малоинерционностью измерительных цепей;

необходимостью задействования на период испытаний практически всего тракта сетевой воды, включая источник тепла и магистральные тепловые сети с насосными станциями, что трудно осуществить на практике ввиду необходимости проведения сложных работ по подготовке тепловой сети (отключения потребителей тепла, открытия циркуляционных перемычек и др.) с привлечением большого числа персонала;

в связи с трудностями, а в ряде случаев с невозможностью создания всех вероятных возмущений гидравлического режима из-за их большого количества, а при ориентации лишь на максимальные возмущения (например, полное отключение сетевых насосов источника тепловой энергии) - невозможностью их осуществления на практике без риска повреждения оборудования.

1.8. Для защиты оборудования СЦТ разработаны и применяются противоударные устройства. Среди устройств, обеспечивающих понижение давления за счет сброса теплоносителя в дренажные емкости, наибольшее применение нашли гидрозатворы-переливы, быстродействующие сбросные клапаны, разрывные мембраны.

Помимо этого используются мероприятия, позволяющие исключить или уменьшить повышение давления в аварийных переходных гидравлических режимах. К таким мероприятиям относятся внесение изменений в схему электроснабжения электродвигателей, устройство системы динамической защиты (в случае наличия в СЦТ нескольких насосных станций или двухступенчатой схемы сетевых насосов), установка обратных клапанов на обводных линиях насосных станций, изменение времени и закона закрытия (открытия) запорнорегулирующих устройств.

1.9. В настоящих Методических указаниях приведены требования к объему, техническим средствам и условиям проведения испытаний, а также рекомендации по составлению программы испытаний, выбору возмущающих воздействий на сеть при проведении испытаний и обработке полученных результатов.

1.10. При проведении испытаний следует учитывать требования ПТЭ и ПТБ .

2. ОБЛАСТЬ ПРИМЕНЕНИЯ МЕТОДА ЭКСПЕРИМЕНТАЛЬНОГО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ НЕСТАЦИОНАРНЫХ ГИДРАВЛИЧЕСКИХ РЕЖИМОВ СЦТ, ОСНОВНЫЕ ЦЕЛИ И ЗАДАЧИ ИСПЫТАНИЙ

Испытания, регламентируемые настоящими Методическими указаниями, реализуют метод экспериментального определения параметров переходных гидравлических режимов в СЦТ, который заключается в искусственном создании в реальной СЦТ схемы, гидравлический режим которой в достаточной мере имитирует ее (СЦТ) реальные схему и гидравлический режим, и ряда возмущений исходного гидравлического режима с одновременной регистрацией и контролем текущих параметров сетевой воды в нескольких контрольных точках с последующими анализом полученных динамических характеристик изменения этих параметров, оценкой динамических свойств элементов СЦТ и реакции системы на созданные возмущения, определением необходимости проведения защитных мероприятий.

Указанный метод, как правило, может быть применен для непосредственного определения параметров переходных гидравлических процессов. Экспериментальный метод не является универсальным для всех СЦТ и для решения любых задач по определению параметров нестационарных гидравлических режимов.

2.1. Область применения экспериментального метода и настоящих Методических указаний определяется в зависимости от степени сложности СЦТ. Критерии для определения степени сложности СЦТ приведены в табл. 1.

Таблица 1

Критерии выбора способа определения опасности переходных гидравлических режимов по признакам сложности СЦТ

Признаки сложности СЦТ Степень сложности СЦТ
низшая* средняя высокая
Количество источников тепловой энергии, работающих на единую тепловую сеть 1 1 Более 1
Количество магистралей от источника тепловой энергии До 3 До 3 Любое
Количество групп сетевых насосов источника тепловой энергии локальной (гидравлически изолированной) СЦТ 1 2 Более 2
Максимальный радиус действия тепловых сетей До 10000 м До 10000 Любой
Количество теплопотребляющих ответвлений тепловых сетей До 20 От 20 до 50 От 50 до 100
Вид тепловой сети:
радиальная Да Да Любая
кольцевая Нет Нет
Количество подкачивающих насосных станций (ПНС) 1 1 Любое
Характер рельефа местности Монотонный Монотонный Переменный
Максимальная разность геодезических отметок отдельных элементов СЦТ Менее 20 м От 20 до 40 м Любая
* К низшей категории сложности также (кроме указанных в табл. 1) следует отнести локальные участки, такие как одна из магистралей от источника тепловой энергии, имеющего 3 и более выводов, с установленной на ней подкачивающей насосной станцией (ПНС) с расходом по магистрали, не превышающим средний суммарный расход сетевой воды на источнике тепловой энергии, отнесенный к количеству магистралей.

С учетом степени сложности СЦТ экспериментальный метод и настоящие Методические указания допускается применять для определения параметров нестационарных гидравлических режимов:

при решении задач защиты локальных участков и отдельных элементов СЦТ, а также при решении задачи комплексной защиты СЦТ низшей степени сложности;

при решении задачи комплексной защиты СЦТ и локальных ее участков средней степени сложности, а также оценке степени влияния испытываемых локальных участков на остальную тепловую сеть с дополнительным проведением расчетов с использованием упрощенной методики (разработанной ОАО "ВНИПИэнергопром" с участием АО "Фирма ОРГРЭС") и ;

при решении задачи комплексной защиты СЦТ либо отдельных элементов СЦТ высокой степени сложности (уточнения динамических характеристик СЦТ) при обязательном выполнении расчетов по полной схеме на ЭВМ (методики, используемые ОАО "ВНИПИэнергопром" и АО "Фирма ОРГРЭС");

при проведении проверки работы и уточнения уставок смонтированных систем защит (этот вид работ относится ко всем СЦТ вне зависимости от их сложности).

2.2. Основными целями испытаний СЦТ при нестационарных гидравлических режимах работы являются определение их опасности для оборудования систем СЦТ при встречающихся в практике эксплуатации аварийных возмущениях, выявление экстремально возможных давлений, времени их возникновения и т.п. для последующего определения средств защиты и технических характеристик устройств защиты, выявление реальных динамических характеристик СЦТ для использования их в последующих расчетных исследованиях переходных гидравлических режимов, проверка работы смонтированных систем защит от недопустимых изменений давлений.

2.3. Требования к установлению исходного гидравлического режима, к приборному обеспечению и другие при проведении испытаний в зависимости от поставленной задачи и степени сложности конкретной СЦТ различны.

Приводимые ниже основное содержание испытаний СЦТ и состав работ (разд. 3 настоящих Методических указаний) определены для двух групп задач:

2.3.1. I группа задач: определение параметров нестационарных гидравлических режимов для:

2.3.1.1. разработки комплексной защиты СЦТ низшей и средней степеней сложности;

2.3.1.2. разработки защиты локальных участков СЦТ низшей степени сложности;

2.3.1.3. проверки работы смонтированных систем защит от недопустимых изменений давлений низшей и средней степеней сложности.

2.3.2. II группа задач: определение параметров нестационарных гидравлических режимов для:

2.3.2.1. разработки комплексной защиты СЦТ высокой степени сложности;

2.3.2.2. разработки защиты локальных участков СЦТ средней и высокой степеней сложности с определением воздействия защиты на другие участки СЦТ;

2.3.2.3. проверки работы смонтированных систем защит от недопустимых изменений давлений в СЦТ высшей степени сложности.

2.4. Объем испытаний, конкретные возмущающие воздействия и их значения определяются поставленными целями и задачами, ограничиваются возможностями технологического оборудования, обоснованными предварительными расчетами параметров нестационарных гидравлических режимов по соответствующей упрощенной методике и отражаются в технической и рабочей программах испытаний.

2.5. Результатами испытаний являются измеренные параметры нестационарных гидравлических режимов СЦТ.

3. ОСНОВНОЕ СОДЕРЖАНИЕ ИСПЫТАНИЙ СЦТ ПРИ НЕСТАЦИОНАРНЫХ ГИДРАВЛИЧЕСКИХ РЕЖИМАХ

Конкретный состав работ при проведении испытаний разделяется на три этапа.

I. Подготовительный этап.

Включает следующие виды работ:

анализ системы теплоснабжения и постановка задачи испытаний;

составление перечня возмущающих воздействий при проведении испытаний; определение допустимости создаваемых возмущений;

определение конфигурации СЦТ, задействованной в период испытаний, температурного и гидравлического режимов СЦТ в период испытаний;

определение объема измерений, приборного обеспечения испытаний;

составление технической и рабочей программ испытаний;

обеспечение требований безопасности.

II. Экспериментальный (основной) этап.

Включает такие виды работ, как:

подготовка экспериментального испытательного контура и других элементов СЦТ к испытаниям;

создание и регулировка исходного испытательного режима;

тарирование, подключение и проверка регистрирующих приборов, их синхронизация, проверка каналов связи;

внесение возмущений в испытательный гидравлический режим и регистрация динамических характеристик в намеченных контрольных точках СЦТ;

обследование тепловой сети после завершения испытаний, выявление и устранение при необходимости повреждений СЦТ;

восстановление эксплуатационного гидравлического и температурного режима СЦТ.

III. Аналитический (заключительный) этап.

Состав работ этого этапа следующий:

расшифровка экспериментальных данных и их представление в удобной для анализа форме;

предварительный анализ экспериментальных данных, выявление и исключение недостоверных результатов измерений;

анализ экспериментальных данных, анализ переходных гидравлических характеристик по участкам сети, определение зон недопустимых давлений, составление перечня оборудования, требующего защиты;

разработка защитных мероприятий, определение характеристик защитных устройств.

3.1. Подготовительный этап испытаний СЦТ при нестационарных гидравлических режимах

3.1.1. Анализ системы теплоснабжения и постановка задачи испытаний

Для принятия обоснованного решения о проведении испытаний СЦТ при нестационарных гидравлических режимах необходимо провести анализ СЦТ.

В ходе анализа СЦТ необходимо рассмотреть следующую основную исходную информацию:

схему тепловых сетей с указанием длин участков, диаметров трубопроводов, расчетных расходов теплоносителя;

пьезометрические графики тепловой сети в соответствии с зимним рабочим гидравлическим режимом тепловой сети;

принципиальные схемы источников тепловой энергии и подкачивающих насосных станций с перечнем установленного оборудования;

тип системы теплоснабжения (открытая, закрытая);

схемы присоединения теплопотребляющих установок (зависимая, независимая);

допустимые значения давлений для оборудования источников тепловой энергии, тепловых сетей, систем теплопотребления;

перечень защит, используемых на оборудовании водоподогревательных установок источников тепловой энергии, тепловых сетей, систем теплопотребления.

На основании анализа вышеперечисленной исходной информации в соответствии с п. 2.1 определяются степень сложности СЦТ и допустимость применения испытаний тепловых СЦТ в соответствии с настоящими Методическими указаниями.

В ходе анализа СЦТ следует также проанализировать сведения об отказах оборудования, имевших место в рассматриваемой СЦТ, и связанных с ними повреждениях оборудования источников тепла, тепловых сетей, систем теплопотребления по причинам их возникновения, а также о возможных нарушениях в работе оборудования. На основании этого анализа и общего решения о проведении испытаний в соответствии п. 2.3 определяются конкретные задачи испытаний СЦТ при нестационарных гидравлических режимах.

При планировании испытаний допускается намечать одновременное решение нескольких задач.

3.1.2. Составление перечня возмущающих воздействий при проведении испытаний, определение допустимости создаваемых возмущений

Перечень возмущающих воздействий определяется типом поставленной задачи на основе анализа режимов работы СЦТ и критерия сложности рассматриваемой СЦТ.

3.1.2.1. Для задач I и II групп по пп. 2.3.1.1; 2.3.1.2; 2.3.2.1 и 2.3.2.2 необходимо предусматривать следующие возмущения исходного гидравлического режима:

аварийное полное отключение сетевых насосов источника тепловой энергии;

аварийное частичное отключение сетевых насосов источника тепловой энергии;

аварийное полное отключение насосов подкачивающих насосных станций;

аварийное частичное отключение насосов подкачивающих насосных станций;

несанкционированное закрытие (открытие) запорной арматуры, исполнительных устройств автоматических систем регулирования и защиты (АСРиЗ); необходимость выполнения указанных действий должна определяться на основании анализа схемы автоматизации гидравлического режима СЦТ и выявления возможности несанкционированного закрытия (открытия) клапанов рассечки, регуляторов давления и др.;

проверка функционирования АСРиЗ для обеспечения безопасных переходных гидравлических режимов при регулировании и срабатывании системы защиты.

3.1.2.2. При проведении испытаний для проверки работы смонтированных систем защит от недопустимых изменении давлений в СЦТ любой степени сложности (при решении задач по пп. 2.3.1.3 и 2.3.2.3) следует предусматривать возмущения исходного режима, соответствующие тем аварийным ситуациям, для защиты от которых предназначены испытываемые системы защит. При проведении испытаний гидравлических АСРиЗ необходимо учитывать требования и .

3.1.2.3. Определение возможных вариантов аварийных отключений сетевых насосов источников тепла, насосов подкачивающих насосных станций по п. 3.1.2.1 и временных интервалов перерыва в электроснабжении насосных агрегатов выполняется на основе анализа схемы электроснабжения электродвигателей сетевых насосов. Допускается дополнять п. 3.1.2.1 возмущениями, связанными с отключениями или пуском насосов подпитки тепловой сети, с пуском и АВР сетевых насосов источника тепловой энергии или подкачивающих насосов насосных станций.

3.1.2.4. Выбор системы защиты в переходных гидравлических режимах для задач II группы предусматривает сочетание расчетного и экспериментального методов, поэтому до проведения испытаний выполняются предварительные расчеты, на основании которых определяется необходимый перечень возмущений для их имитации при проведении испытаний.

3.1.2.5. Допустимость возмущений, подводимых к оборудованию испытываемой СЦТ, определяется на основании предварительных расчетов переходных гидравлических режимов.

Оценка допустимости возмущений, создаваемых в испытываемой СЦТ низшей степени сложности, производится в соответствии с и .

Проведение испытаний в системах средней степени сложности предусматривает использование экспериментального метода в сочетании с расчетным (в частности, с использованием упрощенных расчетных зависимостей и ). В соответствии с результатами предварительных расчетов определяются возможные максимальные значения давлений и допустимость каждого рассматриваемого возмущения.

Для СЦТ высокой степени сложности перечень и допустимость подводимых возмущений определяются на основании расчетов в соответствии с требованиями п. 2.1.3.

3.1.3. Конфигурация СЦТ, задействованной в период испытаний

3.1.3.1. Для задач I группы требования к конфигурации СЦТ в период испытаний должны обеспечить имитацию работы, максимально соответствующую реальным условиям СЦТ:

в испытаниях должны участвовать, как правило, все тепломагистрали от источника тепловой энергии. Допускается исключение из состава испытаний выводов с источника тепловой энергии, суммарный расход сетевой воды через которые (G сумм.маг. i ) составляет менее 10% расчетного суммарного расхода сетевой воды данного источника тепловой энергии (G сумм.ист), т.е. G сумм.маг. i < 0,1 G сумм.ист;

отопительные системы потребителей тепла на период испытаний, как правило, должны быть отключены. Решение о допустимости участия оборудования отдельных потребителей тепла в испытаниях должно быть обосновано расчетами, выполненными с учетом требований безопасности данных потребителей;

циркуляционные перемычки между подающим и обратным трубопроводами (степень их открытия) должны обеспечивать имитацию зимнего гидравлического режима с расходом сетевой воды, соответствующим расчетному расходу при температуре теплоносителя в точке излома температурного графика. При реальной работе СЦТ на повышенных (относительно зимних расчетных расходов) расходах теплоносителя допускается проведение испытаний с имитацией реальных гидравлических режимов;

имитация ответвлений от основной магистрали тепловой сети осуществляется открытием циркуляционных перемычек на данной магистрали при выполнении условий:

Расчетный расход сетевой воды (G отв) через имитируемое ответвление составляет менее 10% расчетного расхода по основной магистрали (G маг) на выходе из источника тепловой энергии, а также если протяженность данного ответвления (L отв) составляет менее 250 м (в двухтрубном исчислении). т.е. G отв < 0,1 G маг и L отв < 250 м;

Если G отв > 0,1 G маг, или L отв > 250 м, то имитация режима работы ответвления осуществляется открытием циркуляционной перемычки в конце данного ответвления;

допускается имитация гидравлического режима работы установок группы потребителей тепла с суммарным расходом сетевой воды через них (G сум.гр.потр) менее 10% от G маг путем открытия перемычек между подающим и обратным трубопроводами основной магистрали, т.е. G сум.гр.потр < 0,1 G маг. Открываемые перемычки должны находиться, как правило, после имитируемой группы потребителей;

концентрированные тепловые нагрузки (1-2 крупных потребителей тепла с расчетным расходом сетевой воды G потр более 10% G маг, т.е. при G потр > 0,1 G маг) имитируются открытием одной или нескольких перемычек у данных потребителей.

3.1.3.2. Для задач II группы следует принимать конфигурацию СЦТ, как правило, в соответствии с требованиями, предъявленными к задачам I группы.

При невозможности обеспечения указанных требований допускается исключение части выводов от источника тепловой энергии и части ответвлений от основной магистрали с тем, чтобы суммарный расход сетевой воды от источника тепловой энергии не был ниже 70% расчетного расхода сетевой воды в зимний период эксплуатации. В этом случае необходимо выполнение сопоставительных расчетов по условиям эксперимента для последующей корректировки расчетных схем (при необходимости) и выполнения расчетов исследований переходных гидравлических режимов для всего диапазона возможных аварийных возмущений.

3.1.3.3. При определении конфигурации локальных участков СЦТ используются требования пп. 3.1.3.1 и 3.1.3.2 применительно непосредственно к участкам.

3.1.4. Температурный и гидравлический режимы СЦТ в период испытаний

3.1.4.1. Температура сетевой воды в период проведения испытаний во всех точках СЦТ, задействованной на период испытаний, должна быть не более 40°С, согласно . Водоподогревательное оборудование источника тепловой энергии на период испытаний должно быть отключено.

3.1.4.2. Во время испытаний в СЦТ устанавливается гидравлический режим, соответствующий зимнему эксплуатационному гидравлическому режиму.

Распределение давлений по основным магистралям тепловой сети должно соответствовать зимнему режиму с отклонениями ±0,05 МПа (±0,5 кгс/см 2).

3.1.4.3. До начала испытаний, после регулировки режимов тепловой сети, задействованной в испытаниях, должна проводиться регистрация давлений сетевой воды в исходном режиме (манометрическая съемка).

Регистрация давлений сетевой воды в исходном режиме производится в узловых точках СЦТ:

до и после задвижек на циркуляционных перемычках, на насосных станциях тепловой сети;

до и после перекачивающих насосов;

до и после регулирующих клапанов;

до и после сетевых насосов на коллекторах источника тепла;

до и после сетевых подогревателей и водогрейных котлов.

Регистрация давлений сетевой воды в исходном режиме должна производиться с учетом реального положения манометров относительно оси трубопровода.

3.1.4.4. расход сетевой воды в тепловой сети и на источнике тепловой энергии контролируется по штатным измерительным приборам. При отсутствии расходомеров (счетчиков количества теплоносителя) на насосных станциях тепловой сети расход сетевой воды через насосные агрегаты контролируется по токовой нагрузке приводов насосов.

3.1.4.5. На период испытаний отключаются отопительные системы всех потребителей тепла, подключенных по зависимой схеме, а также потребителей тепла, подключенных по независимой схеме, расположенные на нижних геодезических отметках.

В открытых системах теплоснабжения целесообразно отключение максимального количества потребителей тепла по горячей воде с целью имитации режимов с минимальным водоразбором ("ночной режим"), являющихся наиболее опасными при прохождении переходных гидравлических режимов.

3.1.4.6. Гидравлический режим водоподогревательной установки источника тепла имитируется частичным открытием задвижек на байпасных линиях теплообменного оборудования.

3.1.4.7. На период испытаний все технологические защиты должны находиться в работоспособном состоянии.

Допускается отключение отдельных технологических защит (например, АВР сетевых или перекачивающих насосов при риске нестационарной конденсации вскипевшего в верхних точках сети теплоносителя при их повторном пуске), что должно обосновываться расчетами, либо при решении локальной задачи - проверкой значений уставок технологических защит.

3.1.5. Технические требования к приборному обеспечению испытаний

3.1.5.1. При проведении испытаний должны использоваться средства измерений, обеспечивающие визуальный контроль и регистрацию параметров (давления, температуры, расхода сетевой воды) исходного стационарного режима, промежуточных (между переходными режимами) и конечного стационарного режима сети.

Визуальный контроль и регистрация параметров стационарных режимов могут производиться с помощью установленных измерительных приборов, используемых при эксплуатации СЦТ и имеющих действующие поверительные (калибровочные) клейма, при необходимости устанавливаются дополнительные средства измерений.

3.1.5.2. При проведении испытаний должны использоваться средства и системы измерений, обеспечивающие измерение и регистрацию изменения во времени текущих параметров гидравлических переходных процессов - мгновенных давлений, при необходимости частоты вращения роторов отключаемых (пускаемых) насосных агрегатов и расхода сетевой воды. Указанные средства и системы измерений должны удовлетворять общим технологическим требованиям, перечисленным ниже:

включение (присоединение) датчика-преобразователя не должно заметно изменять (искажать) статические и динамические свойства объекта, характеристики которого определяются (например, импульсные гидравлические линии для подключения первичных преобразователей должны иметь ограниченную протяженность и гидравлическую емкость, большую механическую жесткость; не допускается завоздушивание этих линий, оптимальным является установка датчиков непосредственно на трубопровод без гидравлической импульсной линии);

инерционность систем измерений должна быть пренебрежительно мала (не менее чем в десять раз) по сравнению с инерционностью испытываемой СЦТ и задействованного в испытаниях оборудования;

быстродействие системы измерения должно обеспечивать удовлетворительное построение кривой переходного процесса, для чего должно составлять не менее двух измерений в секунду; при применении контрольно-измерительной аппаратуры с выводом информации на магнитные носители частота опроса каждого датчика должна соответствовать указанному значению;

электрическая коммутационная сеть и измерительные приборы должны быть малочувствительны к внешним электромагнитным возмущениям (наводкам);

регистрирующие приборы должны быть синхронизированы по времени;

конструкция, тип исполнения, способ установки средств измерений, класс изоляции, а также соединительных проводов должны соответствовать параметрам электросети, условиям окружающей среды и требованиям соответствующих разделов Правил устройства электроустановок ;

при проведении испытаний следует пользоваться средствами испытаний, поверенными (калиброванными) или аттестованными в установленном Госстандартом России порядке и имеющими действующие поверительные клейма или свидетельства о поверке или аттестации.

3.1.5.3. Уровень метрологического обеспечения средств измерений должен соответствовать рекомендациям .

3.1.5.4. Основными видами средств измерений при проведении испытаний являются измерительные приборы и измерительные преобразователи.

Средства измерений с дистанционной передачей показаний, как правило, должны быть унифицированными. Диапазон изменения унифицированного электрического сигнала постоянного тока может составлять:

3.1.6. Требования к точности измерительных приборов

3.1.6.1. Для осуществления визуального контроля давлений в СЦТ при исходном стационарном режиме допускается использовать измерительные приборы (манометры, измерительные системы - датчик и вторичный прибор), обеспечивающие абсолютную погрешность не более ±0,02 МПа (±0,2 кгс/см 2).

3.1.6.2. Для осуществления контроля расхода сетевой воды в СЦТ допускается использовать измерительные приборы, обеспечивающие относительную погрешность измерений не более ±5%.

3.1.6.3. Для измерения значений возмущающих воздействий и реакции системы по давлению на возмущающие воздействия с автоматической регистрацией результатов допускается использовать измерительные системы, обеспечивающие:

абсолютную погрешность измерения давления 0,02 МПа (0,2 кгс/см 2),

абсолютную погрешность измерения времени 0,05 с.

3.1.7. Объем измерений

Необходимый объем измерений определяется задачей испытаний.

3.1.7.1. В период проведения испытаний при решении задач I и II группы по пп. 2.3.1.1; 2.3.1.2; 2.3.2.1 и 2.3.2.2 необходимо проводить следующие измерения.

3.1.7.1.1. Регистрацию изменения давлений во времени в контрольных точках СЦТ:

на источнике тепла:

В обратном и подающем коллекторах сетевой воды (при поддержании различных режимов для отдельных тепломагистралей также на выводах тепловой сети от источника тепла);

Во всасывающих и напорных коллекторах каждой группы сетевых насосов;

На выходе и входе в сетевые теплообменники источника тепла, водогрейные котлы при протяженности внутристанционных сетевых трубопроводов более 200 м, связывающих коллекторы насосных агрегатов с водогрейными котлами или сетевыми подогревателями, а также при блочной схеме ТЭЦ с отсутствием гидравлических связей между аналогичными ступенями сетевых подогревателей различных блоков;

в тепловых сетях:

Во всасывающем и в напорном коллекторах перекачивающих насосных станций;

До и после клапанов рассечки тепловой сети на гидравлически изолированные зоны;

До (по ходу воды) сбросных защитных устройств (при применении сбросных клапанов с гидроприводами целесообразно регистрировать давление в надмембранном пространстве клапанов или на соответствующих импульсных линиях);

На отдельных участках тепловых сетей (например, на ответвлениях к потребителям тепла, расположенных на низких геодезических отметках, или на участках сети, в которых возможно вскипание теплоносителя в эксплуатационных условиях), перечень которых определяется в составе результатов предварительных расчетов.

3.1.7.1.2. При необходимости (как правило, при решении задач по п. 2.3.1.1) - регистрацию изменения частоты вращения роторов отключаемых насосных агрегатов (по одному из каждого типа насосных агрегатов).

3.1.7.2. В период проведения испытаний при решении задач I и II группы по пп. 2.3.1.2, 2.3.1.3, 2.3.2.2, 2.3.2.3 допускается ограничивать объем измерений по п. 3.1.7.1 точками СЦТ, расположенными непосредственно в пределах выделенного для испытаний локального объекта и на участках СЦТ, граничащих с выделенным объектом, если предварительные расчеты параметров переходных гидравлических режимов при подводимых возмущениях с учетом действия средств защиты не превышают предельно допустимых значений для остальных участков (объектов) СЦТ.

3.1.7.3. Для всех видов задач I и II групп проводится:

контроль и ручная (или с помощью средств телемеханизации) регистрация давлений в контрольных точках СЦТ до начала основного этапа испытаний (исходный режим) и в течение всего основного этапа испытаний не реже одного измерения в 10-15 мин с записью результатов измерений в журналы наблюдений или (в случае применения средств телемеханизации) на магнитные носители;

контроль расходов сетевой воды в контрольных точках СЦТ до начала и в период проведения основного этапа испытаний:

На источнике тепла по каждой магистрали тепловой сети в подающем и обратном трубопроводах и подпиточной воды;

В тепловых сетях через подкачивающие насосные станции.

3.1.8. Составление технической и рабочей программ испытаний

При подготовке испытаний необходимым этапом является составление технической и рабочей программ испытаний.

Техническая и рабочая программы испытаний должны разрабатываться в соответствии с и подлежат согласованию в тех организациях, оборудование и персонал которых задействуется при испытаниях.

3.1.8.1. Техническая программа устанавливает цель и сроки проведения испытаний и этапы испытаний, режимы работы оборудования элементов СЦТ, режимы работы источника тепла, тепловой сети, систем теплопотребления на каждом этапе испытаний, отклонение параметров в процессе испытаний и их предельные значения, а также оговаривает методы проведения испытаний и регистрации параметров.

3.1.8.2. Рабочая программа устанавливает исходное состояние системы и оборудования, последовательность технологических операций при подготовке, проведении и прекращении испытаний, требования к поддержанию основных параметров оборудования, меры безопасности.

3.1.8.3. Техническая программа должна содержать следующие разделы:

цели работы и объект испытаний;

подготовительные работы. В данном разделе необходимо дать следующие сведения:

Объем и сроки проведения комплекса работ, предшествующих проведению испытаний;

Перечень специальной регистрирующей аппаратуры и места установки датчиков;

Точное обозначение задействованных в испытаниях участков тепловой сети, перемычек и ответвлений; перечень задействованного, а также отключенного оборудования насосных станций, источника тепла и систем теплопотребления и дается описание испытательного контура;

условия проведения испытаний. В данном разделе приводятся следующие сведения:

Перечень параметров, характеризующих режим работы тепловой сети и оборудования, о которых сообщается руководителю работ перед каждым опытом и после его завершения;

Порядок передачи операторам на объектах СЦТ команд и подтверждения получения этих команд;

Порядок синхронизации работы регистрирующей аппаратуры на различных объектах;

Порядок выполнения команд операторами на объектах, в том числе порядок отключения насосного оборудования или имитации других нарушений работы сети;

перечень этапов испытаний, общее время проведения работ. В данном разделе даются следующие сведения:

Перечень этапов в соответствии с последовательностью проведения опытов (перечень следует составлять в соответствии с выполненным ранее анализом СЦТ, предварительным расчетом переходных процессов в сети и последовательным нарастанием интенсивности возмущающих воздействий);

Перечень факторов, определяющих переход к следующему этапу, отмену этапов или прекращение испытаний;

режимы работы задействованного оборудования. В данном разделе даются следующие сведения:

Режим работы задействованного оборудования источника тепловой энергии и тепловой сети;

Перечень отключенного оборудования;

Перечень задействованных и отключенных потребителей тепла;

Температурный режим оборудования во время испытаний;

Предельные значения параметров сетевой воды для различных точек тепловой сети и систем теплопотребления;

порядок прекращения испытаний;

перечень организаций и лиц, ответственных за обеспечение и проведение испытаний и согласование технической и рабочей программ;

перечень мер по безопасному проведению испытаний.

3.1.8.4. Рабочая программа должна содержать следующие разделы:

объем подготовительных работ, обеспечивающих проведение испытаний. В данном разделе даются следующие сведения:

Порядок руководства проведением испытаний с перечнем должностных лиц, ответственных за проведение испытаний, руководителя испытаний и его заместителей и места их расположения во время испытаний;

Порядок создания испытательного контура с указанием задействованных участков трубопроводов, тепловых камер, перемычек и ответвлений к потребителям с перечнем закрытой и открытой запорной арматуры, а также перечнем задействованных регуляторов и их уставок, устройств технологической защиты;

Перечень задействованного насосного оборудования на источнике и насосных станциях с указанием о включении или отключении системы АВР;

Перечень регистрирующей аппаратуры с указанием пределов измерений, контролируемых параметров и точек установки датчиков;

Перечень средств связи и способов передачи информации руководителю испытаний;

Состояние системы с данными по исходному стационарному режиму с указанием расходов среды по задействованным магистралям, перемычкам и ответвлениям, температуры сетевой воды, давлений в контрольных точках;

перечень и последовательность технологических операций при проведении запланированных опытов и их исполнители. В данном разделе даются следующие сведения:

В соответствии с перечнем опытов последовательность операций, производимых при проведении каждого из запланированных опытов, и исполнители этих операции;

Указания о возможной корректировке хода испытаний по промежуточным результатам испытаний;

Указания по порядку прекращения испытаний и выводу из работы задействованного оборудования СЦТ (здесь же приводятся данные по параметрам и режимам системы после прекращения испытаний или порядку создания требуемого стационарного режима);

указания о подготовке персонала к проведению испытаний. В данном разделе даются следующие сведения:

Проведение необходимого инструктажа, указания об объектах и оборудовании, требующих повышенного внимания;

Меры безопасности для персонала;

Уточнение действий персонала при возможных незапланированных отключениях и включениях оборудования.

К рабочей программе прилагаются при необходимости схема испытательного контура, схема используемых при испытаниях трубопроводов источника тепловой энергии, пьезометрический график исходного стационарного режима испытываемой магистрали и другие технические материалы.

3.1.9. Требования безопасности

Реализация экспериментального метода определения параметров переходных гидравлических режимов сопровождается воздействием на элементы СЦТ повышенных давлений, причем значения давлений в непредвиденных случаях (при ошибках в предварительных расчетах, плохом техническом состоянии оборудования и трубопроводов и др.) могут выйти за пределы допустимых по условиям прочности для трубопроводов и оборудования.

Подготовка СЦТ к испытаниям сопровождается временной установкой контрольно-измерительных приборов, а испытания - использованием технологического оборудования в нештатных режимах, отключением некоторых устройств технологической защиты.

Комплекс мероприятий по технике безопасности проводимых при подготовке испытаний должен иметь целью разработку и реализацию организационных мероприятий, направленных на предотвращение воздействия на персонал СЦТ опасных факторов при проведении испытаний.

Перед испытаниями проводится инструктаж задействованного персонала по действиям на рабочих местах во время испытаний.

Временная установка приборов с электропитанием должна производиться с учетом требований ПУЭ .

Средства защиты, используемые приборы и приспособления должны соответствовать нормативным документам по охране труда.

Планируемые на период испытаний мероприятия по безопасности и условия работы задействованного персонала на временных рабочих местах должны соответствовать требованиям и других отраслевых нормативно-технических документов.

3.2. Экспериментальный (основной) этап испытаний СЦТ при нестационарных гидравлических режимах

В начале основного (экспериментального) этапа испытаний перед проведением экспериментов (опытов) в соответствии с технической и рабочей программами испытаний должны быть выполнены следующие работы:

тарировка, подключение и проверка регистрирующих приборов, их синхронизация, проверка каналов связи;

инструктаж и расстановка персонала, участвующего в испытаниях;

необходимые переключения в СЦТ и регулировка исходного гидравлического режима испытаний;

регистрация параметров исходного гидравлического режима и проверка соблюдения требований к его созданию, при необходимости дополнительные работы по регулировке.

По окончании указанных работ руководитель испытаний принимает решение о начале проведения первого опыта, о чем по задействованным каналам связи сообщает оперативному персоналу, непосредственно участвующему в создании возмущающих воздействий и регистрации динамических характеристик параметров гидравлического режима.

3.2.1. Внесение возмущений в испытательный гидравлический режим и регистрация динамических характеристик в намеченных контрольных точках СЦТ

3.2.1.1. Внесение каждого возмущения в испытательный гидравлический режим производится в соответствии с утвержденной рабочей программой испытаний с соблюдением приведенной в ней последовательности каждой операции.

3.2.1.2. До начала проведения каждого опыта (внесения возмущения) операторы оборудования, создающего возмущение (т.е. пуск или останов которого вносит испытываемое возмущение), сообщают руководителю испытаний о готовности к выполнению команд.

3.2.1.3. Руководитель испытаний отдает команду о проведении очередного опыта и объявляет точное время внесения возмущения. Промежуток времени с момента объявления команды до момента внесения возмущения должен быть достаточным для прохождения (передачи) команды руководителя испытаний до всех лиц из числа оперативного персонала, задействованного на период испытаний непосредственно для выполнения его команд.

3.2.1.4. Операторы оборудования, создающего возмущение, и операторы быстродействующих регистрирующих измерительных приборов подтверждают получение данной команды.

3.2.1.5. Операторы быстродействующих регистрирующих измерительных приборов за 5-20 с (в зависимости от инерционности быстродействующих регистрирующих приборов) до установленного времени включают электронные устройства опроса первичных преобразователей и (или) лентопротяжные механизмы самопишущих регистрирующих приборов.

3.2.1.6. Операторы оборудования, создающего возмущение, точно в назначенное время наносят требуемое в данном опыте возмущение (посредством пуска или останова оборудования, закрытия или открытия арматуры и т.п.) в соответствии с рабочей программой испытаний.

3.2.1.7. После стабилизации давления в контрольных точках (±0,05 МПа) операторы быстродействующих регистрирующих измерительных приборов отключают регистрирующие приборы и сообщают руководителю работ о завершении регистрации параметров.

3.2.1.8. По окончании регистрации руководитель испытаний должен оперативно опросить участников испытаний на предмет успешности проведенных операций по регистрации параметров, срабатыванию защит, устройств регулирования и другого оборудования, работа которых предусматривалась в период проведения опыта. По результатам проведенного опроса руководитель работ оценивает результаты опыта с точки зрения необходимости его повторного проведения.

Параллельно производится опрос оперативного персонала источника тепла, тепловых сетей, в том числе выставленных наблюдателей, о нарушениях в работе оборудования, разрывах трубопроводов, задействованных на период испытаний, недопустимых изменениях параметров теплоносителя, не предусмотренных рабочей программой испытаний, и т.п.

На основании результатов оперативного опроса руководитель работ принимает решение о повторении опыта, продолжении испытаний либо досрочном их прекращении.

3.2.1.9. Руководитель испытаний подает команду о восстановлении исходного режима испытаний, требуемого для проведения очередного или повторения произведенного опыта.

3.2.1.10. В случае выявления повреждений оборудования и трубопроводов в период проведения опыта или нерасчетных изменений параметров сетевой воды, которые могут привести к таким повреждениям при последующих опытах, руководитель испытаний оперативно решает вопрос о прекращении испытаний и (при необходимости) принимает меры к устранению повреждений оборудования и трубопроводов и восстановлению эксплуатационного режима СЦТ.

3.2.1.11. Оперативный персонал, участвующий в испытаниях, производит необходимые переключения в соответствии с командами руководителя испытаний, требуемые для повторения проведенного опыта или выполнения следующего в соответствии с рабочей программой испытаний либо для досрочного прекращения испытаний.

3.2.2. Обследование тепловой сети после завершения испытаний, выявление и устранение при необходимости повреждений СЦТ

По окончании испытаний должно быть произведено визуальное обследование (контроль состояния) оборудования и трубопроводов, задействованных в испытаниях, для выявления возможных технических дефектов.

Состав работ при таком обследовании аналогичен подобным работам, проводимым при проведении испытаний трубопроводов и оборудования на плотность и прочность.

Дополнительно должна быть проверена работоспособность штатных устройств авторегулирования и защиты, задействованных в период испытаний, а также тех, которые были выведены из работы на этот период. Порядок и состав работ по проверке устройств авторегулирования и защиты аналогичны порядку и составу работ, проводимых периодически при их эксплуатации в соответствии с инструкциями по эксплуатации.

Выявленные дефекты трубопроводов и оборудования, средств автоматизации и защиты, которые могут привести к нарушениям в работе СЦТ в эксплуатационном режиме, подлежат устранению до восстановления нормальной работы СЦТ. Другие выявленные дефекты подлежат регистрации в установленном порядке и устраняются при ближайшем плановом отключении соответствующих участков трубопроводов, оборудования, подкачивающих насосных станций, водоподогревательной установки, источника тепла и других элементов СЦТ.

3.2.3. Восстановление эксплуатационного гидравлического и

температурного режимов СЦТ

Восстановление эксплуатационного гидравлического и температурного режимов СЦТ производится после устранения выявленных дефектов трубопроводов и оборудования, средств автоматизации и защиты, которые возникли при проведении испытаний и могут привести к нарушениям в работе СЦТ в нормальном эксплуатационном режиме.

Восстановление эксплуатационного гидравлического и температурного режимов СЦТ производится по командам руководителя испытаний или дежурного диспетчера тепловой сети, который в соответствии с программой испытаний принимает на себя оперативное руководство СЦТ по окончании испытаний.

Последовательность операций по восстановлению эксплуатационного гидравлического и температурного режимов СЦТ должна быть предусмотрена рабочей программой испытаний.

3.3. Аналитический (заключительный) этап испытаний СЦТ при нестационарных гидравлических режимах

3.3.1. Расшифровка экспериментальных данных и их представление

в удобной для анализа форме

Полученная в ходе каждого опыта измерительная информация подвергается предварительной обработке с целью представления ее в единой и удобной для последующего анализа форме.

3.3.1.1. Обработка результатов измерения параметров исходных режимов для каждого опыта проводится следующим образом:

результаты регистрации давлений исходного режима, выполненной в течение всего хода испытаний через заданные промежутки времени по манометрам, установленным в контрольных точках СЦТ, и произведенной либо наблюдателями, выставленными в этих точках, либо посредством системы телеметрии, должны быть:

При необходимости приведены в единую систему измерений;

Откорректированы на фактическое положение манометров относительно оси трубопровода или оборудования;

Сгруппированы с учетом времени произведенных измерений по каждому из проведенных опытов в соответствии с рабочей программой испытаний;

результаты контроля (измерения) расхода сетевой воды, выполненного в течение всего хода испытаний по расходомерам, установленным в контрольных точках СЦТ, следует:

При необходимости привести в единую систему измерений;

Сгруппировать с учетом времени произведенных измерений по каждому из проведенных опытов в соответствии с рабочей программой испытаний;

Откорректировать, исключив результаты измерения расхода, выходящие за допустимые пределы измерений (пределы шкалы) конкретных расходомеров.

После группировки результатов измерений расхода по каждому опыту внутри каждой группы выделяются результаты измерений, соответствующие исходному режиму до начала каждого опыта.

Целесообразно также (если это представляется возможным, т.е. позволяют инерционные свойства и пределы шкалы использованных расходомеров) выделять отдельно динамические характеристики изменения расхода сетевой воды в контрольных точках начиная с момента внесения возмущения (начала опыта) до момента стабилизации параметров (окончания опыта).

3.3.1.2. Обработка результатов измерения параметров переходных гидравлических процессов (давления сетевой воды, частоты вращения роторов насосных агрегатов, перемещения органов запорно-регулирующей арматуры, расхода сетевой воды и др.) и их изменений во времени выполняется следующим образом:

результаты измерения текущих значений указанных параметров в контрольных точках СЦТ в каждом опыте могут быть получены в одном из двух видов:

Графическом - в случае применения самопишущих регистрирующих приборов (светолучевых осциллографов с представлением результатов измерений на светочувствительной бумаге и т.п.);

Табличном - в случае применения приборов с регистрацией (архивированием или выводом на печать) текущих значений измеряемого параметра и времени на магнитных носителях информации;

для удобства последующего анализа полученные результаты измерений целесообразно представлять в двух указанных видах, при этом необходимо:

Привести каждый параметр к единой выбранной для этого параметра единице измерения;

Привести результаты измерения параметров в каждом опыте к единой шкале измерения времени переходного процесса (допускается применение различных шкал измерения для разных периодов переходного процесса в одном опыте);

Сгруппировать результаты измерения по каждому проведенному опыту и по тем объектам СЦТ, где проводились указанные измерения (источник тепла, подкачивающая насосная станция, дроссельная станция, локальный участок тепловой сети и т.п.), а также при необходимости в зависимости от поставленных задач по конкретному оборудованию (группе сетевых или перекачивающих насосов, подающему или обратному коллекторам источника тепла, быстродействующему сбросному устройству и т.п.);

Объединить и при необходимости построить в единой системе координат динамические характеристики по аналогичным параметрам (например, по изменению давления или др.) для каждой объединенной группы (объекта СЦТ или конкретного оборудования); допускается построение динамических характеристик по различным параметрам на одном графике с общей шкалой по времени и различными шкалами - по каждому параметру);

На каждом графике динамической характеристики нанести линии предельно допустимых значений (максимум и минимум) для каждого параметра по условиям прочности оборудования, поддержания требуемого технологического режима, в том числе линии вскипания теплоносителя, уставок технологических защит и т.п.;

К каждой графической динамической характеристике прикладывать таблицу изменения соответствующих параметров во времени.

3.3.2. Анализ экспериментальных данных

По результатам полученной измерительной информации:

строятся пьезометрические графики исходных гидравлических режимов и графики мгновенных давлений для каждой точки измерения соответственно возмущающему воздействию, наносимому во время эксперимента;

для каждой из контрольных точек СЦТ определяются максимальные (минимальные) значения абсолютного давления;

проводится сопоставление полученных экспериментальных данных с допустимыми по условиям прочности оборудования значениями давления; в качестве последних могут быть использованы значения испытательного давления; следует также определить возможность вскипания теплоносителя при переходном гидравлическом режиме;

определяются зоны действия недопустимых давлений в соответствии с и .

4. РЕКОМЕНДАЦИИ ПО АНАЛИЗУ РЕЗУЛЬТАТОВ ИСПЫТАНИЙ И СОСТАВЛЕНИЕ ЗАКЛЮЧЕНИЙ

4.1. На основании полученных результатов анализа экспериментальных данных:

для I группы задач по пп. 2.3.1.1 и 2.3.1.2 настоящих Методических указаний определяются опасность переходного аварийного режима при рассматриваемых возмущающих воздействиях, зона действия недопустимых давлений, значения экстремальных давлений и время их возникновения; рекомендации по выбору системы защиты и определения технических характеристик защитных устройств приведены в и ;

для II группы задач по пп. 2.3.2.1 и 2.3.2.2 настоящих Методических указаний определяются параметры соответствующих переходных гидравлических режимов, выявляются реальные динамические характеристики СЦТ с целью последующего использования в расчетах переходных гидравлических режимов;

для задач I и II групп по пп. 2.3.1.3 и 2.3.2.3 настоящих Методических указаний на основании результатов испытаний составляется заключение о работоспособности и технической эффективности защитных устройств, при необходимости разрабатываются мероприятия по доведению характеристик устройств до соответствующих технологическому процессу значений.

Кроме того, на основании испытаний проводится:

взаимоувязка действия защит на локальном участке (объекте) СЦТ с режимами работы других элементов СЦТ;

уточнение уставок, постоянных времени защитных устройств, регуляторов рассечки и т.п. для локального объекта (участка тепловой сети, насосной станции) СЦТ.

4.2. По результатам испытаний составляется заключение, в котором указываются основные результаты испытаний, перечень мероприятий, направленных на решение поставленных перед испытаниями задач в соответствии с технической программой. К заключению по результатам испытаний прилагаются техническая и рабочая программы, результаты измерений параметров переходных гидравлических режимов, параметров исходных режимов перед каждым опытом, рапорты наблюдателей и другая техническая документация.

Список использованной литературы

1. Разработка унифицированных технических решений по защите оборудования СЦТ от гидравлических ударов с установкой защитных устройств на источниках тепла и на насосных подстанциях магистральных тепловых сетей. Этап 1. Отчет:/ ВНИПИэнергопром и ОРГРЭС/. - М.: 1994.

2. Разработка унифицированных технических решений по защите оборудования СЦТ от гидравлических ударов с установкой защитных устройств на источниках тепла и на насосных подстанциях магистральных тепловых сетей. Этап 2. Отчет:/ ВНИПИэнергопром и ОРГРЭС/. - М.: 1994.

3. Правила технической эксплуатации электрических станций и сетей Российской Федерации: РД 34.20.501-95.- М.: СПО ОРГРЭС, 1996.

4. Правила техники безопасности при эксплуатации тепломеханического оборудования электростанций и тепловых сетей: РД 34.03.201-97. - М.: НЦ ЭНАС, 1997.

5. Правила устройства и безопасной эксплуатации трубопроводов пара и горячей воды: Руководящий документ Госгортехнадзора России: РД-03-94. - М.: НПО ПБТ, 1994.

6. Методические указания по наладке и обслуживанию гидравлических регуляторов в системе теплоснабжения: РД 34.35.416-97.- М.: СПО ОРГРЭС, 1998.

7. Методические указания по проведению приемо-сдаточных испытаний гидравлической автоматической системы регулирования в системах теплоснабжения: РД 34.35.415-97.- М.: СПО ОРГРЭС, 1998.

8. Положение о порядке разработки, согласования и утверждения программ испытаний на тепловых, гидравлических и атомных электростанциях, в энергосистемах, тепловых и электрических сетях.- М.: СПО Союзтехэнерго, 1986.

10. Правила устройства электроустановок. - М.: Главгосэнергонадзор России, 1998.

1. ОБЩИЕ СВЕДЕНИЯ

2. ОБЛАСТЬ ПРИМЕНЕНИЯ МЕТОДА ЭКСПЕРИМЕНТАЛЬНОГО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ НЕСТАЦИОНАРНЫХ ГИДРАВЛИЧЕСКИХ РЕЖИМОВ СЦТ, ОСНОВНЫЕ ЦЕЛИ И ЗАДАЧИ ИСПЫТАНИЙ

3. ОСНОВНОЕ СОДЕРЖАНИЕ ИСПЫТАНИЙ СЦТ ПРИ НЕСТАЦИОНАРНЫХ ГИДРАВЛИЧЕСКИХ РЕЖИМАХ

3.1. Подготовительный этап испытаний СЦТ при нестационарных гидравлических режимах

3.1.1. Анализ системы теплоснабжения и постановка задачи испытаний

3.1.2. Составление перечня возмущающих воздействий при проведении испытаний, определение допустимости создаваемых возмущений

3.1.3. Конфигурация СЦТ, задействованной в период испытаний

3.1.4. Температурный и гидравлический режимы СЦТ в период испытаний

3.1.5. Технические требования к приборному обеспечению испытаний

3.1.6. Требования к точности измерительных приборов

3.1.7. Объем измерений

3.1.8. Составление технической и рабочей программ испытаний

3.1.9. Требования безопасности

3.2. Экспериментальный (основной) этап испытаний СЦТ при нестационарных гидравлических режимах

3.2.1. Внесение возмущений в испытательный гидравлический режим и регистрация динамических характеристик в намеченных контрольных точках СЦТ

3.2.2. Обследование тепловой сети после завершения испытаний, выявление и устранение при необходимости повреждений СЦТ

3.2.3. Восстановление эксплуатационного гидравлического и температурного режимов СЦТ

3.3. Аналитический (заключительный) этап испытаний СЦТ при нестационарных гидравлических режимах

3.3.1. Расшифровка экспериментальных данных и их представление в удобной для анализа форме

3.3.2. Анализ экспериментальных данных

Список использованной литературы

Г У " П Е Т Е Р Б У Р Г Г О С Э Н Е Р Г О Н А Д З О Р"

ВОЕННЫЙ ИНЖЕНЕРНО-ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ
ПО ПРОВЕДЕНИЮ ПРИЁМО - СДАТОЧНЫХ

ИСПЫТАНИЙ

СПЕЦИАЛЬНЫХ ЭЛЕКТРОУСТАНОВОК

С ПРИМЕНЕНИЕМ НАГРЕВАТЕЛЬНОГО

КАБЕЛЯ
к ВТТ СЭУНК

_______________________
2001

2001г

С О Д Е РЖА Н И Е


  1. Общие положения

  2. Подготовка к проведению приемо-сдаточных испытаний СЭУНК

  3. Осмотр СЭУНK

  4. Испытания СЭУНK

  5. Требования к протоколу приемо-сдаточных испытаний СЭУНК

  6. Меры безопасности при проведении испытаний
Приложение А (рекомендуемое) Методика проверки непрерывности защитных проводников (проверка целостности цепей заземления)

Измерение сопротивления петли "фаза-нуль"

Проверка характеристик защитного устройства (уставок автоматических выключателей, токов плавких вставок предохранителей, испытание УЗО) Приложение D (рекомендуемое) Методика испытания омического сопротивления нагревательного кабеля


  1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1 Нa каждой смонтированной СЭУНК до пуска в эксплуатацию должны быть проведены приемо-сдаточные испытания, в соответствии с требованиями ГОСТ Р 50571.16-99, ПУЭ (гл. 1.8) и BТT.

Предлагаемая методика приемо-сдаточных испытаний позволяет реализовать системный подход к выполнению испытаний как по объему, так и последовательности их выполнения.

1.2 Перед проведением приемо-сдаточных испытаний проводится подготовка к их проведению.


    1. Приемо-сдаточные испытания СЭУНК включают:

  • осмотр смонтированной СЭУНК;

  • непосредственно испытания.
Приемо-сдаточные испытания проводятся электротехническими лабораториями, аккредитированными Госстандартом РФ и Главгосэнергонадзором РФ, по направлению органа по сертификации электроустановок.

    1. При проведении приемо-сдаточных испытаний СЭУНК. смонтированных в процессе реконструкции объекта (помещения, крыши, трубопровода, емкости и т.д.). необходимо удостовериться, что применение СЭУНК отвечает требованиям комплекса стандартов ГОСТ Р 50571, Временным техническим требованиям и не снижает электро и пожаробезопасность существующих электроустановок и электрооборудования.

  1. ПОДГОТОВКА К ПРОВЕДЕНИЮ ПРИЕМО-СДАТОЧНЫХ
ИСПЫТАНИЙ СЭУНК
2.1 До начала работ по приемо-сдаточным испытаниям СЭУНК должны быть выполнены следующие мероприятия:

  • изучена проектная документация но специальной электроустановке с применением нагревательного кабеля, ее связь с технологией производства и техническая документация фирм-изготовителей СЭУНК;

  • согласован график выполнения работ;

  • подобраны необходимые инструкции и техническая литература, подобраны в необходимом количестве формы протоколов или рабочие тетради;

  • подготовлен парк необходимых приборов и приспособлений.
2.2. На месте производства работ руководитель обеспечивает выполнение следующих подготовительных мероприятий:

  • согласовать с Заказчиком выделение производственных помещений для хранения приборов и аппаратуры, для работы с проектной и отчетной документацией (Помещения должны находиться в непосредственной близости от испытуемой СЭУНК);

  • совместно с представителем Заказчика установить сроки проведения приемо-сдаточных испытаний и график работ (Организация работ строится с учетом постоянной и равномерной загрузки испытателей).
2.3. В соответствии с объемами и сроками выполнения приемо-сдаточных испытаний определить сеть, количество участков, бригад, звеньев на объекте.

Участок или бригаду должен возглавлять квалифицированный инженер, имеющий опыт работ по электрическим испытаниям и измерениям. Руководителем звена может быть инженер или квалифицированный техник в зависимости от сложности объекта испытаний.

2.4. Каждый участок, бригада, звено должны получить определенное задание и сроки выполнения работ.

2.5. Замечания по проектной документации, монтажным работам и электроустановке записывают в акт для доведения до сведения соответствующих организаций и дальнейшего их устранения. Все замечания, а также данные о замене нагревательных кабелей, конструкций, материалов, приборов, аппаратов, о применяемых новых методах испытаний, представляющих технический интерес, также записывают в акт. Это, в особенности, относится к импортному электрооборудованию и электроустановкам.

2.6. Выбор методов приемо-сдаточных испытаний и их последовательность

осуществляется руководителем бригады в соответствии с данной Методикой проведения пуско-наладочных испытаний и графика выполнения работ. Изменять порядок и схемы конкретных видов испытаний, приведенных в данной Методике, категорически запрещается!


  1. ОСМОТР СЭУНК

3.1 Осмотр СЭУНК должен предшествовать проведению испытаний и проводится при полностью отключенной СЭУНК.

3.2 При проведении осмотра необходимо удостовериться, что смонтированная СЭУНК:


  • удовлетворяет требованиям ТБ, действующих стандартов, проектной и технической документации на комплектующие и СЭУНК в целом;

  • правильно выбрана и смонтирована в соответствии с требованиями комплекса стандартов ГОСТ Р 50571. ВТТ и инструкциями изготовителя;

  • не имеет видимых повреждений, снижающих ее безопасность и работоспособность.
3.3 Осмотр СЭУНК включает следующие проверки:

  • мер защиты от поражения электрическим током;

  • выбора питающих проводников по длительно допустимому току и потере напряжения;

  • выбора устройств защиты и сигнализации и уставок их срабатывания;

  • выбора и соответствия соединительных и нагревательных кабелей;

  • наличия и правильности расположения терморегуляторов и отключающих и коммутационных аппаратов;

  • правильности соединения проводников;

  • наличия предупредительных надписей и схем;

  • маркировки цепей;

  • доступность для удобства работы и обслуживания.
3.4 При невозможности осмотра каких либо элементов СЭУНК заключение делается но результатам проверки наличия и правильности оформления актов освидетельствования скрытых работ (приложение G).

  1. ИСПЫТАНИЯ СЭУНК

4.1 На всех вновь смонтированных СЭУНК должны быть выполнены следующие проверки, измерения и испытания (предпочтительно в приведенной последовательности):







4.2 На всех реконструируемых СЭУНК должны быть выполнены следующие проверки, измерения и испытания (предпочтительно в приведенной последовательности):

  • Проверка непрерывности защитных проводников (проверка целостности цепей заземления).

  • Измерение сопротивления изоляции СЭУНК.

  • Проверка защиты, обеспечивающей автоматическое отключение источников питания.

  • Испытание электрической прочности изоляции.

  • Испытание омического сопротивления нагревательного кабеля.

  • Измерение сопротивления заземлителя.

  • Проверка работоспособности СЭУНК.
4.3 Если при проведении приемо-сдаточных испытаний выявлены несоответствия требованиям действующих стандартов то испытания должны быть повторены после устранения замечаний.

4.4 Проверка непрерывности защитных проводников (проверка целостности цепей заземления).

4.4.1 Рекомендуется выполнять испытания с использованием источника питания, имеющего напряжение холостого хода от 4 до 24В постоянного или переменного тока при испытательном токе не менее 0.2А. Допускается для проверки применять электроизмерительные приборы, предназначенные для измерения сопротивления заземляющей проводки.

4.4.2 Не должно быть обрывов и неудовлетворительных контактов в проводке, соединяющей металлические оболочки кабелей и все открытые и сторонние проводящие части с шиной РЕ группового щитка, от которого осуществляется питание СЭУНК.

4.4.3 Сопротивление контакта не нормируется, но не должно превышать 0,05 Ом.

4.5 Измерение сопротивления изоляции СЭУНК.

4.5.1 Измерения проводятся мегомметром на напряжение 1000 В.

4.5.2 Сопротивление изоляции нагревательных кабелей измеряется между каждой нагревательной жилой и металлической оболочкой (для кабелей без металлической оболочки - между нагревательной жилой и металлической сеткой, соединенной с заземляющим устройством питающей электроустановки), а для саморегулируемых кабелей - между соединенными вместе токоведущими жилами и металлической оболочкой. Во избежание выхода из строя терморегуляторов при измерениях их следует отсоединить от цепей, в которых проводится измерение.

4.5.3 Для нагревательных кабелей сопротивление изоляции должно быть не менее 1 МОм, а для остальных элементов СЭУНК - не менее 0,5 МОм.

4.6 Проверка зашиты, обеспечивающей автоматическое отключение источников питания.

4.6.1 Проверку эффективности мер защиты от косвенного прикосновения посредством автоматического отключения источника питания следует производить путем проведения следующих испытаний:

а) Измерения сопротивления петли "фаза-нуль".

Проводится в доступном для измерения точке подключения нагревательного кабеля к другим элементам СЭУНК (выводы терморегулятора, контактора, магнитного пускателя). При подключении нагревательного кабеля к выводам терморегулятора измерение следует проводить на сетевых выводах терморегулятора с целью недопущения выхода из строя последнего.

Значение измеренного полного сопротивления петли должно соответствовать требованиям 1.7.79 ПУЭ, а также 3.6.1 ВТТ. В случае если имеются расчеты сопротивления петли "фаза-нуль" или сопротивления защитных проводников и устройство СЭУНК позволяет проверить длину и поперечное сечение проводников (обогрев крыш, водостоков и т.п.) выше указанное измерение проводить не нужно. В этом случае достаточной является проверка непрерывности защитных проводников.

б) Проверки характеристик защитных устройств:


  • токов уставки автоматических выключателей и токов плавких вставок предохранителей;

  • характеристик срабатывания УЗО; методы испытаний УЗО должны соответствовать ГОСТ Р 50571.16-99 Приложение В.
4.6.2 Параметры срабатывания защитных устройств должны соответствовать паспортным данным для данных видов оборудования, а также проекту СЭУНК.

4.7 Испытание электрической прочности изоляции.

4.7.1 Производится путем измерения одноминутного значения сопротивления изоляции мегомметром на 2500 В. Если при этом значение сопротивления меньше приведенного в таблице В1 приложение В, должно быть проведено испытание напряжением 1000 В промышленной частоты в соответствии с 1.8.34 ПУЭ.

4.7.2 Испытания проводятся в соответствии с методикой проверки сопротивления изоляции (приложение В).

4.8 Испытание омического сопротивления нагревательного кабеля.

4.8.1 Испытание для всех типов нагревательных кабелей проводился при температуре нагревательной жилы 20°С (холодное состояние).

Если условия окружающей среды отличаются от табличных, то полученные значения сопротивления жил нагревательного кабеля необходимо привести к t =20°С по формуле:

где t - температура окружающей среды при проведении измерения (°С), R 20 - сопротивление нагревательного кабеля приведенное к t = 20°С (Ом), R t - сопротивление уложенного нагревательного кабеля (Ом), L - длина уложенного нагревательного кабеля (м).

4.8.2 Значения омического сопротивления, полученные по результатам измерений могут отличаться от номинального, приведенного в паспортных данных кабеля, в пределах -5%...+10%.

4.9 Измерение сопротивления заземлителя.

4.9.1 Проводится только в тех СЭУНК. для которых предусмотрено устройство отдельного заземлителя независимо от устройства заземления в питающей сети.

4.9.2 Величина сопротивления растекания тока заземлителя должно соответствовать проекту.

4.10 Проверка работоспособности СЭУНК.

4.10.1 Проверка проводится в соответствии с указаниями фирм-изготовителей в зависимости от вида системы обогрева и должна включать проведение тепловых испытаний.

4.10.2 Тепловые испытания проводятся для полностью смонтированной СЭУНК, подключенной к источнику питания.

4.10.3 Тепловые испытания полностью смонтированных СЭУНК рекомендуется производить:

а) при обогреве полов - при расчетной температуре воздуха и помещении в течение не менее четырех часов для полов с аккумуляцией тепла, и не менее одного часа для тонких полов;

б) при обогреве наружных территорий - при расчетной температуре окружающей среды. Время испытаний зависит от вида обогреваемой территории и конструктивной схемы системы обогрева, но не должно быть менее четырех часов;

в) при обогреве трубопроводов - при расчетной температуре окружающей среды. Время испытаний зависит от диаметра трубопровода и вида жидкого продукта, но не должно быть менее трех часов.

4.10.4 Для сокращения сроков сдачи СЭУНК в эксплуатацию по согласованию с заказчиком тепловые испытания возможно проводить при температуре окружающей среды, отличной от расчетной.

4.10.5 Результаты тепловых испытаний считаются удовлетворительными, если в их процессе не происходило несанкционированных срабатываний коммутационной и защитной аппаратуры, не наблюдались местные перегревы обогреваемого объекта, и если сопротивление изоляции нагревательного кабеля, измеренное мегаомметром сразу после отключения системы обогрева от сети (в горячем состоянии) будет не менее 0,5 МОм.

РОССИЙСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО ЭНЕРГЕТИКИ
И ЭЛЕКТРИФИКАЦИИ "ЕЭС РОССИИ"

ДЕПАРТАМЕНТ СТРАТЕГИИ РАЗВИТИЯ И НАУЧНО-ТЕХНИЧЕСКОЙ ПОЛИТИКИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ
ПО ПРОВЕДЕНИЮ ЭКСПЛУАТАЦИОННЫХ
ИСПЫТАНИЙ КОТЕЛЬНЫХ УСТАНОВОК
ДЛЯ ОЦЕНКИ КАЧЕСТВА РЕМОНТА

РД 153-34.1-26.303-98

Москва 2000

Разработано Открытым акционерным обществом "Фирма по наладке, совершенствованию технологии и эксплуатации электростанций и сетей ОРГРЭС"

Исполнитель Г.Т. ЛЕВИТ

Утверждено Департаментом стратегии развития и научно-технической политики РАО "ЕЭС России" 01.10.98

Первый заместитель начальника А.П. БЕРСЕНЕВ

Руководящий документ разработан АО "Фирма ОРГРЭС" по поручению Департамента стратегии развития и научно-технической политики и является собственностью РАО "ЕЭС России".

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРОВЕДЕНИЮ ЭКСПЛУАТАЦИОННЫХ ИСПЫТАНИЙ КОТЕЛЬНЫХ УСТАНОВОК ДЛЯ ОЦЕНКИ КАЧЕСТВА РЕМОНТА

РД 153-34.1-26.303-98

Вводится в действие
с 03.04.2000

1. ОБЩАЯ ЧАСТЬ

1.1. Задачи эксплуатационных испытаний (приемосдаточных испытаний) определяет "Методика оценки технического состояния котельных установок до и после ремонта" , согласно которой при проведении испытаний после капитального ремонта должны быть выявлены и сопоставлены с требованиями нормативно-технической документации (НТД) и результатами испытаний после предыдущего ремонта значения показателей, перечисленных в табл. 1 настоящих Методических указаний. Указанной Методикой определены как желательные и испытания перед ремонтом для уточнения объема предстоящего ремонта.

1.10. Для подготовки к проведению испытаний во время ремонта следует провести проверку:

штатных приборов, включая проверку датчиков по газовоздушному, пароводяному и топливному трактам, а также правильности их установки. В частности, должны пройти проверку газозаборные и шуптовые трубы кислородомеров. Датчики приборов должны устанавливаться в такие точки потока, в которых измеряемый параметр соответствует среднему значению по потоку в целом;

шиберов, установленных на газовоздушном тракте, направляющих аппаратов и проточной части тягодутьевых машин;

горелочных устройств, шлиц, сопл и др.;

устройств, дозирующих подачу топлива (синхронизации частоты вращения питателей топлива или пыли, диапазона изменения этой частоты и его соответствия потребностям котла; состояния устройств, регулирующих высоту слоя топлива на питателях топлива; состояния дозирующих колес питателей пыли, а также клапанов, регулирующих подачу газообразного и жидкого топлива, и т.п.);

соответствия проекту узлов систем пылеприготовления. определяющих качество пыли и ее равномерное распределение.

1.11. В качестве справочной литературы при организации и проведении эксплуатационных испытаний рекомендуется пользоваться , а при проведении расчетов .

1.12. С выходом настоящих Методических указаний утрачивает силу "Инструкция и методические указания по проведению эксплуатационных экспресс-испытаний котельных агрегатов для оценки качества ремонтов" (М.: СЦНТИ ОРГРЭС, 1974).

2. ОПРЕДЕЛЕНИЕ ИЗБЫТКА ВОЗДУХА И ПРИСОСОВ ХОЛОДНОГО ВОЗДУХА

2.1. Определение избытка воздуха

Избыток воздуха α определяется с достаточной для практических целей точностью по уравнению

Погрешность расчетов по этому уравнению не превышает 1%, если α меньше 2,0 для твердых топлив, 1,25 для мазута и 1,1 для природного газа.

Более точное определение избытка воздуха αточн может быть выполнено по уравнению

где Кα - поправочный коэффициент, определяемый по рис. 1.

Введение поправки Кα может потребоваться для практических целей лишь при больших избытках воздуха (например, в уходящих газах) и при сжигании природного газа. Влияние продуктов неполного сгорания в этих уравнениях очень невелико.

Поскольку анализ газов производится обычно с помощью химических газоанализаторов Орса, целесообразно проверить соответствие между значениями О 2 и R О 2, поскольку О 2 определяется по разности [(RO 2 + О 2) - О 2], а значение (RO 2 + O 2) во многом зависит от поглотительных способностей пирогаллола. Такую проверку при отсутствии химической неполноты сгорания можно выполнить, сопоставив избыток воздуха, определенный по кислородной формуле (1) с избытком, определенным по углекислотной формуле:

При проведении эксплуатационных испытаний значение для каменных и бурых углей можно принять равным 19%, для АШ 20,2%, для мазута 16,5%, для природного газа 11,8% . Очевидно, что при сжигании смеси топлив с разными значениями пользоваться уравнением (3) нельзя.

Рис. 1. Зависимость поправочного коэффициента К α от коэффициента избытка воздуха α :

1 - твердые топлива; 2 - мазут; 3 - природные газы

Проверку правильности проведенного газового анализа можно выполнить и по уравнению

(4)

или с помощью графика рис. 2.

Рис. 2. Зависимость содержания СО 2 и O 2 в продуктах горения различных видов топлива от коэффициента избытка воздуха α:

1, 2 и 3 - городской газ ( соответственно составляет 10,6; 12,6 и 11,2%); 4 - природный газ; 5 - коксовый газ; 6 - нефтяной газ; 7 - водяной газ; 8 и 9 - мазут ( от 16,1 до 16,7%); 10 и 11 - группа твердого топлива ( от 18,3 до 20,3%)

При использовании для выявления избытка воздуха приборов типа "Testo-Term " за основу принимается определение содержания О 2, так как в этих приборах значение RO 2 определяется не прямым измерением, а расчетом на основании уравнения, аналогичного (4). Отсутствие заметной химической неполноты сгорания (СО ) определяется обычно с помощью индикаторных трубок или приборов типа "Testo-Term ".

Строго говоря, для определения избытка воздуха в том или ином сечении котельной установки требуется найти такие точки сечения, анализ газов в которых в большинстве режимов отражал бы средние значения по соответствующей части сечения. Тем не менее для эксплуатационных испытаний достаточно в качестве контрольного, ближайшего к топке сечения принимать газоход за первой конвективной поверхностью в опускном газоходе (условно - за пароперегревателем), а место отбора проб для П-образного котла в центре каждой (правой и левой) половины сечения. Для Т-образного котла количество мест отбора проб газа следует удвоить.

2.2. Определение присосов воздуха в топку

Для определения присосов воздуха в топку, а также в газоходы до контрольного сечения помимо метода ЮжОРГРЭС с постановкой топки под давление рекомендуется использовать метод, предложенный Е.Н. Толчинским . Для определения присосов следует провести два опыта с разным расходом организованного воздуха при одной нагрузке, при одном разрежении в верху топки и при неизменном положении шиберов на воздушном тракте после воздухоподогревателя, Нагрузку желательно принять как можно ближе к поминальной с тем, чтобы была возможность (были достаточны запасы в производительности дымососов и подаче дутьевых вентиляторов) изменять в широких пределах избыток воздуха. Например, для пылеугольного котла иметь за пароперегревателем в первом опыте α" = 1,7, а во втором α" = 1,3. Разрежение в верху топки поддерживается на обычном для данного котла уровне.

При этих условиях суммарные присосы воздуха (Δαт), присосы в топку (Δαтоп) и газоход пароперегревателя (Δαпп) определяются по уравнению

(6)

здесь и - избытки организованно поданного в топку воздуха в первом и втором опыте;

Перепад давлений между воздушным коробом на выходе из воздухоподогревателя и разрежением в топке на уровне горелок.

При выполнении опытов требуется производить измерение:

паропроизводительности котла - Дк;

температуры и давления свежего пара и пара промперегрева;

разрежения в верхней части топки и на уровне горелок;

давления за воздухоподогревателем.

В том случае если нагрузка котла Допыт отличается от номинальной Дном, приведение производится по уравнению

(7)

Однако уравнение (7) справедливо, если во втором опыте избыток воздуха соответствовал оптимальному при номинальной нагрузке. В противном случае приведение следует выполнять по уравнению

(8)

Оценка изменения расхода организованного воздуха в топку по значению возможна при неизменном положении шиберов на тракте после воздухоподогревателя. Однако это не всегда осуществимо. Например, на пылеугольном котле, оснащенном схемой пылеприготовления прямого вдувания с установкой перед мельницами индивидуальных вентиляторов (ВГД), значение характеризует расход воздуха только через тракт вторичного воздуха. В свою очередь расход первичного воздуха при неизменном положении шиберов на его тракте изменится при переходе от одного опыта ко второму в существенно меньшей степени, поскольку большую долю сопротивления преодолевает ВГД. Аналогично происходит на котле, оснащенном схемой пылеприготовления с промбункером с транспортом пыли горячим воздухом.

В описанных ситуациях судить об изменении расхода организованного воздуха можно по перепаду давлений на воздухоподогревателе, заменяя в уравнении (6) показатель величиной или перепадом на измерительном устройстве на всасывающем коробе вентилятора. Однако это возможно, если на время опытов закрыта рециркуляция воздуха через воздухоподогреватель и в нем нет значительных неплотностей.

Проще решается задача определения присосов воздуха в топку на газомазутных котлах: для этого надо прекратить подачу в воздушный тракт газов рециркуляции (если используется такая схема); пылеугольные котлы на время опытов, если это возможно, следует перевести на газ или мазут. И во всех случаях проще и точнее можно определить присосы при наличии прямых измерений расхода воздуха после воздухоподогревателя (суммарного или путем сложения расходов по индивидуальным потокам), определяя параметр С в уравнении () по формуле

(9)

Наличие прямых измерений Q в позволяет определить присосы и путем сопоставления его значения со значениями, определяемыми по тепловому балансу котла:

; (10)

В уравнении (10):

И - расход свежего пара и пара промперегрева, т/ч;

И - приращение тепловосприятия в котле по основному тракту и тракту пара промперегрева, ккал/кг;

К.п.д, котла брутто, %;

Приведенный расход воздуха (м3) при нормальных условиях на 1000 ккал для конкретного топлива (табл. 2);

Избыток воздуха за пароперегревателем.

Таблица 2

Приведенные теоретически необходимые объемы воздуха для сжигания различных топлив

Бассейн, вид топлива

Характеристика топлива

Приведенный на 1000 ккал объем воздуха (при α = 1) , 103 м3/ккал

Донецкий

Кузнецкий

Карагандинский

Экибастузский

сс

Подмосковный

Райчихииский

Ирша-Бородинский

Березовский

Фрезерный торф

Газ Ставрополь-Москва

Расчеты с использованием позволяют не определять теплоту сгорания и V0 топлива, сжигаемого во время опытов, поскольку значение этой величины в пределах одного вида топлива (группы топлив близкой приведенной влажности) изменяется незначительно.

Определяя присосы по уравнению (), следует иметь в виду возможность больших погрешностей - по порядка 5%. Тем не менее, если при проведении испытаний помимо определения присосов ставится задача выявить распределение воздуха, поступающего в топку по потокам, т.е. значение Q в известно, пренебрегать определением по () не следует, особенно если присосы велики.

Упрощение методики, изложенной в , проведено в предположении, что присосы в газоходе от места измерения в верху топки до контрольного сечения (за пароперегревателем или далее по тракту), где проводится отбор проб газа на анализ, невелики и мало меняются от опыта к опыту из-за малого сопротивления поверхностей нагрева в этом районе. В тех случаях, когда это предположение не удовлетворяется, следует использовать методику без упрощений. Для этого требуется проведение не двух, а трех опытов. Причем описанным выше двум опытам (далее с верхними индексами " и "") должен предшествовать опыт (с индексом ") при том же расходе организованного воздуха, что и в опыте с индексом ("), но с большей нагрузкой. Дополнительно к разрежению в верху топки S т в опытах должно определяться разрежение в контрольном сечении S к. Расчеты ведутся по формулам:

(12)

. (13)

2.3. Определение присосов воздуха в газоходы котельной установки

При умеренных присосах целесообразно организовать определение избытка воздуха в контрольном сечении (за пароперегревателем), за воздухоподогревателем и за дымососами. Если присосы значительно (в два раза и более) превышают нормативные, целесообразно организовать измерения в большом числе сечений, например, до и после воздухоподогревателя, особенно регенеративного, до и после электрофильтра. В названных сечениях целесообразно, так же как и в контрольном, организовать измерения с правой и левой сторон котла (обоих газоходов Т-образного котла), имея в виду высказанные в соображения о представительности места отбора проб на анализ.

Поскольку трудно организовать одновременный анализ газов во многих сечениях, обычно проводятся измерения сначала с одной стороны котла (в контрольном сечении, за воздухоподогревателем, за дымососом), затем с другой.

Очевидно, в течение всего опыта необходимо обеспечить стабильный режим работы котла.

Значение присосов определяется как разность значений избытков воздуха в сравниваемых сечениях,

2.4. Определение присосов воздуха в системы пылеприготовления

Определять присосы согласно следует в установках с промбункером, а также с прямым вдуванием при сушке дымовыми газами. При газовой сушке в обоих случаях присосы определяются, как и в котле, на основе газового анализа в начале и в конце установки.

Расчет присосов по отношению к объему газов в начале установки ведется по формуле

При сушке воздухом в системах пылеприготовления с промбункером для определения присосов следует организовать измерение расхода воздуха на входе в систему пылеприготовления и влажного сушильного агента на стороне всасывания или нагнетания мельничного вентилятора . При определении на входе в мельничный вентилятор рециркуляцию сушильного агента во входной патрубок мельницы на время определения присосов следует закрыть.

Расходы воздуха и влажного сушильного агента определяются с помощью стандартных измерительных устройств либо с помощью протарированных трубками Прандтля мультипликаторов . Тарировку мультипликаторов следует производить в условиях, максимально приближенных к рабочим, так как показания этих устройств не строго подчинены закономерностям, присущим стандартным дроссельным устройствам.

Для приведения объемов к нормальным условиям измеряются температура и давление воздуха на входе в установку и влажного сушильного агента у мельничного вентилятора. Плотность воздуха (кг/м3) в сечении перед мельницей (при обычно принимаемом содержании водяных паров (0,01 кг/кг сухого воздуха):

(15)

где - абсолютное давление воздуха перед мельницей в месте измерения расхода, мм рт. ст.

Плотность сушильного агента перед мельничным вентилятором (кг/м3) определяется по формуле

где - приращение содержания водяных паров за счет испаренной влаги топлива, кг/кг сухого воздуха, определяемое по формуле

(17)

здесь В м - производительность мельницы, т/ч;

μ - концентрация топлива в воздухе, кг/кг;

Расход воздуха перед мельницей при нормальных условиях, м3/ч;

Доля испаренной влаги в 1 кг исходного топлива, определяемая по формуле

(18)

в которой - влага топлива рабочая, %;

Влага пыли, %,

Подсчеты при определении присосов проводятся по формулам:

(20)

(21)

Значение присосов по отношению к теоретически необходимому для сжигания топлива расходу воздуха определяется по формуле

(22)

где - среднее значение присосов по всем системам пылеприготовления, м3/ч;

n - среднее число работающих систем пылеприготовления при номинальной нагрузке котла;

В к - расход топлива на котел, т/ч;

V 0 - теоретически необходимый расход воздуха для сжигания 1 кг топлива, м3/кг.

Для выявления значения на основе значения коэффициента , определенного по формуле (), следует определить количество сушильного агента на входе в установку и далее вести расчеты на основе формул (21) и (22). Если определение значения затруднено (например, в системах пылеприготовления с мельницами-вентиляторами из-за высоких температур газа), то можно это сделать, опираясь на расход газов в конце установки - [сохраняем обозначение формулы (21)]. Для этого определяется по отношению к сечению за установкой по формуле

(23)

При определении расхода сушильно-вентилирующего агента при газовой сушке целесообразно плотность определять по формуле (), подставляя в знаменателе вместо значение . Последнее можно, согласно , определить по формулам:

(25)

где - плотность газов при α = 1;

Приведенная влажность топлива, % на 1000 ккал (1000 кг·% / ккал);

И - коэффициенты, имеющие следующие значения:

Тощие угли

Каменные угли и их отходы

Бурые угли

Коэффициент полезного действия (%) котла определяется по обратному балансу по формуле

где q 2 - потери тепла с уходящими газами, %;

q 3 - потери тепла с химической неполнотой сгорания, %;

q 4 - потери тепла с механической неполнотой сгорания, %;

q 5 - потери тепла в окружающую среду, %;

q 6 - потери тепла с физическим теплом шлака, %.

3.2. В связи с тем, что задачей настоящих Методических указаний является оценка качества ремонта, а сравнительные испытания проводятся примерно при тех же условиях, потери тепла с уходящими газами могут с достаточной точностью определяться по несколько упрощенной формуле (в сравнении с принятой в ):

где - коэффициент избытка воздуха в уходящих газах;

Температура уходящих газов, °С;

Температура холодного воздуха, °С;

q 4 - потери тепла с механической неполнотой сгорания, %;

К Q - поправочный коэффициент, учитывающий тепло, внесенное в котел с подогретым воздухом и топливом;

К , С , b - коэффициенты, зависящие от сорта и приведенной влажности топлива, усредненные значения которых приведены в табл. 3.

Таблица 3

Усредненные значения коэффициентов К , С и d для подсчета потерь тепла q 2

Топливо

Антрациты,

3,5 + 0,02 W п ≈ 3,53

0,32 + 0,04 W п ≈ 0,38

полуантрациты,

тощие угли

Каменные угли

3,5 +0,02 W п

0,4 + 0,04 W п

Бурые угли

3,46 + 0,021 W п

0,51 +0,042 W п

0,16 + 0,011 W п

3,45 + 0,021 W п

0,65 +0,043 W п

0,19 + 0,012 W п

3,42 + 0,021 W п

0,76 + 0,044 W п

0,25 + 0,01 W п

3,33 + 0,02 W п

0,8 + 0,044 W п

0,25 + 0,01 W п

Мазут, нефть

Природные газы

Попутные газы

*При W п ≥ 2b = 0,12 + 0,014 W п.

Температура холодного воздуха (°C) измеряется на стороне всасывания дутьевого вентилятора до ввода регулирующего горячего воздуха.

Поправочный коэффициент КQ определяется по формуле

(29)

Физическое тепло топлива имеет смысл учитывать лишь при использовании нагретого мазута. Рассчитывается эта величина в кДж/кг (ккал/кг) по формуле

(30)

где - удельная теплоемкость мазута при температуре его поступления в топку, кДж/(кг·°С) [ккал/(кг·°С)];

Температура поступающего в котел мазута, нагретого вне его, °С;

Доля мазута по теплу в смеси топлив.

Удельный расход тепла на 1 кг топлива, внесенного в котел с воздухом (кДж/кг) [(ккал/кг)] при его предварительном подогреве в калориферах, рассчитывается по формуле

где - избыток воздуха, поступающего в котел, в воздушном тракте перед воздухоподогревателем;

Повышение температуры воздуха в калориферах, °С;

Приведенная влажность топлива, (кг·%·103) / кДж [(кг·%·103) / ккал];

Физическая постоянная, равная 4,187 кДж (1 ккал);

Низшая теплота сгорания, кДж (ккал/кг).

Приведенная влажность твердого топлива и мазута рассчитывается на основе текущих средних данных на электростанции по формуле

(32)

где - влажность топлива на рабочую массу, %,

При совместном сжигании топлива различных видов и марок, если коэффициенты К, С и b для различных марок твердого топлива отличаются один от другого, приведенные значения этих коэффициентов в формуле () определяются по формуле

где а1 а2 ... аn - тепловые доли каждого из топлив в смеси;

К 1 К 2...К n - значения коэффициента К (С, b ) для каждого из топлив.

3.3. Потери тепла с химической неполнотой сгорания топлива определяются по формулам:

для твердого топлива

для мазута

для природного газа

Коэффициент принимается равным 0,11 или 0,026 в зависимости от того, в каких единицах определяется - в ккал/м3 или кДж/м3.

Значение определяется по формуле

При расчетах в кДж/м3 численные коэффициенты в этой формуле умножаются на коэффициент К = 4,187 кДж/ккал.

В формуле (37) СО , Н 2 и СН 4 - объемные содержания продуктов неполного сгорания топлив в процентах по отношению к сухим газам. Определяются эти величины с помощью хроматографов по предварительно отобранным пробам газа . Для практических целей, когда режим работы котла ведется при избытках воздуха, обеспечивающих минимальное значение q 3, вполне достаточно в формулу (37) подставлять лишь значение СО . В этом случае можно обойтись более простыми газоанализаторами типа "Testo-Term ".

3.4. В отличие от других потерь для определения потерь тепла с механической неполнотой сгорания требуется знание характеристик твердого топлива, используемого в конкретных опытах - его теплотворной способности и рабочей зольности А р. При сжигании каменных углей неопределенных поставщиков или марок полезно знать и выход летучих , так как эта величина может отразиться на степени выгорания топлива - содержании горючих в уносе Гун и шлаке Гшл.

Расчеты проводятся по формулам:

(38)

где и - доля золы топлива, выпадающей в холодную воронку и уносимой дымовыми газами;

Теплота сгорания 1 кг горючих, равная 7800 ккал/кг или 32660 кДж/кг.

Потери тепла с уносом и шлаком целесообразно рассчитывать отдельно, особенно при больших различиях в Г ун и Г шл. В последнем случае весьма актуально уточнение значения , поскольку рекомендации по этому вопросу весьма приближенны. На практике и Г шл зависят от крупности пыли и степени загрязнения топки шлаковыми отложениями. Для уточнения значения рекомендуется провести специальные испытания .

При сжигании твердого топлива в смеси с газом или мазутом значение (%) определяется выражением

где - доля твердого топлива по теплу в общем расходе топлива.

При одновременном сжигании нескольких марок твердого топлива расчеты по формуле (39) ведутся по средневзвешенным значениям и А р.

3.5. Потери тепла в окружающую среду рассчитываются на основе рекомендаций . При проведении опытов на нагрузке Дк меньшей, чем номинальная, пересчет производится по формуле

(41)

3.6. Потери тепла с физическим теплом шлака существенны лишь при жидком шлакоудалении. Определяются они по формуле

(42)

где - энтальпия золы, кДж/кг (ккал/кг). Определяется по .

Температура золы при твердом шлакоудалении принимается равной 600°С, при жидком - равной температуре нормального жидкого шлакоудаления t нж или t зл + 100°С, которые определяются по и .

3.7. При проведении опытов до и после ремонта необходимо стремиться к поддержанию одинакового максимального числа параметров (см. настоящих Методических указаний) с тем, чтобы свести к минимуму количество поправок, которые требуется вводить.

Относительно просто может быть определена лишь поправка к q 2 на температуру холодного воздуха t x.в, если температура на входе в воздухоподогреватель поддерживается на постоянном уровне. Сделать это можно на основе формулы (), определив q 2 при разных значениях t x.в. Учет влияния отклонения других параметров требует экспериментальной проверки или машинного поверочного расчета котла.

4. ОПРЕДЕЛЕНИЕ ВРЕДНЫХ ВЫБРОСОВ

4.1. Необходимость определения концентраций оксидов азота (NO х), а также SO 2 и СО диктуется актуальностью проблемы сокращения вредных выбросов электростанций, которой с годами уделяется все большее внимание [ , ]. В этот раздел отсутствует.

4.2. Для анализа дымовых газов на содержание вредных выбросов применяются переносные газоанализаторы многих фирм. Наиболее распространены на электростанциях России электрохимические приборы германской фирмы "Testo ". Фирма выпускает приборы разного класса. С помощью наиболее простого прибора "Testo 300M" можно определить содержание в сухих дымовых газах О 2 в % и объемных долях (ррт )* СО и NO x и автоматически перевести объемные доли в мг/нм3 при α = 1,4. С помощью более сложного прибора "Testo- 350" можно помимо изложенного определить температуру и скорость газа в месте ввода зонда, определить расчетным путем к.п.д. котла (если зонд введен в газоход за котлом), раздельно определить с помощью дополнительного блока ("Testо- 339") содержание NO и NO 2, а также при использовании обогреваемых (длиной до 4 м) шлангов SO 2.

*1 ррт = 1/106 объема.

4.3. В топках котлов при горении топлива в основном (на 95 - 99%) образуется монооксид азота NO , а содержание более токсичного диоксида NO 2 составляет 1 - 5%. В газоходах котла и далее в атмосфере происходит частичное неконтролируемое доокисление NO в NO 2 Поэтому условно при переводе объемной доли (ррт ) NO x в стандартное массовое значение (мг/нм3) при α = 1,4 применяется переводной коэффициент 2,05 (а не 1,34, как для NO ). Этот же коэффициент принят и в приборах "Testo " при переводе значений из ррт в мг/нм3.

4.4. Содержание оксидов азота принято определять в сухих газах, поэтому водяные пары, содержащиеся в дымовых газах, должны быть максимально сконденсированы и отведены. Для этого помимо конденсатоотводчика, которым оснащаются приборы "Testo ", целесообразно при коротких линиях устанавливать перед прибором колбу Дрекслера для организации пробулькивания газа через воду.

4.5. Представительную пробу газа для определения NO x, a также S O2 и СО можно отобрать лишь в сечении за дымососом, где газы перемешаны, в сечениях же, более близких к топке, можно получить искаженные результаты, связанные с отбором проб из шлейфа топочных газов, характеризующегося повышенным или пониженным содержанием NO х, SO 2 или СО . В то же время при детальном изучении причин повышенных значений NO x полезно отбирать пробы из нескольких точек по ширине газохода. Это позволяет связать значения NO x с организацией топочного режима, найти режимы, характеризующиеся меньшим разбросом значений NO x и соответственно меньшим средним значением.

4.6. Определение NO x до и после ремонта, так же как и определение других показателей котла, следует проводить при номинальной нагрузке и в режимах, рекомендуемых режимной картой. Последняя, в свою очередь, должна быть ориентирована на применение технологических методов подавления оксидов азота - организацию ступенчатого сжигания, ввод газов рециркуляции в горелки или в воздуховоды перед горелками, разную подачу топлива и воздуха в разные ярусы горелок и др.

4.7. Проводя опыты по максимальному сокращению NO x, что часто достигается снижением избытка воздуха в контрольном сечении (за пароперегревателем), следует избегать роста СО . Предельные значения для вновь проектируемых или реконструируемых котлов, согласно , составляют: для газа и мазута - 300 мг/нм3, для пылеугольных котлов с твердым и жидким шлакоудалением - соответственно 400 и 300 мг/нм3.

Пересчет СО и SO 2 из ррт в мг/нм3 производится умножением на удельные массы 1,25 и 2,86.

4.8. Для исключения ошибок при определении содержания в дымовых газах SO 2 необходимо отбирать газы за дымососом и, кроме того, предотвратить конденсацию содержащихся в дымовых газах водяных паров, так как SO 2 хорошо растворяется в воде с образованием H 2SO 3 Для этого при высокой температуре уходящих газов, исключающей конденсацию водяного пара в газозаборной трубке и шланге, сделать их максимально короткими. В свою очередь при возможной конденсации влаги следует применять обогреваемые (до температуры 150°С) шланги и приставку для осушения дымовых газов.

4.9. Отбор проб за дымососом сопряжен в течение достаточно длительного периода с минусовыми температурами окружающего воздуха, а приборы "Testo " рассчитаны для работы в области температур +4 ÷ + 50°С, поэтому для измерений за дымососом в зимнее время требуется установить утепленные кабинки.

Для котлов, оснащенных мокрыми золоуловителями, определение SO 2 за дымососом позволяет учесть частичное поглощение SO 2 в скрубберах.

4.10. Для исключения систематических ошибок в определении NO х и SO 2 и сравнения их с обобщенными материалами целесообразно сопоставить экспериментальные данные с расчетными значениями. Последние могут быть определены по и .

4.11. Качество ремонта котельной установки среди прочих показателей характеризуют выбросы в атмосферу твердых частиц. При необходимости определения этих выбросов следует пользоваться и .

5. ОПРЕДЕЛЕНИЕ УРОВНЯ ТЕМПЕРАТУРЫ ПАРА И ДИАПАЗОНА ЕЕ РЕГУЛИРОВАНИЯ

5.1. При проведении эксплуатационных испытаний следует выявить возможный диапазон регулирования температуры пара с помощью пароохладителей и при недостатке этого диапазона определить необходимость вмешательства в топочный режим для обеспечения требуемого уровня перегрева, поскольку указанные параметры определяют техническое состояние котла, характеризуют качество ремонта.

5.2. Оценка уровня температуры пара ведется по значению условной температуры (температуры пара в случае отключения пароохладителей). Эта температура определяется по таблицам водяного пара исходя из условной энтальпии:

(43)

где - энтальпия перегретого пара, ккал/кг;

Уменьшение энтальпии пара в пароохладителе, ккал/кг;

К - коэффициент, учитывающий увеличение тепловосприятия перегревателя вследствие роста температурного напора при включении пароохладителя. Значение этого коэффициента зависит размещения пароохладителя: чем ближе пароохладитель расположен к выходу из пароперегревателя, тем ближе к единице коэффициент. При установке поверхностного пароохладителя на насыщенном паре К принимается равным 0,75 - 0,8.

.

5.3. Диапазон нагрузок котла, в пределах которых номинальная температура свежего пара обеспечивается устройствами, предназначенными для этой цели без вмешательства в режим работы топки, определяется экспериментально. Ограничение для барабанного котла при снижении нагрузки часто связано с неплотностью регулирующей арматуры, а при увеличении нагрузки может являться следствием пониженной температуры питательной воды из-за относительно меньшего расхода пара через пароперегреватель при неизменном расходе топлива. Для учета влияния температуры питательной воды следует воспользоваться графиком, аналогичным изображенному на рис. 3, а для пересчета нагрузки на номинальную температуру питательной воды - на рис. 4.

5.4. При проведении сравнительных испытаний котла до и после ремонта так же экспериментально должен быть определен диапазон нагрузок, при котором выдерживается номинальная температура пара промперегрева. При этом имеется в виду использование проектных средств регулирования этой температуры - паропарового теплообменника, газовой рециркуляции, байпаса газов помимо промпароперегревателя (котлы ТП-108, ТП-208 с расщепленным хвостом), впрыска. Оценку следует вести при включенных подогревателях высокого давления (проектной температуре питательной воды) и с учетом температуры пара на входе в промпароперегреватель, а для двухкорпусных котлов - при одинаковой загрузке обоих корпусов.

Рис. 3. Пример определения необходимого дополнительного понижения температуры перегретого пара в пароохладителях при понижении температуры питательной воды и сохранении неизменного расхода пара

Примечание. График построен исходя из того, что при понижении температуры питательной воды, например с 230 до 150°С, и неизменных паропроизводительности котла и расходе топлива энтальпия пара в пароперегревателе увеличивается (при р п.п = 100 кгс/см2) а 1,15 раза (со 165 до 190 ккал/кг), а температура пара с 510 до 550°С

Рис. 4. Пример определения нагрузки котла, приведенной к номинальной температуре питательной воды 230 °С (при t п.в = 170 °С и Д t = 600 т/ч Дном = 660 т/ч)

Примечание . График построен при следующих условиях: t п.е = 545/545°С; р п.п = 140 кгс/см2; р "пром = 28 кгс/см2; р "пром =26 кгс/см2; t "пром = 320°С; Дпром/Дпп = 0,8

Список использованной литературы

1. Методика оценки технического состояния котельных установок до и после ремонта: РД 34.26.617-97.- М.: СПО ОРГРЭС, 1998.

2. Правила организации технического обслуживания и ремонта оборудования, зданий и сооружений электростанций и сетей: РД 34.38.030-92. - М.: ЦКБ Энергоремонта, 1994.

3. Методические указания по составлению режимных карт котельных установок и оптимизации управления ими: РД 34.25.514-96. - М.: СПО ОРГРЭС, 1998.

4. Трембовля В.И., Фингер Е.Д., Авдеева А.А. Теплотехнические испытания котельных установок. - М.: Энергоатомиздат, 1991.

5. Пеккер Я.Л. Теплотехнические расчеты по приведенным характеристикам топлива. - М.: Энергия, 1977.

6. Толчинский Е.Н., Дунский В.Д., Гачкова Л.В. Определение присосов воздуха в топочные камеры котельных установок. - М.: Электрические станции, № 12, 1987.

Установки котельные. Теплотехническое оборудование. Общие технические требования.

13. Методика определения валовых и удельных выбросов вредных веществ в атмосферу от котлов тепловых электростанций: РД 34.02.305-90. - М.: Ротапринт ВТИ, 1991.

14. Методические указания по расчету выбросов оксидов азота с дымовыми газами котлов тепловых электростанций: РД 34.02.304-95. - М.: Ротапринт ВТИ, 1996.


стр. 1



стр. 2



стр. 3



стр. 4



стр. 5



стр. 6



стр. 7



стр. 8



стр. 9



стр. 10



стр. 11



стр. 12



стр. 13



стр. 14



стр. 15



стр. 16



стр. 17



стр. 18



стр. 19



стр. 20



стр. 21



стр. 22



стр. 23



стр. 24



стр. 25



стр. 26



стр. 27



стр. 28



стр. 29



стр. 30

РД 34.45.309-92

ОРГРЗС МОСКВА 1993

ИШСТЕКШ ТОПЛИВА И ЭНЕРГЕТИКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРОВЕДЕНИЮ ИСПЫТАНИЙ ГЕНЕРАТОРОВ НА НАГРЕВАНИЕ

РД 34.45.309-92

СЛУЖБА ПЕРЕДОВОГО ОПЫТА ОРГРЭС

Как показывает практика испытаний, наиболее просто измерять сопротивление обмотки ротора, подавая питание от аккумуляторной батареи или специального источника постоянного тока, обеспечивавших устойчивый ток порядка 10 А, теми же приборами, которые будут использованы при измерениях в нагрузочных режимах.

Питание"подводится к обмотке ротора с помощью специальных зажимов или бандажей из алюминиевых или медных шинок, надеваемых на кольца ротора. Вольтметр должен подсоединяться отдельными концами непосредственно к кольцам. Подсоединение производят обычно при помощи щупов и только на время отсчетов по приборам.

Измерения следует проводить после включения тока и по окончании переходного процесса* обусловленного индуктивностью ротора. Отсчеты по приборам проводят одновременно по команде.

В случае питания обмотки ротора от резервного возбудителя (или другого мощного источника постоянного тока) током порядка О,3-0,5 номинального, во избежание ошибки от нагрева обмотки во время опыта, длительность последнего должна быть ограничена. Для роторов турбо- и гидрогенераторов с косвенным охлаждением, у которых номинальная плотность тока составляет около 3,5-4 A/W% допустимое время отсчета, в течение которого обмотка нагревается не более чем на 1%, составляет 1-2 мин при токе 0,3-0,51 НШ

Для обмоток турбогенераторов с непосредственным газовым или жидкостным охлажден(вм, у которых номинальная плотность тока составляет 7-10 А/мм^, допустимое время отсчета уменьшается до 10-20 е. Таким образом, для зтих машин указанный метод оказывается практически неприменимым без зкстрапояяции полученной температуры на момент подачи тока. ^

Измерения следует производить при нескольких (порядка трех) значениях тока, делая при каждом из них не менее трех отсчетов.

Поскольку обычно в качестве приборов постоянного тока используются одинаковые милливольтметры (один с щунтом, другой с добавочным резистором), рекомендуется для повышения точности измерения г х повторить опыты, меняя указанные приборы местами.

Значений г х подсчитывается как среднее из результатов тех отсчетов, которые не отличаются от среднего значения более чем на 0,556. Число таких отсчетов должно быть не менее вести.

Определять г х следует особо тщательно, так как ошибка в этом измерении сказывается на всех последующих измерениях превышения температуры ротора (ошибка в 1% при измерении дает ошибку примерно в 2,5°С при определении температуры).

Полученное сопротивление обмотки ротора следует привести к температуре 15% для возможности сравнения с данндои завода-иэго-товителя.

3.3. Перед испытаниями следует у всех заложенных термопреобразователей сопротивления измерить сопротивления при постоянном токе в холодном состоянии и сопротивление изоляции в соответствии с ГОСТ 11828-86 и (ij.

Предварительно необходимо по технической документации установить значения сопротивлений соединительных проводов внутри генератора от термопреобраэователя сопротивления до выводных зажимов.

Следует также проверить соответствие заводским чертежам маркировки и мест установки термопреобраэователей сопротивления.

Целесообразно измерять сопротивление термопреобразователей сопротивления на закрытой машине, а в случае, если она открыта, рекомендуется закрыть торцы брезентом, так как из-за сквозняков в машинном зале температура отдельных частей статора может быть различной. Измерения следует производить не ранее чем через 6-7 дн после остановки генератора при условии, что за это время температура в машинном зале существенно не изменялась. При необходимости этот срок можно сократить, вращая генератор с номинальной частотой на холостом ходу без возбуждения после отключения от сети. Критерием достижения установившейся температуры является ее стабилизация во времени и совпадение результатов измерений у термопреобразователей сопротивления, имеющих одинаковые сопротивления соединительных проводов.

Температуру внутри генератора следует измерять термометрами расширения, установленными в щитах и корпусе генератора. При возможности следует поместить в корпус генератора дополнительные термометры. 6 качестве расчетной температуры берут среднюю из всех измеренных значений температуры.

Сопротивления термопреобразователей сопротивления следует измерять одинарным мостом класса точности не ниже 0,5 или други-- 12 -

ми приборами* обеспечивающими указанную точность. Подключать измеряющее устройство к зажимам термопреобразователей сопротивления можно либо при помощи щупов* либо используя для этого переключатель, установленный для измерений во время испытаний на нагревание (см.п.3.5). Необходимо измерить также сопротивление соединительных проводов от зажимов до измерительного моста (включая сопротивление переключателя). Полученные значения сопротивлений термопреобразователей сопротивления (за вычетом сопротивления соединительных проводов внутри и вне генератора) приводят к температуре О^С. Полученные сопротивления не должны отличаться от номинального сопротивления термопреобразователей сопротивления при 0°С более чем на 1%.

3.4. Превышение температуры обмотки ротора над температурой охлаждающей среды следует определять по изменению сопротивления обмотки при постоянном токе при ее нагревании.

Для этого во время опыта должно быть измерено сопротивление обмотки в нагретом состоянии (г х), пользуясь методом вольтметра и амперметра.

Напряжение следует измерять непосредственно на колызах ротора, чтобы исключить влияние падения напряжения на рабочих щетках.

В качестве измерительных щеток следует применять медносетчатые или пластинчатые, йзпользовать угольные щетки не рекомендуется, так как контактное сопротивление между щеткой и кольцом быстро увеличивается за счет образования пленки на поверхности щетки. Пленка может также образоваться и на меднографитовых щетках с малым содержанием меди, поэтому при применении таких щеток их следует периодически зачищать.

Измерительные щетки должны снабжаться изолированными рукоятками, с помощью которых щетки накладывают ла кольца во время измерения. Наиболее удобно устанавливать измерительные щетки в щеткодержатели, из которых предварительно вынуты рабочие щетки. Измерительные щетки должны быть хорошо изолированы от щеткодержателей.

Для проверки этого следует сравнивать значения напряжения, измеренного непосредственно на кольцах и на траверсах щеточмго аппарата. Напряжение на траверсах больше напряжения на кольцах на значение падения напряжения в рабочих щетках и переходном сопротивлении между кольцами и щетками. Это значение составляет обычно 2-5 В.

Наиболее целесообразно производить указанную проверку в начале или конце каадой серии отсчетов.

Провода от измерительных щеток до прибора Должны иметь надежную изоляцию, поскольку напряжение на кольцах у современных крупных генераторов достигает 500 В и более. Можно, например, использовать провода ЛПРГС, заключенные в хлорвиниловую трубку.

Отсчеты по контрольным приборам, измеряющим ток и напряжение, должны производить одновременно два наблюдателя. При каждом измерении следует производить не менее трех отсчетов. Сопротивление обмотки ротора подсчитывают как среднее из отсчетов данного измерения.

Превышение температуры обмотки ротора определяется по формуле

A l } = JLt£<.(r r - г х) +т} х - г1 0 ,

где 1? х - температура, при которой измерялось сопротивле

ние ротора () в холодном состоянии, °С;

Температура входящего охлаждающего газа,

Д - число, равное 235 для медной обмотки (без присадки и с присадкой серебра); г х 1 г г - сопротивления обмотки ротора, измеренные в холодном и нагретом состояниях. Ом-

Определять превышение температуры следует непосредственно после каждого измерения* Если результаты отдельных отсчетов отличаются друг от друга более чем на 0,5$, измерение следует повторить.

В современных крупных гидрогенераторах возбуждение осуществляется выпрямленным переменным током, напряжение которого имеет довольно значительную переменную составляющую. Хотя магнито-электрический прибор, которым обычно измеряется напряжение на кольцах ротора, и не реагируют на эту составляющую, он может перегружаться. Поэтому перед испытаниями следует измерить эффективное значение напряжения и сравнить его со средним. Если отношение - Э ФУ превышает 1,5, рекомендуется включать прибор, измеряющий напряжение, через *Г"-образный LC фильтр с малым активным сопротив-- 14 -

лением. Значения L и С подбираются так, чтобы отношение -jj*- не превышало.1,5. Включать фильтр следует через плавкие предохранители и таким образом, чтобы емкость находилась со стороны прибора.

Для прибора, измеряющего ток возбуждения, установка фильтра не требуется.

3.5. У генераторов с косвенным охлаждением превышение температуры обмотки и стали статора над температурой входящего в машину охлаждающего газа следует определять по показаниям заложенных в пазы термопреобразователей сопротивления. Термопреобразователи сопротивления, измеряющие температуру обмотки, заложены между стержнями, а измеряющие температуру стали - на дно паза.

У генераторов с непосредственным газовым и масляным охлаждением принята аналогичная система установки термопреобраэователей сопротивления, однако температура, измеренная по термопреобразователям сопротивления, заложенным между стержнями, может быть принята за температуру обмотки лишь условно, так как тепло, выделяемое в обмотке, отводится главным образом охлаждающей средой, проходящей внутри стержня, и наибольшая температура имеет место в зоне выхода ее из стержней, а не в пазовой части, где установлены термопреобразователи сопротивления. В турбогенераторах с масляным охлаждением термопреобразователи сопротивления, контролирующие температуру стали статора, могут быть заложены в спинку сердечника статора.

В генераторах с непосредственным водяным охлаждением обмотки статора термопреобразователи сопротивления закладываются между стержнями или под клинья в каждом пазу, или в пазах сливных стержней каждой гидравлической ветви, или же прижаты распорками к боковым поверхностям нижних сливных стержней при выходе из паза, а в машинах с полным водяным охлаждением - в сливных шлангах каждого из стержней вне обмотки. Основное назначение этих термопреобра-вователей сопротивления - контролировать равномерность распределения дистиллята по отдельным стержняр обмотки и отсутствие их закупорки.

У генераторов с непосредственным водяным охлаждением термопреобразователи сопротивления, измеряющие температуру стали, закладываются на дао пава.

Сопротивление термопреобразователей сопротивления следует измерять одинарным мостом класса точности не ниже 0,5.

Во время испытаний следует также фиксировать показания щитовых логометров или автоматических регистрирующих устройств.

Мостом должны измеряться сопротивления всех термопреобразователей сопротивления, заложенных в генераторе, независимо от того, подключены они к эксплуатационной системе теплоконтроля или нет.

При измерении мостом переключатель эксплуатационной системы должен быть установлен в такое положение, при котором все измеряемые термопрёобразователи сопротивления были бы отключены. При наличии самопишущих приборов это требование трудно выполнить. В этом случае следует иметь в виду, что измерение сопротивления мостом можно производить лишь в то время, когда термопреобраэюватель сопротивления не подключен к системе теплоконтроля.

У генераторов большой мощности с водяным охлаждением в статор заложено большое количество термопреобразователей сопротивления. Поскольку измерение их сопротивления мостом производится в последние часы опытов каждые полчаса, использовать для этого щупы неудобно.* Рекомендуется использовать для этой цели многоканальные 1 переключатели, которые подключаются к сборке термопреобразователей сопротивления на все время испытаний. Перед испытаниями контактная система этих переключателей должна быть тщательно проверена, а сопротивления соединительных концов (включая контакты переключателя) измерены заново.

Переключатели должны быть подключены таким образом, чтобы не вносить искажений в показания эксплуатационной системы теплоконтроля.

При наличии хорошо налаженных самопищущих электронных мостов или автоматизированной системы контроля класса точности не ниже 0,5 доцускается контроль теплового состояния генератора при испытаниях производить по этим приборам. При этом перед испытаниями должна быть произведена проверка точности показаний указанных приборов.

Превышение температуры по заложенному термопреобразователю сопротивления определяется по той же формуле, что и превышение температуры обмотки ротора.

Поскольку термопреобразователи сопротивления, используемые в генераторах, имеют стандартное номинальное сопротивление при 0°С, указанная форьула может быть упрощена. Для термопреобразова-телей сопротивления, изготовленных по ГОСТ 6651-84 , номинальное сопротивление при (Яс составляет 50 См, а для термопреобразователей, изготовленных ранее - 53 Ом.

Формулы для расчета соответственно будут иметь вид:

6т)-М(г г -50)-Ф о, &\} ш 4№(г г -53)-1) 0 .

В эти формулы подставляют значения г г, полученные во время опытов, за вычетом сопротивления соединительных проводов. Последнее представляет сумму сопротивлений соединительных проводов внутри генератора и вне его.

Упрощенная формула значительно облегчает обработку полученных данных, не влияя существенны* образом на точность полученных результатов.

3.6. Температуру входящего в генератор и выходящего из него газа измеряют по всем установленным на генераторе термометрам и термопреобразователям. Заранее на остановленном генераторе следует осмотреть места установки термометров и термопреобразователей и убедиться в том, что они расположены 8 потоке газа, температура которого контролируется. Можно (дополнительно к п.3.3) проверить правильность показаний термопреобразователей сопротивления, установив в непосредственной близости от них контрольные термометры расширения и сверив затем их. показания.

Сопротивления термопреобразователей сопротивления измеряют так же, как это указано в п.3.3.

За расчетную температуру голодного гага доля» быть принята;

а) для генераторов, у которых охладители установлены вне генератора (в камерах холодного газа) - температура газа на входе в генератор;

б) для генераторов, у которых охладители встроены в корпус -температура газа на выходе из охладителей.

Во всех случаях должно быть определено среднее значение из показаний всех термометров расширения и термопреобразователей, измеряющих температуру холодного газа, если только эти показания расходятся не более чем на 2-44].

За температуру нагретого газа, выходящего из генератора, принимается среднее из показаний всех термометров расширения и термопреобразователей, установленных в камерах горячего газа или на входе в охладители.

Особо важное значение имеет измерение температуры нагретого газа на выходе из обмотки статора для генераторов с непосредственным газовым ее охлаждением.

Температура газа, выходящего из колпачков обмотки статора, в значительной степени характеризует нагревание обмотки. Это также относится к температуре газа, выходящего из сердечника статора с аксиальной системой охлаждения. Оба эти значения температуры нормируются и на них обращается особое внимание при эксплуатации генератора. Поэтому необходимо тщательно проверять исправность и правильность установки термопреобразователей сопротивления, измеряющих температуру газа, выходящего из обмотки и сердечника.

У генераторов с непосредстаенным охлаждением при наличии компрессора определяется также температура до и после него и температура газа, поступающего для охлаждения обмотки ротора (на перепускных участках).

3.7. Для измерения температуры охлаждающей жидкости, входящей и выходящей из обмоток статора и ротора, дополнительно к стационарным термопреобразователям сопротивления должны устанавливаться контрольные термометры расширения с пеной деления 0,1°С. Карманы, в которые устанавливаются термометры, должны обеспечивать возможность заливки их маслом и погружения рабочей части термометра

не менее чем на 2/3 диаметра трубопровода.

3.8. Температура воды, входящей и выходящей из газоохладите-лей и теплообменников, измеряется термометрами расширения, устанавливаемыми в карманы, вваренные в трубы л заполненные маслом. Карманы следует устанавливать так же, как указано в ft.3.7. Темпе-


ратура входящей в охладитель воды может измеряться на общем водоводе непосредственно перед разветвлением его по охладителям. Температура выходящей из охладителей воды должна измеряться в непосредственной близости от каждого охладителя, измерять следует термометрами^ ценой деления 0,1°С.

3.9. Расход воды через газоохладители и дистиллята через обмотки, сердечник и другие конструктивные части следует измерять с помощью сужающих устройств (диафрагм) по перепаду давления.

Измерительные диафрагмы должны устанавливаться на напорных трубопроводах охлаждающей воды каждого охладителя. При отсутствии на трубопроводах отдельный охладителей участков, имеющих достаточную для установки диафрагм длину, можно измерять расход на общем напорном трубопроводе.

Перепад давления на диафрагме измеряется U -образными дифференциальными манометрами. Для их заливки можно применять легкие жидкости, не смешивающиеся с водой (например, тетрабромэтан, бромо-форм, четыреххлористый углерод и др.), в зависимости от наблюдав-мого перепада давления.

Методика расчета вновь изготавливаемых диафрагм, требования к исполнению и установке диафрагм, соединительных линий и дифференциальных манометров содержатся в .

Расход дистиллята через обмотки, сердечник и другие конструктивные элементы определяется по станционным расходомерам. В случае необходимости могут быть установлены дополнительные измерительные диафрагмы*

ЗЛО. Определение расхода газа через генератор производится одним из общепринятых методов, описанных в [Z] - .

У герметизированных генераторов ос встроенными гаэоохладите-лями расход газа может быть определен из уравнения теплового баланса газоохладителей:






Расход воды и газа, м э /с;

Об&емные теплоемкости воды и газа, Дж/м 3 * °С;


Ai}q и AL? r - перепады температуры воды и газа* проходящие через газоохладитель, °С.

Для определения расхода газа должны быть измерены расход воды через каждый газоохладитель и температура воды и газа на входе в газоохладитель и выходе из него. Теплоемкость воды принимают равной единице, теплоемкость газа определяется по формуле:

где Р - абсолютное давление газа в корпусе генератора, МПа, кг/см^ или мм рт.ст;

Р атм - атмосферное давление, МПа, кг/см^ или мм рт.ст. (нормальное);

Температура газа на входе в газоохладитель, °С.

Расход газа через генератор представляет собой сумму расходов газа через отдельные газоохладители.

3. II На генераторах с водородным охлаждением в протесе испытаний на нагревание необходимо также измерять:

а) избыточное давление водорода в корпусе генератора (при избыточном давлении водорода 0,005-0,01 МПа (0,05-0,1 кг/см^) рекомендуется пользоваться водяным манометром; при 0,05-0,1 МПа (0,5-1 кг/см^) и более высоких давлениях - пружинным (желательно лабораторным);

б) чистоту водорода по щитовому газоанализатору (следует проверять показания газоанализатора по результатам химического анализа газа).

3.12. Определение регулировочных характеристик, номинального и наибольшего токов возбуждения следует производить в соответствии с - требованиями ГОСТ 10169-77 .

3.I2.I. Регулировочные характеристики, представляющие собой зависимости тока возбуждения от тока якоря, следует определять при неизменных напряжении, коэффициенте мощности и частоте вращения методом непосредственной нагрузки. Допускается определение регулировочных характеристик методом графического построения.

Р АЗРАБОТАНО Всесоюзным научно-исследовательским институтом электроэнергетики (ВНИИЭ)

ИСПОЛНИТЕЛИ Л.Г.ВОЛОДАРСКИЙ, Е.В.1УЩ®, О.И.ИБ1ДОВ,

Г. А. ОСТРОУМОВА, А.П.ЧИСТИКОВ

У ТВЕР8ДЕН0 Управлением научно-технического развитии 29.01.92 г.

Заместитель начальника К.М.АНТИПОВ

(С) СПО СР1Г8С, 1993


3.12.2. Номинальный ток возбуждения следует определять из регулировочной характеристики, снятой при номинальных мощности, напряжении, коэффициенте мощности и частоте сети. Вели при снятии этой характеристики напряжение сети отклонялось от номинального не более чем на +5$, можно строить-зависимость тока возбуждения от кажущейся мощности и определять значение номинального тока возбуждения для номинальной кажущейся мощности. Номинальный ток возбуждения можно также определить и графоаналитическим способом по диаграмме. Для определения расчетного индуктивного сопротивления Хр в соответствии с требованиями ГОСТ 10169-77 используют характеристики холостого хода и короткого замыкания и точку нагрузочной характеристики, снятой при COS ^ * 0 и токе возбужде

ния, близком к номинальному. Допускается определять х р методом последовательного приближения. Для этого задавшись Хр * 0,85 X"d строят диаграмму для одной из опытных точек регулировочной характеристики, из которой определяют расчетный ток ротора и сопоставляют с опытным значением тока ротора. Если расхождение ез-лико, то значение Х р корректируют и опять строят диаграмму для этой же опытной точки регулировочной характеристики. Построение повторяется до тех пор, пока не будет получено хорошее совпадение расчетного и опытного значений тока ротора. Конечное значение Х р принимается за расчетное и может использоваться для определения номинального и наибольшего токов ротора, полученных при следующих условиях:








I -0,95l f





I - 1,051 ном


МЕТОДИЧЕСКИЕ УКАЗАНА

ПО ПРОЩЕ»» ИЯШТАШЛ РД 34.45.309-92

ГШЕРАТСРОЗ НА НАГРЕВАНИЕ

Настоящие Методические указания устанавливает объем и порядок проведения испытаний на нагревание генераторов, находящихся в эксплуатации на электростанциях.

Методические указания предназначены для работников электростанций и организаций, занимающихся испытанием генераторов на нагревание.

С выходом настоящих Методических указаний отменяются ранее изданные "Методические указания по проведению испытаний на нагревание генераторов” (М.: СПО Союэтехвнерго, 1964).

ОБЦАЯ ЧАСТЬ

Испытания генераторов на нагревание долины производиться не позднее чем через 6 нее после ввода в эксплуатацию. В дальнейшем во время эксплуатации периодически (один раз в 10 лет) проводятся контрольные испытания на нагревание при одном-двух ренинах работы. Испытания на надевание проводятся такие после полной законы обмотки ротора или статора, или реконструкции системы охлаждения. Генераторы мощностью до 12 МВт можно не испытывать.

В первых семи разделах даны рекомендации по проведению эксплуатационных испытаний на нагревание, в целях получения характеристик нагревания генератора, выяонекия их соответствия требованиям стандартов и техническим условиям поставки и определения допустимых в эксплуатации нагрузок. В отдельных случаях испытания могут провшиться в целях выяснения причин неполадок в системе охлавдения генератора.

На основании результатов етих испытаний устанавливаются наибольшие допустимые в эксплуатации температуры (с округлением в большую сторону до 5%) обмоток статора, ротора, активной стали и охлаидаюцих сред на выходе из обмоток или сердечника статора при продолжительной работе генератора о номинальной нагрузкой при номинальных значениях коэффициента мощности, напряжения и параметров охлаждающих сред.

Для турбогенераторов, на которых в соответствии с ГОСТ 533-85 и техническими условиями разрешается длительная работа с повышенной по сравнен» с номинальной активной нагрузкой при установленных значениях коэффициента мощности я параметров охлаждения, наибольшие допустимые в експлуатации температуры следует определять при работе с номинальной и максимальной длительной нагрузкой* За наибольшие допустимые в эксплуатации температуры для таких машин должны приниматься максимальные из определенных для этих режимов-Если наибольшие температуры, подученные по результатам испытаний на нагревание, яри работе генераторов при номинальной или длительной максимальной нагрузке окажутся выше предельно допустимых значений, приведенных в ГОСТ 533-85 , ГОСТ 5616-81 , технических условиях или указанных завод ом-изготовителем в техническом описании и инструкции по експлуатации, то мощность испытуемого генератора должна быть соответственно ограничена до значения, при котором нагрев не будет превышать максимально допустимого впредь до выяснения и устранения причин, вызвавших ети повышенные нагревы. Электростанция должна сообщить об ограничении мощности в Тех-управление корпорации "Росенерго" и завсду-изготовителю*

Если наибольшие температуры, подученные по результатам испытаний на нагревание, ниже предельно допустимых значений, то сто не может служить основанием для перемаркировки генератора на большую мощность. При необходимости перемаркировки генератора, когда повышение мощности желательно для выдачи "запертой" мощности турбины и не ограничивается мощностью трансформатора, должны быть проведены дополнительные специальные испытания по программе, составляемой применительно к каждому случаю. Перед зтши испытаниями долины быть проведены соответствующие раочеты и оснастка генератора дополнительными средствами измерешя температуры и других величин. Следует иметь ввиду* что дам после проведен» соответст-

вующих испытаний перемаркировка может быть произведена только с разрешения завода-изготовителя и Техуправления.

I. УСЛОВШ ДЛЯ ПРОВЕДЕНИЯ ЭКСПЛУАТАЦИОННЫХ ИСПЫТАНИЙ НА НАГРЕЗАНИЕ

1.1. Испытания должны проводиться на генераторе, находящемся в исправном состоянии, при нормальной работе всех его основных частей и вспомогательных устройств. Особое внимание должно быть обращено на состояние системы охлаждения. Необходимо также проверить обмотку ротора на отсутствие в ней короткозамкнутых витков. Проверка производится как в неподвижном состоянии, так и при вращении ротора с различными скоростями, вплоть до номинальной

(по ГССТ 10169-77).

У роторов, имеющих витковые замыкания, измерять температуру методом сопротивления нельзя, поскольку значение измеренного сопротивления отличается от действительного, поэтому испытания на нагревание таких машин должны производиться после устранения вит-ковых замыканий.

1.2. Бее приборы, которыми производятся измерения, должны быть поверены и иметь клейма органов Госповерки.

Запрещается использование приборов, не прошедших метрологическую поверку.

1.3. На турбогенераторах с водородным охлаждением, для которых разрешена работа на воздушном охлаждении, испытания проводятся как при водородном, так и при воздушном охлаждении. На турбогенераторах с водородным охлаждением, которые согласно своим табличным данным могут работать при различных давлениях водорода, испытания должны проводиться для указанных значений давления водоро -да.

Испытания при давлении водорода» превышающем номинальное» в тех случаях, когда в паспорте генератора не указано максимальное давление, производятся по согласованию с заводом-изготовителем. Испытаниям при повышенном давлении должна предшествовать опрессовка генератора совместно с газомасляной системой избыточным давлением воздуха на 0,05 МПа (0,5 кгс/см^), превышающим давление, при котором будут производиться испытания.

2. ОБЪЕМ ЭКСПЛУАТАЦИОННЫХ ИСПЫТАНИЙ НА НАГРЕВАНИЕ

В объем испытаний входят:

2.1. Определение сопротивления обмотки ротора и заложенных термопреобразователей сопротивления в холодном состоянии.

2.2. Проведение четырех опытов на нагревание с нагрузками порядка 0,6; 0,75; 0,9 и 1,0 Р н (активной мощности) при номинальном или близком к нему коэффициенте мощности. При этом напряжение машины не должно отличаться от номинального более чем на 5%. Допускается проводить испытания на нагревание при напряжении выше номинального более чем на Ш (по условиям работы электростанции). Однако, полная мощность генератора при этом не должна превышать установленной заводом-изготовителем.

В соответствии с ГОСТ 11828-86 "Машины электрические вращающиеся. Общие методы испытаний" возможно проведение испытания при трехгчетырех различных нагрузках в пределах 0,6 номинальной мощности до максимально возможной по условиям работы электростанции (но не ниже 0,9 номинального тока), при которых интервалы между квадратами токов рабочей цепи обмоток были бы примерно одинаковыми для того, чтобы при необходимости обеспечить более точную экстраполяцию полученных зависимостей.

Во время опытов должны измеряться:

а) электрические величины, характеризуете работу генератс

б) температура обмотки и стали статора по заложенным термо-преобразователям сопротивления;

в) температура обмотки ротора методом сопротивления;

г) температура входящего и выходящего охлаждающего rasa, а для генераторов с жидкостным охлаждением также и температура входящей и выходящей жидкости;

д) температура охлаждающей воды на входе и выходе газоохла-дителей и теплообменников;

е) расход воды через газоохладители, а для генераторов с жидкостным охлаждением расход жидкости через обмотки и сердечник и давление жидкости на входе и выходе из обмоток;

ж) расход газа через генератор;

з) давление и чистота водорода.

Определение расхода воды через охладители является желательным во всех случаях и обязательным при испытании новых типов генераторов и новых типов охладителей, а также при повышенной против нормы температуре входящего газа и других неполадках в системе охлаждения.

Определение расхода газа является обязательный в тех случаях, когда имеет место повышенный нагрев частей генератора и охлаждающего газа, неравномерность температуры или другие неполадки в системе охлаждения.

2.3. Определение регулировочной характеристики, номинального и наибольшего токов возбуждения при номинальных условиях и при отклонении напряжения и тока статора на +5$ номинальных значений.

3. ПРОВЕДШИЕ ИЗМЕРЕНИЯ И ТРЕБОВАНИЯ

К ИЗМЕРИТЕЛЬНЫМ ПРИБОРАМ

3.1. Во время испытаний на нагревание и при определении регулировочной характеристики измеряются следующие электрические величины:

а) активная и реактивная мощности;

б) ток в обмотке статора (в трех фазах);

в) напряжение обмотки статора (в трех фазах);

г) ток возбуждения;

д) напряжение на кольцах ротора;

е) частота.

Все указанные величины определяются как по станционным щитовым приборам, так и по контрольным приборам, установленным на время проведения испытаний. Допускается определение частоты тока по щитовым приборам.

Измерительные приборы в соответствии с требованиями ГОСТ 11828-86 следует подбирать так, чтобы измеряемые значения находились в пределах 30-95$ шкалы. Класс точности контрольных приборов должен быть не ниже 0,5, а для приборов, установленных в цепи возбуждения, не ниже 0,2. Контрольные приборы статора подключаются к станционным измерительным трансформаторам. Установка специальных измерительных трансформаторов не требуется. Необходимо лишь проверить, не перегружаются ли трансформаторы тока в результате включения дополнительных приборов, и в случае необходимости принять меры для их разгрузки, на время проведения испытаний.

Контрольный щунт, устанавливаемый в цепи обмотки ротора, должен быть класса точности-не ниже 0,2. При отсутствии щунтов такого класса можно применять шунты класса 0,5, не снижая при этом требования к приборам, которые к ним подключаются. Допускается использование эксплуатационных щунтов класса не риже 0,5. Коэффициент мощности определяют расчетом по показаниям контрольных приборов, установленных для измерения тока, активной мощности и напряжения статора. Возможно определение коэффициента мощности по отношению показаний двух ваттметров, установленных для измерения активной мощности в соответствии с . При этом необходимо следить за тем, чтобы измеряемые значения токов и напряжений были не ниже 30$ номинальных tqkob и напряжений применяемых ваттметров.

При проведении измерений более чем на одном приборе, отсчеты по всем приборам для каждого измерения рекомендуется производить одновременно. Это обязательно при измерении сопротивлений методом амперметра и вольтметра и мощности трехфаэного тока - методом

ДВУХ ВаттмёхрСЗ.

3.2. Перед испытаниями на нагревание должны быть измерены сопротивление обмотки ротора при постоянном токе в практически холодном состоянии (Г х) и температура, при которой проводилось это

измерение (l? x) по ГОСТ 11828 -86. Значение этого сопротивления является исходным для определения превышения температуры обмотки ротора во время испытаний на нагревание. За практически холодное состояние машины согласно ГОСТ 183-74 принимается такое, при котором температура любой части машины отличается от температуры окружающего воздуха не более чем на +3°С. Температуру обмотки в холодном состоянии на вынутом роторе или на открытой машине измеряют несколькими (не менее четырех-пяти) термометрами расширения, устанавливаемыми на турбогенераторах под бандажами и вдоль бочки ротора, а на гидрогенераторах - на разных полюсах вдоль обмотки.

Температура окруж&юшего воздуха определяется по ГССТ 11828-86 как среднее арифметическое из показаний нескольких термометров, расположенных в разных точках вокруг генератора, на высоте, равной половине высоты генератора, и на расстоянии от I дс 2 м от генератора.

Если по условиям эксплуатации генератор не может быть открыт, допускается измерять г х на закрытом генераторе. При этом необходимо вести периодический контроль за остыванием генератора по всем установленным температурным индикаторам (термопреобразователям сопротивления или термопарам и термометрам расширения) и приступать к измерению г только по достижении практически холодного состояния-

Одновременно с измерением г х измеряется температура по всем установленным измерителям температуры. За температуру обмотки принимается средняя из всех полученных значений температур.

Термометры расширения должны иметь цену деления не более 1%.

У роторов с водяным охлаждением за температуру обмотки принимают среднее из значений температуры воды, входящей и выходящей из обмотки, при условии, что эти значения отличаются друг от друга не более чем на 1^, и температура входящей воды не изменяется более чем на С,5°Ь в течение 30 мин, предшествующих измерению сопротивления.

Измерять г х следует методом вольтметра и амперметра. Измерительные приборы должны иметь класс точности не ниже 0,2. Шунт при измерении методом амперметра-вольтметра должен быть класса точности не ниже 0,2.

Методические указания 2И0940 Методические указания по проведению обследований и испытаний напорных металлических трубопроводов

МЕТОДИЧЕСКИЕ УКАЗАНИЯ
ПО ПРОВЕДЕНИЮ ОБСЛЕДОВАНИЙ И ИСПЫТАНИЙ
НАПОРНЫХ МЕТАЛЛИЧЕСКИХ ТРУБОПРОВОДОВ

2И0940

МОСКВА 1996

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящие «Методические указания но проведению обследований и испытаний металлических трубопроводов» (в дальнейшем - «Методические указания») составлены в СПКТБ «МОСГИДРОСТАЛЬ» и содержат основные положения, состав и порядок проведения работ при обследованиях и испытаниях свободнолежащих незаделанных напорных трубопроводов, а также критерии оценки их технического состояния.

Составлены «Методические указания» с учетом требований действующей нормативной документации / … /.

1.2. «Методические указания» распространяются на визуальные и инструментальные обследования, статические и динамические испытания стальных напорных трубопроводов диаметром более 1 м ГЭС, ГАЭС, ГРЭС и насосных станций.

1.3. Обследования и испытания напорных трубопроводов проводятся с целью предупреждения отказов в работе и обеспечения безопасной и надежной эксплуатации конструкций.

Визуальные обследования могут проводиться как самостоятельно, так и в качестве предварительного этапа перед проведением инструментальных обследований и испытаний.

Испытания трубопроводов должны проводиться только после предварительных визуального и инструментального обследования конструкции.

1.4. Инструментальные обследования и испытания трубопроводов должны проводиться специализированными подразделениями АООТ «Трест Гидромонтаж» либо другими специализированными организациями, имеющими соответствующий опыт проведения этих работ и необходимое оборудование, с привлечением при необходимости специалистов по грунтам, бетону, геодезистов и т.д.

В, случае, если визуальные обследования выполняются как самостоятельный вид работ, то они могут проводиться комиссиями, состоящими в квалифицированных специалистов службы эксплуатации сооружения и проектировщиков оборудования.

1.5. Обследования и испытания могут быть:

1) приемочные (предпусковые);

2) регламентные;

3) специальные.

Приемочные обследования и испытания трубопроводов должны проводиться после окончания их монтажа перед перед началом эксплуатации. Если предполагается временная схема эксплуатации трубопровода, то перед началом постоянной эксплуатации возможно проведение повторных обследований и испытаний.

Состав и порядок проведения приемочных обследований и испытаний должны определяться в соответствии c РД 34 02.28-90 / / и в настоящем документе не рассматриваются.

Регламентные обследования и испытания должны проводиться в пределах следующих сроков: визуальные - один раз в 3 … 5 лет; инструментальные - впервые через 15 … 25 лет после начала постоянной эксплуатации и один раз в 10 … 15 лет; испытания - один раз в 25 … 30 лет.

Периодичность проведения регламентных обследований и испытаний должна назначаться отдельно для каждого конкретного трубопровода в зависимости от класса капитальности сооружения. Конструктивных особенностей, действующего напора, расхода, условий эксплуатации и т.д.

Специальные обследования и испытания трубопроводов должны проводиться каждый раз после имевших место аварий, отказов, многочисленных повреждений и при обнаружении вибраций трубопровода, а также после модернизации или замены гидроагрегатов.

Кроме того, специальные обследования и испытания должны проводиться для решения вопроса о реконструкции или замене трубопровода.

1.6. Обследования и испытания должны проводиться по заранее разработанным и утвержденным программам.

В программах должны быть отражены цель, основные задачи и состав работ, методы и средства их выполнения, включая степень подробности осмотра конструкций и объем контрольных измерений, разработку схем и порядка загружений, режимы работы агрегатов, места установки измерительных приборов, состав и объемы подготовительных работ, разработку мер безопасности.

1.7. Непосредственно перед началом работ программа должна уточняться и согласовываться с Заказчиком и службой эксплуатации в зависимости от конкретных условий и особенностей проведения работ на объекте.

В случае выявления в процессе обследования или испытаний опасных параметров или режимов работы оборудования, или опасных повреждений (например, усиленных вибраций трубопровода или значительного коррозионного износа металла и т.п.), об этом должна быть проинформирована служба эксплуатации, а программа работ - должным образом подкорректирована или переработана.

1.8. Обследования и испытания трубопроводов должны проводиться при погодных условиях, обеспечивающих возможность осмотров конструкции, надежность показаний измерительной аппаратуры, безопасное проведение работ (преимущественно в сухое и теплое время года).

1.9. Работы по обследованию и испытаниям напорных трубопроводов должны выполняться с соблюдением общих правил охраны труда и техники безопасности в соответствии со СНиП III-4-80 / / и местными инструкциями по технике безопасности.

1.10. Перед проведением обследований и испытаний трубопроводы должны быть заранее подготовлены службой эксплуатации к проведению работ: конструкции должны быть очищены от грязи и пыли; зоны коррозии должны быть зачищены; сварные швы должны быть очищены от краски и остаточного шлака; внутренняя поверхность должна быть очищена от отложений наносов. От грязи должны быть очищены все опоры и компенсаторы, опорные кольца.

2. ВИЗУАЛЬНЫЕ ОБСЛЕДОВАНИЯ

2.1. Общие требования

2.1.1. Визуальные обследования проводятся с целью определения общего технического состояния трубопровода и его отдельных элементов, выявления возможных дефектов и повреждений, уточнения объёмов ремонта, а также обоснования необходимости проведения инструментальных обследований и (или) испытаний.

2.1.2. Впервые визуальные обследования должны проводиться после завершения монтажа трубопровода перед началом его эксплуатации и далее через каждые 3 … 5 лет, а также - до и после проведения капитальных ремонтов.

2.1.3. В ходе визуального обследования необходимо ознакомиться с технической и проектной документацией, произвести осмотр конструкции трубопровода и составить «Акт» и (или) «Заключение» о состоянии трубопровода по результатам проведенного обследования.

2.2. Ознакомление с технической документацией.

2.2.1. Перед проведением работ необходимо ознакомиться с технической документацией, включающей:

1) рабочие чертежи конструкции с расчетами;

2) исполнительные схемы;

3) сертификаты на примененные материалы;

4) акты или журналы производства ремонтных работ и осмотров;

5) данные о режимах работы агрегатов;

6) отчеты и акты ранее, проведенных обследований и испытаний;

7) данные геодезических наблюдений за трассой трубопровода, смещениями и осадками опор.

2.2.2. При ознакомлении с технической документацией устанавливаются:

Соответствие конструкции проекту и нормативным документам;

Отступления от проекта, имевшие место в процессе изготовления и монтажа, их причины, наличие согласования отступлений от проекта с проектной организацией и заказчиком;

Примененные материалы и соответствие физических, химических и механических характеристик материалов требованиям проекта;

Исполнительные размеры конструкции и ее элементов;

Сведения о имевших место повреждениях, проведенных ремонтных работах, проведенных ранее обследованиях и испытаниях;

Особенности работы гидроагрегатов и длительность работы трубопроводов на разных режимах.

2.3. Осмотр конструкций трубопровода

2.3.1. Осмотр конструкций трубопровода проводится с целью общей оценки его состояния и выявления опасных дефектов и повреждений: трещин, деформаций, повышенного коррозионного и абразивного износа, кавитации, недопустимой фильтрации, провисания промежуточных опор и т.п.

Осмотру подлежат: оболочка трубопровода, ребра жесткости, опорные кольца, опорные устройства, уплотняющие устройства лазов, компенсаторы, приборы защиты, устройства срыва вакуума и выпуска воздуха, прочая арматура.

Кроме того, оценивается качество защитного противокоррозионного покрытия как наружной, так и внутренней поверхностей; состояние сварных швов, резьбовых соединений, заклепок, бетонных, деревянных, резиновых и других элементов конструкции; эффективность водоотвода.

2.3.2. Места, в которых предполагается наличие трещин, а также дефекты и трещины в сварных швах, должны осматриваться с помощью лупы с 6 … 10-ти кратным увеличением. Геометрические измерения поврежденных участков должны производиться с помощью металлической линейки.

2.3.3. Все обнаруженные дефекты и повреждения должны быть зафиксированы и подробно описаны в Ведомости дефектов и повреждений (см. Приложение ) о указанием места их расположения, даты обнаружения и возможных причин их появления. Наиболее серьезные дефекты, кроме того, должны быть зарисованы и сфотографированы.

2.3.4. Оболочка трубопровода.

При осмотре оболочки трубопроводов следует выявлять следующие повреждения и дефекты:

1) трещины в основном металле;

2) трещины в сварных швах и околошовной зоне, а также другие дефекты сварочного и иного происхождения (отсутствие подварки корня, плохое оформление, неполный провар, раковины и скопления поверхностных пор и т.п.);

3) местные механические повреждения, погнутости и вмятины;

4) признаки расслоения основного металла;

5) местные коррозионные, абразивные и кавитационные повреждения основного металла и сварных швов;

6) нарушение противокоррозионного покрытия.

Осмотру подлежит вся наружная и по возможности внутренняя поверхность оболочки трубопроводов и все сварные швы,

В случае наличия слоя трудноудаляемых наносов и отложений допускается производить осмотр состояния внутренней поверхности трубопровода на 3 … 5 зачищенных участках.

При хорошо сохранившемся противокоррозионном покрытии признаком трещины, появившейся после его нанесения, является разрыв пленка покрытия и его шелушение. При поврежденном покрытии признаком появления трещины служит наличие выступивших на поверхность металла продуктов коррозии в виде линий коричневого или темно-серого цвета.

При проведении осмотра оболочки необходимо обращать внимание на участки, где имеет место наибольшая вероятность появления трещин во время эксплуатации:

1) деформированные выпуклые или вогнутые участки;

2) места пересечения сварных швов и участки с большим количеством сварных швов при небольших расстояниях между ними (например, пересечение стыковых швов со швами, прикрепляющими ребра жесткости, опорные кольца и т.п.);

3) зоны наибольших расчетных напряжений;

4) участки с концентраторами напряжений - конструктивными (резкие переходы сечения, швы без подварки корня, наличие сварных накладок и т.п.) и технологическими (подрезы, кратеры швов, отсутствие плавного перехода от металла шва к основному металлу, уступы в сварных швах и т.п.);

5) участки поврежденные очаговой коррозией, а также кавитацией и абразивным износом (внутренняя поверхность);

6) места скопления влаги на наружной поверхности.

Особое внимание следует уделять дефектации корродированных сварных швов; износ стыковых швов признается недопустимым, при заглублении шва ниже поверхности сваренных листов.

При выявлении повреждении коррозионного, абразивного или кавитационного характера необходимо определить причины их появления и разработать рекомендации по предотвращению дальнейшего развития (например, восстановление или разработка новой системы противокоррозионной защиты, нанесение износостойких покрытий, зачистка кавитирующих выступов и т.п.).

Внутренняя поверхность оболочки трубопровода во время эксплуатации может, покрываешься слоем отложений, которые, с одной стороны, уменьшают интенсивность абразивного износа, а с другой, уменьшают пропускную способность из-за увеличения шероховатости и уменьшения сечения. Допускаемая толщина отложений должна определяться в каждом конкретном случае на основании результатов специальных гидравлических и технике-экономического расчетов.

2.3.5. Ребра жесткости.

При осмотре ребер жесткости необходимо обращать внимание на возможность возникновения следующих повреждений:

1) трещины и разрывы стыковых сварных швов;

2) трещины в кольцевых швах прикрепления ребер жесткости к оболочке;

3) деформации и погнутости;

4) повреждения противокоррозионного покрытия.

Осмотру подлежат все ребра жесткости.

2.3.6. Промежуточные опоры.

При осмотре промежуточных опор необходимо произвести тщательный осмотр опорного кольца, опорных плит, опорных устройств и фундамента с целью выявления следующих возможных повреждений:

1) трещины и разрывы в стыковых сварных швах опорного кольца;

2) трещины в кольцевых швах прикрепления опорного кольца к оболочке;

3) коррозионный износ металла;

4) смятие контактных поверхностей опорных плит и катков, выкрашивание и разрушение вкладышей;

5) разбалчивание резьбовых соединений;

6) разрушение бетона фундамента.

При этом необходимо обращать внимание на состояние противокоррозионного покрытия и коррозионный износ в местах скопления атмосферной влаги между стенками, поясами, диафрагмами и ребрами опорных колец; на наличие защитных кожухов опорный устройств; на состояние противоугонных зубьев и планок, боковых упоров; на наличие грязи и отложений в опорных устройствах.

Особое внимание необходимо обращать на выявление зазоров между соприкасающимися опорными плитами, катками и анкерными подушками и взаимное смещение этих элементов друг относительно друга.

Осмотру подлежат все промежуточные опоры. Перед проведением осмотра защитные кожухи опорных устройств должны быть предварительно демонтированы.

Осмотр промежуточных опор должен производиться при наполненном и при опорожненном трубопроводе.

2.3.6. Анкерные опоры.

При осмотре закрытой анкерной опоры необходимо обращать внимание на состояние и возможные повреждения оболочки трубопровода и бетона в начальном и конечном сечениях опоры.

Для открытой анкерной опоры важно произвести подробный осмотр опорного кольца, анкеров и бетона опоры.

Также при осмотре анкерных опор необходимо обращать внимание на возможный подмыв их фундамента и его просадки.

Осмотру подлежат все анкерные опоры; осмотр может производится при наполненном и при опорожненном трубопроводе.

2.3.7. Компенсаторы.

При осмотре компенсаторов выявляются:

1) наличие и интенсивность протечек (обильная течь или капель);

2) перекосы нажимного кольца;

3) ослабление крепежа и повреждения стяжных болтов;

4) возможность дополнительной затяжки сальниковой набивки;

5) наличие трещин в сварных швах фланцев, нажимных колец, патрубков и раструбов;

6) наличие коррозионных повреждений (снаружи и внутри конденсатора), а также кавитационных и абразивных повреждений (внутри компенсатора);

7) наличие и равномерность зазоров по периметру между оболочками соседних звеньев;

8) повреждения уплотняющих элементов.

Осмотр компенсаторов снаружи должен производиться при наполненном трубопроводе; осмотр его отдельных элементов (нажимных колец, уплотнений и т.п.) - при опорожненном одновременно с проведением ремонтных работ,

2.3.8. Смотровые лазы.

При осмотре смотровых лазов необходимо выявлять:

1) трещины в сварном шве соединения горловины лаза с оболочкой;

2) протечки по уплотнительному контуру;

3) ослабление крепежа и резьбовых соединений;

4) повреждения уплотняющих элементов;

5) коррозионные и иные повреждения.

Осмотр лазов снаружи должен производиться при наполненном трубопроводе.

2.3.9. Устройства впуска и выпуска воздуха.

К устройствам впуска и выпуска воздуха относятся воздушные клапаны и трубы самых разнообразных конструкций. Обследование этих устройств сводится в основном к их внешнему осмотру и проверке работоспособности при опорожнении трубопровода.

2.4. Оформление результатов

По результатам визуального осмотра должны быть составлены соответствующие «Акт» (см. Приложение ) или «Заключение».

В этих документах должны быть отражены следующие вопросы:

1) соответствие конструкции исполнительной рабочей документации;

2) общее состояние трубопровода и его отдельных элементов;

3) выявленные дефекты и повреждения, их месторасположение и описание;

4) выводы о работоспособности конструкции;

5) объем необходимого ремонта;

6) сроки проведения и предполагаемый объем следующего обследования;

7) выводы о необходимости проведения специальных инструментального обследования и (или) испытаний.

Все результаты визуального обследования трубопровода должны быть занесены в «Журнал наблюдений» с указанием даты проведения обследования, места обнаруженного дефекта или повреждения, их общего описания и рекомендаций по ремонту. В дальнейшем после проведения ремонта в «Журнал» должны быть занесены дата проведения ремонтных работ, их объём и порядок проведения.

3. ИНСТРУМЕНТАЛЬНЫЕ ОБСЛЕДОВАНИЯ

3.1. Цели, состав и порядок проведения

3.1.1. Инструментальные обследования проводятся в целях:

1) оценки работоспособности конструкции трубопровода и его отдельных элементов;

2) определения необходимости и уточнения объемов капитального ремонта;

3) оценки качества выполненного ремонта;

4) определения возможности дальнейшей эксплуатации трубопровода и остаточного срока его службы;

5) определения необходимости проведения натурных испытаний.

3.1.2. Инструментальные обследования должны производиться только после предварительного визуального обследования.

3.1.3. Инструментальные обследования могут быть:

1) приемочные;

2) регламентные;

3) специальные.

Приемочные обследования проводятся после монтажа трубопровода.

Состав и порядок проведения приемочных обследований должен определяться в соответствии с РД 34.02.028-90 / / и здесь не рассматриваются,

Регламентные инструментальные обследования должны проводиться через 15 … 25 лет после начала постоянной эксплуатации трубопровода. Необходимость и сроки проведения регламентных обследований в указанных пределах должны определяться по результатам визуального обследования.

Специальные обследования должны проводиться каждый раз после имевших место аварий и отказов, а также после проведения капитальных ремонтов.

1) измерение толщин металла.основных элементов трубопровода;

2) определение качества и эффективности системы противокоррозионной защиты:

3) проверка качества сварных швов;

4) проверка качества металла;

5) исследование химического состава и агрессивности воды (или другой рабочей среды);

6) контроль геометрических размеров трубопровода и его элементов;

7) контроль высотно-планового положения трубопровода.

Последние вид обследований - геодезические наблюдения, должны быть организованы службой эксплуатации и проводиться значительно чаще других видов инструментальных обследований: 1 раз в 2 … 5 лет (в зависимости от класса капитальности сооружения, конструкции трубопровода, вида грунта основания и т.п.).

Конкретный состав работ при проведении инструментальных обследований должен определяться в зависимости от поставленных задач (определение работоспособности конструкции или определение причин отказа и т.п.) и результатов визуального обследования.

3.1.5. Результаты инструментальных обследований должны оформляться либо «Актом» - в случае, если проводился только один из перечисленных в п. , видов обследований, либо «Отчетом» - если проводились комплексные обследования.

В «Акте» должны быть отражены:

1) цели проведения обследований;

2) методы проведения, использованные оборудование и аппаратура;

3) результаты обследования, выявленные дефекты и повреждения;

5) выводы о необходимости проведения расчетов, других видов обследований, испытаний;

6) выводы о техническом состоянии и работоспособности конструкции трубопровода и его отдельных элементов соответственно виду проведенного обследования.

К «Акту» должна прилагаться «Ведомость дефектов и повреждений», в которую должны быть занесены выявленные дефекты и повреждения с указанием места расположения, необходимыми эскизами и классификацией:

1) неустраняемые, требующие замены узлов или элементов их проведения капитального ремонта;

2) устраняемые, допускающие эксплуатацию трубопровода после выполнения ремонтных работ;

3) не влияющие на работоспособность, оставляемые без исправления.

В «Отчете» должны быть отражены все положения «Акта», а также:

1) проведены все необходимые расчеты;

2) сделаны выводы об общем техническом состоянии и работоспособности конструкции трубопровода и его отдельных элементов;

3) сделан анализ результатов проведенных ранее обследований и сравнение их с последними данными с целью оценки развития дефектов и повреждений во времени;

4) в зависимости от результатов обследования должно быть составлено Заключение о надежности и остаточном сроке службы конструкции или о необходимости проведения в этих же целях специальных испытаний;

5) определены предполагаемый состав и сроки проведения следующих обследований.

3.2. Измерение толщин металла конструкции

3.2.1. Измерение фактических толщин металла необходимо для проведения поверочных прочностных расчетов с целью оценки работоспособности и прогнозирования срока службы конструкции.

3.2.2. Измерение толщин металла должно включаться в состав регламентных или специальных обследований и производиться при повреждении противокоррозионного покрытия с явными признаками коррозии металла под ним, при абразивном или кавитационном износе металла или при отсутствии в проектной и исполнительной документации данных о толщинах металла. При отсутствии признаков коррозионного, абразивного или кавитационного износа металла измерение толщин не требуется.

Особое внимание следует уделять местам, подверженным коррозионному или кавитационному износу. Под воздействием коррозии и кавитации происходит увеличение уровня концентрации напряжений и, как следствие, снижение ударной вязкости металла и повышение критических температур хрупкости: для углеродистых сталей - примерно на 15 °С; для низколегированных (09Г2, 09Г2С) - на 20° … 25 °C / /.

3.2.2. Измерение толщин металла необходимо производить для основных несущих элементов трубопровода: оболочки, опорных колец, опорных плит, колец жесткости.

Измерение толщин оболочки трубопровода необходимо производить в 1 … 3 сечениях между промежуточными опорами либо, через каждые 20 … 30 м; в каждом сечении измерения необходимо производить в 2 … 6 точках по окружности трубопровода, а также дополнительно в местах с явными признаками разрушения покрытия и коррозии.

3.2.4. Измерение толщин следует производить неразрушающими методами, например, с помощью ультразвукового толщиномера УТ-93П, позволяющего измерять толщины с погрешностью не более ±0,1 мм.

Перед измерениями толщины металла места замеров должны быть тщательно очищены стальными щетками, скребками пли шаберами до металлического блеска. Замеры следует производить по наибольшей глубине каверн, по возможности, с гладкой стороны контролируемого элемента.

В качестве контактной среды при контроле гладких и равномерно корродированных поверхностей рекомендуется использовать масло индустриальное И-30А или глицерин, а при наличии неравномерной и язвенной коррозии - солидол жировой УС-1, смазку ЦИАТИМ-201 и пасту ПСШВ-4 / /.

Размеры обработанных площадок для измерений должны быть на 20 % … 30 % больше площади контактной поверхности искателя толщиномера.

Глубину каверн можно измерять глубиномерами индикаторного типа или штангенциркулем.

После окончания работ необходимо восстановление противокоррозионного покрытия в точках замеров.

3.2.5. Результаты измерения должны записываться в табличной форме с указанием даты проведения, мест замеров, номинальной и фактической толщин исследуемых элементов.

3.2.6. Расчетное минимальное значение толщины металла, по результатам измерений определяется по формуле:

δ р = δ ср - K ×σ - n,

где δ ср - среднеарифметическое значение толщины оболочки по результатам измерений;

σ - среднеквадратичное отклонение;

K - расчетный коэффициент вероятности; при нормальном законе распределения измеряемых величин и расчетной вероятности р = 90 % - K = 1,5;

n - приведенное значение уменьшения толщины металла за счет язвенной коррозии.

При числе точек замеров толщины металла однотипных элементов трубопровода одинаковой толщины - 1 ≥ 15

где δ mах и δ min - наибольшая и наименьшая из замеренные толщин

где а, в - размеры контрольной площадки;

d j , h j - диаметр и глубина j -той каверны;

j - количество каверн на контрольной площадке.

3.2.6. Если по результатам измерений износ металла составляет не более 5 % первоначальной толщины, то проведение поверочных прочностных расчетов не требуется; 5 % … 10 % - необходимость поверочных расчетов должна определяться в зависимости от общего состояния трубопровода, уровня расчетных напряжений, представительности данных замеров и т.д.; более 10 % - проведение расчетов необходимо.

2.2.7. Стойкость металлоконструкции к коррозионному разрушению оценивается в баллах в зависимости от скорости коррозии / / (см. табл. ).

При скорости коррозии более 0,5 мм в год необходимо проведение специальных обследований, включающих исследования химического состава и агрессивности воды, химического состава металла, состояния защитного покрытия и разработку специальных мероприятий по противокоррозионной защите.

ОЦЕНКА КОРРОЗИОННОЙ СТОЙКОСТИ МЕТАЛЛОКОНСТРУКЦИЙ

Оценка, баллы

Скорость коррозии мм/год

Группа стойкости

менее 0,001

Совершенно стойкие

0,001 … 0,005 вкл.

Весьма стойкие

0,005 … 0,01 вкл.

0,01 … 0,05 вкл.

Стойкие

0,05 … 0,1 вкл.

0,1 ... 0,5 вкл.

Пониженно стойкие

0,5 ... 1,0 вкл.

1,0 ... 5,0 вкл.

Малостойкие

5,0 ... 10,0 вкл.

Свыше 10,0

Нестойкие

3.3. Оценка состояния и эффективности противокоррозионной защиты.

3.3.1. Противокоррозионная защита металлоконструкций трубопровода может быть выполнена либо по традиционной схеме с использованием различных лакокрасочных материалов, либо комбинированной внутренняя поверхность защищается электрохимическим способом с использованием протекторов, наружная - традиционным (лакокрасочными материалами).

3.3.2. Оценка состояния и эффективности противокоррозионной защиты должна производиться при всех видах инструментальных обследований: пусковых, регламентных и специальных.

3.3.3. При обследовании противокоррозионного лакокрасочного покрытия металлоконструкций трубопровода должно проверяться его состояние, величина износа и адгезионные свойства.

Состояние покрытия определяется визуальным осмотром: на поверхности не допускается наличие трещин, царапин, выбоин, отслаивания пленки и других подобных дефектов.

Величина износа покрытия определяется путем замера его фактической толщины С помощью толщиномеров. Толщина защитного покрытия внутренней соприкасающейся с водой поверхности оболочки должна быть не менее 120 мкм; наружных поверхностей, находящихся в воздухе, - не менее 80 мкм.

Адгезию или прочность сцепления покрытия с поверхностью металла оценивают методом решетчатых надрезов по ГОСТ 15140-78 / /.

Для определения адгезии покрытия лезвием или скальпелем делаются надрезы в виде решетки: не менее пяти параллельных надрезов на расстоянии 2 мм друг от друга и не менее пяти параллельных надрезов на таком же расстоянии в поперечном направлении (при толщине покрытия менее 60 Мкм решетка наносится с шагом 1 мм).

Поверхность покрытия после нанесения решетки очищают кистью от отслоившихся кусочков пленки; оценивают адгезию покрытия по четырехбальной шкале (табл. ).

Покрытие, соответствующее 3 и 4 баллам, считается непригодным для дальнейшей эксплуатации. В этом случае должны быть определены причины плохого сцепления покрытия с поверхностью металла, проведены работы по подбору новой системы покрытия, разработана технология подготовки поверхности и нанесения покрытия.

ОЦЕНКА И ХАРАКТЕРИСТИКА АДГЕЗИИ ЗАЩИТНОГО ПОКРЫТИЯ

Оценка, балл

Описание поверхности лакокрасочного покрытия после нанесения надрезов в виде решетки

Края надрезов гладкие, нет отслоившихся кусочков покрытия.

Незначительное отслаивание покрытия в виде точек вдоль линии надрезов или в местах их пересечения (до 5 % поверхности с каждой решетки).

Отслаивание покрытия вдоль линии надрезов или полос (до 35 % поверхности с каждой решетки).

Полное или частичное отслаивание покрытия полосами или квадратами вдоль линии надрезов (более 35% поверхности с каждой решетки).

3.3.4. Контроль работы противокоррозионной протекторной защиты должен производиться с помощью переносного медносульфатного электрода сравнения, представляющего собой датчик для контроля потенциала защищаемой поверхности и силы тока в цепи «протектор - защищаемая поверхность».

При намерении потенциала электрод сравнения должен подсоединяться к милливольтметру с входным сопротивлением не менее 1 мОм. Минимальное значение защитного потенциала должно быть в пределах - минус 0,75 В … минус 0,85 В.

После первого заполнения трубопровода, оборудованного системой протекторной защиты, необходимо проверить распределение тока по поверхности и уточнить расположение протекторов.

В дальнейшем контроль защитного потенциала необходимо производить 1 раз в 5 лет.

При осмотре протекторов проверяется степень их износа, надежность крепления и металлического контакта с защищаемой поверхностью, состояние лакокрасочных покрытий. Замена протекторов должна производиться при их износе более чем на 75 % от первоначальной массы.

3.4. Проверка качества сварных швов

3.4.1. Проверка качества, сварных швов выполняется с целью выявления внутренних и поверхностных дефектов: трещин, непроваров, неоплатностей и газовых пор, шлаковых включений, несплавлений металла и т.п.

3.4.2. Проверка качества сварных швов должна обязательно выполняться при пусковых инструментальных обследованиях и по мере необходимости в зависимости от результатов визуальных обследований при регламентных и специальных обследованиях.

3.4.3. При пусковых обследованиях проверка качества сварных швов должна производиться физическими методами неразрушающего контроля в соответствии с РД 34.02.028-90 / / и СНиП III-18-75 / /: ультразвуковой дефектоскопией с последующим просвечиванием проникающими излучениями (рентгенографическим или гаммаграфическим) участков швов с признаками дефектов.

Работы должны выполняться специализированными организациями.

3.4.4. При регламентных обследованиях должен производиться выборочный контроль сварных швов в объёме контроля одного участка шва длиной не менее 240 мм на каждые 50 м швов, а также на участках, где по результатам визуального обследования предполагается наличие дефектов швов.

3.4.5. При специальных обследованиях может производиться либо выборочной контроль швов, например, после ремонта выявленных дефектных участков швов, либо контроль 100 % швов - при принятии решения о реконструкции трубопровода или определении остаточного срока его службы, а также после аварии, связанной с разрывом оболочки.

Ударную вязкость следует определять на стандартных образцах с надрезом по ГОСТ 9454-78 / /.

На растяжение должен испытываться 1 образец, на ударную вязкость - не менее 3 образцов.

Ориентировочное определение механических характеристик можно выполнить без вырезки образцов по твердости металла с помощью прибора Польди. По твердости металла можно установить предел прочности, предел текучести и содержание углерода.

3.6.4. Контроль металла должен проводиться для выявления трещин, свищей, а также внутренних дефектов - расслоя металла (признаком внутреннего расслоя может быть местное вздутие металла).

Контроль дефектных участков должен выполняться ультразвуковой дефектоскопией.

3.7. Исследование химического состава и агрессивности воды

Исследования химического состава и агрессивности воды должны производиться при. периодически повторяющемся быстром (в течение, 2 … 3 лет) разрушении защитного противокоррозионного покрытия или при низкой коррозионной стойкости металла (5 баллов и выше, см. табл. ).

Цель данных исследований - подбор наиболее эффективной системы противокоррозионной защиты металлоконструкций трубопровода.

3.8. Контроль геометрических размеров трубопровода

Контроль геометрических размеров основных элементов трубопровода выполняется с целью проверки их соответствия исполнительной рабочей документации и должен производиться при специальных обследованиях и при обследованиях перед натурными испытаниями.

Контрольные измерения выполняются в сечениях с явными отклонениями геометрических размеров от проектных, а также в створах установки контрольно-измерительной аппаратуры для испытаний.

При контрольных измерениях проверяется овальность оболочки трубопровода (измеряются внутренние диаметры); расстояния между анкерными и промежуточными опорами, между кольцами жесткости; геометрические размеры элементов опорных колец и ребер жесткости.

3.9. Контроль высотного и планового положения трубопровода

3.9.1. Контроль высотного и планового положения трубопровода должен производиться при специальных обследованиях, а также в случае слабых грунтов основания, когда имеют место просадки и подвижки опор. Кроме того, службой эксплуатации должен быть организован и регулярно проводиться текущий контроль высотно-планового положения трубопровода.

Контроль должен осуществляется методами инженерной геодезии.

Для контроля за высотным и плановым смещением опор трубопровода на всех фундаментах промежуточных опор и анкерных опорах должны быть заложены геодезические знаки - марки и реперы. Обычно не промежуточных опорах закладывается по два репера - по обе сторона от трубопровода, а на анкерных опорах - по четыре репера. Данная схема установки реперов позволяет фиксировать осадку и поперечный перекос промежуточных и анкерных опор, а также продольный перекос анкерных опор.

Все геодезические знаки на трубопроводе должны иметь привязки к базисным маркам и реперам, установленным в некотором отдалении от сооружения на грунтах, де подверженных осадкам.

3.9.2. В случае отсутствия базисных марок рекомендуется в качестве привязок установить опорные точки и определить их отметки сомкнутым ходом - для внешних по отношению к трубопроводам точек, и диагональным - для внутренних.

3.9.3. Допустимая невязка ходов (теоретическая равна нулю) определяется по формуле / /:

где L - длина хода в километрах.

Отметки опорных точек определяются с учетом поправки в зависимости от полученной невязки и расстояний между ними.

3.9.4. Опорные точки, закрепленные на местности в грунте, не подверженном осадкам, в дальнейшем могут служить базисными марками, высотное положение которых следует контролировать 1 раз в 10 ... 15 лет.

3.10. Обследование промежуточных опор

3.10.1. Инструментальное обследование промежуточных опор должно проводиться при приемочных доследованиях (в соответствии с требованиями РД 34.02.028-90 / /). регламентных и специальных обследованиях.

3.10.2. Обследование промежуточных опор выполняется о целью выявления и измерения зазоров в опорных узлах и смещения опорных катков и подушек. Наличие зазоров в промежуточных опорах указывает на возможность перегрузки отдельных опор, появление дополнительных напряжений в оболочке и опорных кольцах, а также на возможность возникновения вибраций трубопровода.

3.10.3. Зазоры должны измеряться с помощью специальных щупов. Допускаемая величина местного зазора между катком и опорными плитами или между опорными плитами не должны превышать 0,1 мм на длине не более 10 % длины контакта.

Смещение центра катка не должно превышать 3 мм.

3.10.4. В случае, если зазор окажется больше допускаемой величины, он должен быть выбран при помощи установки специальных прокладок.

3.10.5. Обследование промежуточных опор должно производиться при опорожненном и наполненном трубопроводе.

3.11. Расчеты по результатам инструментальных обследований

В случае, если после проведения инструментальных обследований трубопровода не предполагается проведение его натурных испытаний (регламентных или специальных), то при составлении Заключения о работоспособности и надежности конструкции, возможности ее дальнейшей эксплуатации, необходимости реконструкции или ремонта должны быть проведены прочностные расчеты с учетом результатов обследований.

В расчетах должны быть учтены:

1) уменьшение расчетной толщины элементов вследствие коррозионного, абразивного или кавитационного износа;

2) неравномерность просадок опор;

3) увеличение расчетного пролета из-за наличия зазоров в опорах и провисании промежуточных опор;

4) значительные (превышающие допустимые) деформации поперечного сечения оболочки;

6) изменение расчетного сопротивления металла в зависимости: от фактических химического состава и механических свойств металла;

6) понижение расчетного сопротивления металла в зависимости от степени коррозионного и кавитационного повреждений и старения.

4. ВИДЫ, СОСТАВ И ЦЕЛИ НАТУРНЫХ ИСПЫТАНИЙ

1. В зависимости от решаемых задач и сроков проведения испытания трубопроводов могут быть:

1) приемочные;

2) пусковые;

3) регламентные;

4) специальные.

Все виды испытаний должны проводиться после предварительных визуальных и инструментальных обследований.

2. Приемочные испытания - гидравлическая опрессовка трубопровода повышенным гидростатическим давлением, проводятся после завершения монтажа конструкции с целью проверки прочности трубопровода, проверки качества его изготовления и монтажа, выявления дефектов сварных швов и металла и выдачи, при необходимости, данных для ремонта.

3. Пусковые испытания трубопроводов должны проводиться одновременно с пусковыми испытаниями основного гидросилового оборудования перед приемкой его в эксплуатацию.

Цели пусковых испытаний:

1) проверка прочности конструкции трубопровода во всех возможных эксплуатационных и аварийных режимах работы гидросилового и гидромеханического оборудования;

2) выявление и.регистрация всех.возможных режимов -вибрации трубопровода и оценка степени их опасности для конструкции;

3) исследование внутренних пульсаций давления;

4) измерение фактической величины гидравлического удара в трубопроводе при аварийном закрытии затворов и направляющего аппарата с целью проверки ее соответствия расчетному значению;

5) составление Заключения о работоспособности и надежности трубопровода с введением, при необходимости, ограничений на режимы работы гидросилового и гидромеханического оборудования, при которых возможно возникновение опасных вибраций трубопроводов или гидравлических ударов.

Пусковые испытания должны включать в себя статические и динамические испытания.

4. Регламентные испытания должны проводиться 1 раз 25 … 30 лет по истечении нормативного срока эксплуатации.

Цель регламентных испытаний - проверка прочности и оценка работоспособности и надежности конструкции трубопровода после его длительной эксплуатации.

В ходе проведения регламентных испытаний должны быть выполнены:

1) исследование фактического напряженного состояния конструкции с учетом реального коррозионного и абразивного износа металла, смещения и просадок опор, старения и усталости металла и т.п.;

2) исследование гидродинамических нагрузок (внутренних пульсаций давления);

3) исследование вибрационного состояния трубопровода, выявление и регистрация режимов вибраций, оценка степени их опасности;

4) оценка, усталостной прочности конструкции.

По результатам регламентных испытаний могут быть внесены.изменения в ограничения на режимы работы гидросилового и гидромеханического оборудования.

Регламентные испытания так же, как и пусковые, домны включать в себя статические и динамические испытания; режимы регламентных испытаний должны соответствовать, в основном., режимам пусковых испытаний.

Основные выводы о работоспособности и надежности конструкции трубопровода должны делаться на основании совместного анализа результатов регламентных и пусковых испытаний.

5. Специальные испытания должны проводиться:

1) после капитальных ремонтов, реконструкции или замены гидросилового и гидромеханического оборудования;

2) при возникновении повреждений усталостного характеру, например, трещин в сварных швах и основном металле оболочки опорных колец, ребер жесткости и т.п.;

3) при повреждении опор;

4) при значительном коррозионном износе металла оболочки и опорных колец;

5) при выявлении в ходе эксплуатации вибраций трубопровода;

6) при значительных осадках и смещениях опор;

7) при авариях трубопровода (после проведения ремонтных работ);

8) после капитального ремонта трубопровода.

Целью специальных испытаний может быть:

1) исследование гидродинамических нагрузок (внутренних пульсаций давления).

2) исследование вибрационного состояния трубопровода;

3) проверка качества выполненного ремонта;

4) определение причин возникновения вибраций и разработка мер по их предотвращению;

5) определение причин возникновения усталостных и других повреждений и разработка рекомендаций по их устранению;

6) проверка прочности и оценка работоспособности и надежности конструкций;

В зависимости от целей, специальные испытания могут включать в себя либо Статические испытания, либо динамические испытания, либо статические и динамические испытания.

6. При проведении натурных испытаний трубопроводов необходимо применять прошедшую поверку стандартную контрольно-измерительную аппаратуру промышленного изготовления; при использовании нестандартной аппаратуры - должны быть разработаны методические указания по ее применению.

5. ОПРЕССОВКА ТРУБОПРОВОДА

Проект и программа испытаний гидравлической опрессовкой должны разрабатываться вместе с исполнительной рабочей документацией конструкции трубопровода и соответствовать требованиям РД 24 02.023-90 / /.

Испытательное давление при опрессовке должно превышать максимальное расчетное (гидродинамическое) на 25 %. На наклонных участках давление в любой точке должно превышать расчетное не менее, чем на 15 %. Испытательное давление должно повышаться равномерно, без скачков, скорость подъема давления не должна превышать 1 кг/см 2 в минуту.

В процессе опрессовки испытуемый участок трубопровода сначала заполняют водой и производят его осмотр; затем поднимают давление до половины испытательного, после чего также производят осмотр, а затем повышают давление до максимального значения и выдерживают это давление в течение 30 мин. После осмотра трубопровода (с соблюдением правил техники безопасности) избыточное давление сбрасывается, производится осмотр конструкции и трубопровод опорожняется.

Для определения величины действующего внутреннего давления (напора) в каждом характерном сечении, трубопровода должны устанавливаться манометры класса не ниже 1,5.

В особых случаях по согласованию с Заказчиком при опрессовке трубопровода могут производиться измерения статического состояния конструкции.

6. СТАТИЧЕСКИЕ ИСПЫТАНИЯ

6.1. Состав и порядок проведения работ при статических испытаниях

6.1.1. Статические испытания могут выполняться либо как самостоятельный вид работ, либо совместно с динамическими испытаниями.

В первом случае испытания могут проводиться с целью исследования реальных гидростатических или приравненных к ним квазигидростатических нагрузок (гидравлические удары и волны давления), нагрузок, возникающих от просадок опор, и определения соответствующего этим нагрузкам напряженного состояния конструкции для проверки ее прочности.

Во втором случае при статических испытаниях определяются осредненные нагрузки и осредненные напряжения, необходимые для усталостного расчета и оценки надежности конструкции.

Статические испытания должны проводиться при реальных эксплуатационных режимах работы гидросилового и гидромеханического оборудования.

6.1.2. Проведению статических испытаний должны предшествовать соответствующие визуальные и инструментальные обследования трубопровода (см, разд. и ), а также - гидравлические и прочностные расчеты (см. разд. ), в которых должно учитываться фактическое состояние конструкции.

СХЕМ УСТАНОВКИ ДАТЧИКА ДАВЛЕНИЯ

1 - оболочка трубопровода; 2 - патрубок;

3 - датчик давления ДД-10; 4 - уплотнительное кольцо

Регистрация результатов измерений датчиками давления может производиться с помощью измерителя давления (усилителя) ИД-2И и путем регистрации на осциллограммы и помощью светолучевого осциллографа Н-700. Блок-схема измерений статических давлений приведена на рис. .

Для определения напряженного состояния оболочки используются тензодатчики (тензорезисторы) с базой 5 … 20 мм.

Для измерения напряжений в оболочке при плоском напряженном состоянии и известных направлении главных осей в измерительных точках должны устанавливаться двойные розетки тензорезисторов, если направление главных осей не известно - тройные розетки.

БЛОК-СХЕМА ИЗМЕРЕНИЙ ОСРЕДНЕННЫХ
ЗНАЧЕНИЙ ДАВЛЕНИЙ И НАПРЯЖЕНИЙ

Для измерения тангенциальных напряжений в плоских элементах опорных колец и ребер жесткости используются одиночные тензорезисторы.

Схемы установки тензорезисторов приведены на рис. .

В Качестве вторичной регистрирующей аппаратуры при измерениях статических напряжении используются:

1) измерители деформаций с ручной балансировкой типа ИСД-3, ИДЦ-1, ИД-78;

2) измерители деформаций с автоматической балансировкой типа АИ-3, АИД-4;

3) измерители деформаций с программным подзарядным уравниванием типа ЦТМ-5;

Блок-схема измерений статических напряжений приведена на рис. .

6.3.3. Измерения прогибов трубопровода между опорами и другие деформации конструкции могут производиться при помощи прогибомеров, индикаторов перемещений, геодезическими методами в зависимости от конкретных условий испытаний.

6.4. Обработка результатов и поверочные расчеты

6.4.1. По окончании испытаний производится обработка результатов для определения фактических напоров, напряжений, перемещений в соответствии с тарировочными зависимостями.

Тарировка тензорезисторов производится: при одноосном линейном напряженном состоянии - по напряжениям, при двуосном плоском по деформациям. Напряжения в точках с двуосным напряженным состоянием определяются по формулам:

СХЕМА УСТАНОВКИ ТЕНЗОРЕЗИСТОРОВ

где E - модуль упругости материала (стали);

μ - коэффициент Пуассона;

ε 1 , ε 2 - главные деформации;

ε 0 , ε 45 , ε 90 - измеренные деформации по показаниям тензорезисторов в розетке;

φ - угол между направлением максимальной главной деформации и осью тензорезистора Т.

6.4.2. Для получения окончательных выводов о прочности конструкции трубопровода необходимо провести по результатам испытаний поверочные расчеты с целью уточнения схем деформации конструкции по нагрузкой и взаимной увязки расчетных и замеренных напряжений.

7. ДИНАМИЧЕСКИЕ ИСПЫТАНИЯ

7.1. Состав и порядок проведения работ при динамических испытаниях

7.1.1. Цели и задачи динамических испытаний определяются, целями и задачами пусковых, регламентных или специальных испытаний (см. разд. ), составной частью которых являются динамические испытания.

7.1.2. Динамические испытания должны охватывать все возможные режимы работы гидросилового и гидромеханического оборудования: стационарные - основные режимы, не изменяющиеся в течение длительного времени, и нестационарные - основные режимы включения (пуска) и выключения (останова) гидроагрегатов, а также аварийные режимы закрытия затворов и направляющего аппарата.

7.1.3. Динамические испытания должны проводиться после соответствующих визуальных и инструментальных обследований, предварительных прочностных и гидродинамических расчетов и статических испытаний.

По срокам проведения динамические испытания обычно совмещаются со статическими.

7.1.4. После проведения обследований и предварительных расчетов должна быть составлена и согласована со службой эксплуатации «Рабочая, программа испытаний» (см. п. .), которая может быть уточнена после проведения статических испытаний.

Если предполагается одновременное проведение статических и динамических испытаний, то «Рабочая программа» должна быть составлена сразу для обоих видов испытаний.

7.1.5. Примерные состав и последовательность проведения работ при динамических испытаниях:

1) опорожнение трубопровода, установка датчиков, монтаж КИА;

2) исследование частот свободных колебаний опорожненного трубопровода;

3) заполнение трубопровода, измерения осредненного давления и статических напряжений;

4) исследования частот свободных колебаний заполненного трубопровода;

5) исследование пульсаций давления, вибраций, динамических напряжений при стационарных и нестационарных режимах работы гидрасилового и гидромеханического оборудования;

6) экспресс-анализ результатов; определение и выбор режимов с усиленными пульсациями давления и вибрациями;

7) повторные исследования выбранных и близких к ним режимов;

8) опорожнение трубопровода и демонтаж КИА;

9) сбор статистических данных о режимах работы трубопровода.

7.1.6. После проведения испытаний должны быть выполнены обработка и анализ полученных результатов, проведены поверочные прочностные и динамические расчеты, определены причины усиленных вибраций и пульсаций давления (если таковые были зафиксированы при испытаниях), проведены усталостные расчеты и сделаны выводы о динамической устойчивости конструкции трубопровода, его надежности и возможности дальнейшей эксплуатации.

7.2. Предварительные расчеты

7.2.1. Задачи предварительных расчетов;

1) определить возможные формы и частоты вибраций трубопроводов, для чего статическим расчетом (см. разд. .) необходимо определить возможные формы деформаций трубопровода и рассчитать соответствующие частоты свободных колебаний;

2) выявить возможные источники и причины возникновения вибраций - пульсации внутреннего давления, разного рода гидродинамические резонансы и т.п.;

3) провести анализ динамической устойчивости и оценить возможность возникновения вибраций трубопровода по равным формам колебаний; при этом должны учитываться следующие факторы;

Значительные вибрации трубопроводов всегда происходят на одной из собственных частот;

Первичный источником вибраций являются пульсации внутреннего давления;

Возникновение опасных вибраций трубопроводов всегда связано с резонансом одной или нескольких собственных частот с ведущей частотой пульсации внутреннего давления:

4) определить створы и места установки датчиков;

5) выбрать тип, составить и согласовать комплект контрольно-измерительной аппаратуры.

7.2.2. Формы и частоты свободных колебаний трубопровода.

Основные формы колебаний трубопровода:

1) радиальные, соответствующие одинаковым деформациям сжатия и расширения круглой оболочки по всему контуру;

2) изгибные в плоскости поперечного сечения трубы при одновременных деформациях сплющивания и расширения оболочки по разным диаметрам;

3) балочные - изгибные деформации оболочки в плоскости продольной оси трубопровода;

4) крутильно-изгибные - возможные в случае, когда опорное кольцо одной из промежуточных опор оперто только на на один каток (одну сторону), и кольцо вместе с оболочкой имеет возможность поворачиваться около этой точки опоры.

Формы 1) и 2) относятся к оболочечным колебаниям; формы 3) и 4) - балочным.

Возможные формы колебаний трубопроводов показаны на рис. .

Расчетные формулы для определения частот свободных колебаний приведены в специальной литературе, например, в / , /,

7.2.3. Частоты пульсаций внутреннего давления.

Основным источником возникновения вибраций трубопроводов являются внутренние пульсации давления. Основными причинами возникновения этих пульсаций являются:

1) лопаточные удары в гидротурбине и направляющем аппарата при этом частота ударов потока между лопатками гидротуроины может быть определена по формуле / /

Где z рк - число лопаток рабочего колеса;

n T - число оборотов турбины в минуту.

a) радиальные

б) изгибные в плоскости поперечного сечения

в) изгибные-балочные

г) изгибно-крутильные

m - число волн упругой поверхности оболочки в окружном направлении,

n - число полуволн вдоль образующей

Частота ударов в направляющем аппарате

3) кавитационные явления в турбине - пузырьковая кавитация или возникновение и срывы вихревых шнуров в отсасывающей трубе; частоты кавитационных пульсаций / /

где коэффициент расхода: M 0 - 0,97;

Н р - расчетный напор;

h з - высота затвора;

S - относительная площадь сжатой струи;

g - ускорение свободного падения, g = 9.81 м/с;

6) турбулентная пульсация;

ведущая частота спектра турбулентной пульсации / /

где h - глубина потока, равная внутреннему радиусу трубопровода;

V - скорость потока в трубопроводе.

7.3. Состав комплекта контрольно-измерительной аппаратуры

7.3.1. Конкретный состав комплекта КИА для динамических испытаний зависит от решаемых задач и возможностей организации-исполнителя. Примерный состав комплекта КИА приведен на блок-схеме измерений на рис. .

При проведении динамических испытаний может использоваться следующая аппаратура:

1) для измерения пульсаций давления используются индуктивные датчики давления типа ДД-10 промышленного или собственного изготовления. Сигналы с датчиков по кабелям через усилитель типа 4АНЧ-22 поступают на светолучевой осциллограф Н-700 для записи на осциллограммы, либо через коммутационный блок на электронный двухлучевой осциллограф С1-55 для визуального контроля во время записей;

2) для измерения напряжений используются тензометрические датчики (тензорезисторы) с базой 5 … 20 мм и сопротивлением 50 … 200 Ом. От тензодатчиков сигналы по кабелям также через усилитель 4АНЧ-22 поступают на осциллограф Н-700 или через коммутационный щит на осциллограф C1-55. Также как и при статических испытаниях (см. п. .) при динамических могут устанавливаться одиночные тензодатчики, двойные и тройные тензорозетки;

БЛОК-СХЕМА ИЗМЕРЕНИЯ И РЕГИСТРАЦИИ ДИНАМИЧЕСКИХ ПРОЦЕССОВ

3) измерение вибраций производится либо при помощи датчиков И-001 (диапазон частот 1 … 200 Гц. амплитуды 0 … 1,0 мм), либо при помощи вибродатчиков ив комплекта ВИ5-6ТН. Сигналы с датчиков И-001 по кабелям поступают на увеличители F-001, а от них на светолучевой осциллограф Н-700: сигналы от вибродатчиков комплекта ВИ6-6ТН могут поступать на Н-700 либо через усилитель ВИ6-6ТН, либо через усилитель 4АНЧ-22;

4) одновременно с фиксацией динамических процессов производится снятие осредненного давления по манометрам и датчикам давления, а также снятие осредненных (статических) напряжений с тензодатчиков, которые для этой цели подключаются к измерителю статических деформаций ИСД-3 (см. рис. 5.2).

Для возможности проведения камеральной обработки результатов испытаний на ПЭВМ в блок-схему может быть включен многоканальный магнитограф для записи сигналов с тензодатчиков и датчиков давления.

7.3.2. Места установки датчиков давления, тензодатчиков или другой приемной аппаратуры должны быть выбраны таким образом, чтобы в ходе испытаний имелась возможность зафиксировать все актуальные формы колебаний конструкции и все актуальные места возможных сильных пульсаций давления.

Рекомендуется на каждой испытываемой нитке трубопровода выбирать не менее 2 … 3 основных измерительных створов и 2 … 4 вспомогательных. В основных створах должны устанавливаться все виды первичной аппаратуры (манометр, датчик давления, 2 … 4 датчика вибраций - горизонтальные и вертикальные, несколько тензодатчиков) для того, чтобы имелась возможность одновременно фиксировать все осредненные и переменные величины. В вспомогательных створах устанавливаются, в зависимости от конкретных условий, либо датчик давления с манометром либо вибродатчики или тензодатчики, которые работают в группе е датчиками основных створов и позволяют при их совместном использовании, определять более достоверно формы колебаний оболочки.

7.4.2. Режимы работы гидросилового и гидромеханического оборудования.

При динамических испытаниях трубопровода исследования рекомендуется проводить при следующих режимах оборудования:

1) регламентный пуск гидроагрегата (турбины): включение - режим С.К. - холостой ход - набор мощности до номинального значения - стационарный режим;

2) стационарный режим - уменьшение мощности - холостой ход - режим С.К. - выключение (остановка);

3) холостой ход - ступенчатое увеличение мощности до максимального значения (стационарные режимы) - ступенчатое уменьшение мощности (стационарные режимы) - холостой ход; шаг ступеней выбирается в пределах 0,1 Nмах … 0,2 Nмах, длительность проведения измерений на каждой ступени 5 … 10 минут;

4) ступенчатые стационарные режимы с шагом 0,02 Nмах … 0,05 Nмах около мощностей, при которых были зафиксированы вибрации трубопровода;

5) нестационарные (аварийные) режимы: аварийное закрытие направляющего аппарата, аварийное закрытие аварийного предтурбинного затвора, аварийное закрытие аварийного затвора водопроемника.

Режимы работы гидроагрегата при аварийных режимах выбираются вместе со службой эксплуатации - это могут быть либо один, из стационарных режимов, либо аварийный режим «угона».

УСТРОЙСТВО ДЛЯ ВОЗБУЖДЕНИЯ
СОБСТВЕННЫХ КОЛЕБАНИЙ ТРУБОПРОВОДА

1 - основание

2 - стойка

3 - толкатель

5 - стальная прокладка

6 - установочные подкладки

7 - оболочка трубопровода

Для насосов испытания при промежуточных мощностях и открытиях направляющего аппарата н» предусматриваются.

7.5. Анализ результатов испытаний

При анализе результатов динамических испытаний необходимо:

1) выполнить частотный анализ результатов измерений собственных частот свободных колебаний трубопровода по данным вибродатчиков и тензодатчиков;

2) сопоставить замеренные и рассчитанные собственные частоты для уточнения схемы динамических деформаций конструкции (разрезная, неразрезная схема работа по балочной схеме; преобладание балочных или оболочечных форм колебаний);

3) провести амплитудно-частотный анализ динамических процессов пульсаций давлений, перемещений (вибраций), напряжений и совместный их анализ, обращая внимание на режимы, когда эти процессы достаточно интенсивны.

Сравнивая ведущие частоты пульсаций давления, замеренные при испытаниях, с расчетными значениями можно определить причины и источник их возникновения.

Амплитудно-частотный анализ вибрации и динамических напряжений в разных сечениях трубопровода в сопоставлении с частотами пульсаций и собственными частотами может ответить на вопросы о природе и причинах вибраций трубопровода.

При проведении анализа необходимо обращать внимание на следующие факторы:

1) совпадение частот интенсивных вибраций с частотами интенсивных пульсаций давления свидетельствует о вынужденном характере колебаний и о том, что причиной вибраций являются не динамические.характеристики трубопровода, а неотлаженность работы гидросилового оборудований; предотвратить; эти вибрации можно, только путем отладки гидроагрегата или исключив, по возможности, его работу на этих режимах;

2) наличке сильных пульсаций давления и отсутствие в этих режимах значительных вибраций трубопровода свидетельствует о хороших динамических свойствах конструкции и о том, что ее собственные частоты лежат вне пределов частот возбуждающих нагрузок;

3) отсутствие сильных пульсаций давления при значительных вибрациях трубопровода на одной из собственных частот свидетельствует о резонансном ши автоколебательном характере вибраций вследствие точного совпадения этой собственной частоты с одной из возбуждающих частот. Бороться с подобными вибрациями можно путем изменения собственных динамических характеристик трубопровода, например, установкой дополнительных промежуточных опор или дополнительных ребер жесткости.

7.6. Расчеты усталостной прочности

7.6.1. Расчеты усталостной прочности проводятся с целью оценки надежности конструкции трубопровода, определения возможности ее дальнейшей эксплуатации и остаточного срока службы.

7.6.2. Необходимыми данными для проведения усталостного расчета трубопровода являются:

1) осредненные (статические) напряжения в расчетных точках конструкции;

2) динамические напряжения в расчетных точках;

3) статистические данные о времени работы трубопровода в разных режимах гидросилового и гидромеханического оборудования.

Усталостный расчет может проводиться по одной ив методик, приведенных в / , , /.

7.6.3. В случае, если при работе конструкции имеется несколько режимов со значительными динамическими напряжениями, необходимо по данным статистики работы трубопровода рассчитать полное время работы на каждом из режимов за весь период эксплуатации, затем привести все режимы с их амплитудами и частотами к одному расчетному режиму / /, и выполнить усталостный расчет на расчетные приведенные амплитуду и частоту.

8. ОХРАНА ТРУДА И ТЕХНИКА БЕЗОПАСНОСТИ ПРИ ПРОВЕДЕНИИ
ОБСЛЕДОВАНИЙ И ИСПЫТАНИЙ

1. Члены бригады, выезжающие на объект для проведения обследования и испытаний, должны пройти в своей организации перед отъездом инструктаж по технике безопасности (соответствующая запись должна быть сделана в журнале по технике безопасности), а также, при необходимости, очередную проверку знаний, что должно быть отмечено в Удостоверении.

Выезжая на объект, члены бригады должны иметь при себе Удостоверение о проверке знаний правил техники безопасности.

2. До начала работ по обследованию и испытаниям службой эксплуатации должен быть издан приказ по организации на проведение работ с перечислением лиц, участвующих в обследовании и испытаниях, с указанием спецмероприятий по обеспечению безопасных условий труда, назначением ответственных лиц за проведение работ.

Ежедневно при проведении обследований и испытаний службой эксплуатации должен оформляться наряд-допуск на проведение работ.

3. Члены бригады, проводящие работы, должны пройти вводный (общий) инструктаж в отделе техники безопасности предприятия, а также инструктаж непосредственно на объекте, что фиксируется в специальном журнале.

Лица, не прошедшие инструктаж, к работе не допускаются

4. При производстве работ по обследованию и испытаниям, трубопроводов работники бригады, проводящей эти работы, обязаны соблюдать нормы и правила СНиП III-4-80 / /, а также требования правил техники безопасности, установленные на предприятии.

5. К выполнению работ по обследованию и испытаниям трубопроводов допускаются лица не моложе 18 лет, прошедшие обучение правилам безопасного ведения работ.

6. Лица, проводящие монтажные работы на трубопроводе, должны иметь защитные каски, предохранительные пояса, спецодежду, не имеющую болтающихся и свисающих частей. Лица, проводящие работы внутри трубопровода, должны иметь средства индивидуального освещения, приспособления для защиты глаз и дыхательных путей - маски, очки, респираторы, противогазы.

7. При работе с электрооборудованием (при монтажных работах на трубопроводе, работах с измерительной аппаратурой) следует выполнять требования СНиП III-4-80 / /, «Правил техники безопасности при эксплуатации электроустановок потребителей» / /.

8. Проведение монтажных работ на трубопроводе следует проводить в теплое сухое время года при отсутствии дождя), в светлое время суток. Запрещается проводить монтажные работы на мокром трубопроводе.

9. Монтажные работы на трубопроводе разрешается проводить с подмостей и приставных лестниц с уклоном не более 60. Запрещается установка лестниц на различных подкладках (кирпичах, обрезках досок и т.п.).

10. При проведении обследований и испытаний запрещается одновременная работа на двух уровнях.

11. На Бремя испытаний должна быть установлена надежная телефонная или радиосвязь между местом испытаний и диспетчерской службой (пультом управления станции).

12. Обследование трубопроводов и монтажные работы должны проводиться 2 … 3 группами, в составе не менее 2-х человек, находящихся в пределах прямой взаимной видимости в течение всего времени работы.

13. При уклоне трубопровода более 15° необходимо натягивать вдоль него страховочные тросы.

14. Обследование внутренней поверхности трубопровода, имеющего уклон более 15°, допускается выполнять только с помощью специальных средств (передвижных площадок, тележек и т.п.), обеспечивающих безопасное перемещение внутри трубопровода.

15. При обследовании внутренней поверхности трубопровода все смотровые люки должны быть открыты: при необходимости должна быть организована принудительная вентиляция трубопровода.

2(822 02)

Проверка плотности стяжки пакета в болтовых и заклепочных соединениях, контроль плотности прилегания головки заклепки к поверхности металла, измерение зазоров в опорах

Штангенглубиномер ГОСТ 162-80

ШГ-160

Измерение сечений элементов, диаметров отверстии, зазоров, глубины повреждения поверхности коррозией

Уровни ГОСТ 11195-74

1С7

Измерение малых углов

Гидронивелир

НГТ-1

Измерение разности отметок при отсутствии прямой видимости между течками измерения

Телескопическая штанга-измеритель

Измерение внутренних диаметров трубопроводов и длин отдельных элементов

Лупа измерительная ГОСТ 8309-75

ЛИ-4-10 х

Выявление и измерение трещин

Рулетка стальная измерительная ГОСТ 7502-80

Р3-2

Р3-10

P3-30

Измерение длины секций трубопровода, расстояний между кольцами жесткости, опорами и т.п.

Нивелир

Н-3

Определение отметок конструкций

Теодолит

Т-5

Определение прямолинейности трубопроводов, измерение углов наклона в вертикальной и горизонтальной плоскостях

Ультразвуковой толщиномер

УТ-93П

Измерение толщины сечений элементов

Ультразвуковой дефектоскоп

УД-2-12

Обнаружение внутренних дефектов сварных швов, основного металла

ПРИЛОЖЕНИЕ 4

Шов восстановить

Трубопровод № 2

Оболочка

Между ПО № 8 и ПО № 9

Местная вмятина (δ)

Возможна эксплуатация

Трубопровод № 2

Промежуточная опора

ПО № 6

Зазоры между опорными поверхностями (У)

Установить прокладку

Левая

Правая

5,0 мм ПРИЛОЖЕНИЕ 5

АКТ ОБСЛЕДОВАНИЯ НАПОРНЫХ (*)
ТРУБОПРОВОДОВ _____________ ГЭС

Комиссия в составе ____ (перечисляются представители организации-заказчика и организации-исполнителя) в период с ___ по ___ (указываются даты начала и окончания работ) провела обследование напорных трубопроводов __________ (название объекта).

Отмечается:

1. … (количество) напорных трубопровода эксплуатируются в течение ___ лет;

2. Диаметр трубопроводов ___ мм, общая длина каждого ___ м, номинальные толщины (указываются толщины по участкам мм);

3. Марки сталей: оболочки … опорные колец …, колец жесткости);

4. Расчетные напоры

Статический … м;

Гидродинамический … м;

Испытательный … м;(*)

(*) - данным Актом завершается обследование, когда не требуется выпуск специального отчета.

5. Отметки осей

На входе …;

На выходе …;

6. Максимальный расход по трубопроводу … м 3 /сек;

7. …(другие сведения о трубопроводах, например, сейсмичность района, температуры летняя и зимняя и т.п.).

За период эксплуатации трубопроводы подвергались обследованию … (количество, причины, даты). Было выявлено … (основные результаты предыдущих обследований). По результатам обследований были сделаны рекомендации ….

За время эксплуатации были выполнены ремонтные работы … (виды работ, даты проведения, заключения комиссий о качестве работ).

Настоящие обследования заключались в … (указывается объем работ, например, «в визуальном освидетельствовании конструкции трубопровода и его элементов, освидетельствовании внутренней поверхности трубопровода, измерении толщин оболочки, опорных колец, колец жесткости, измерении зазоров в промежуточных опорах, нивелировке оси трубопровода, измерении коррозионных повреждений, оценке качества покрытия и т.п.»; указываются методы и средства проведения работ с указанием инструментария и мест проведения измерений).

В результате проведения обследования установлено … (указываются результаты обследования).

Выводы и рекомендации … (дается предварительное заключение о работоспособности конструкции, необходимости проведения ремонтных работ, необходимости проведения натурных испытаний, проверочных расчетов, рекомендации по увеличению надежности эксплуатации трубопроводов).