27 июня 1954 г. в посёлке Обнинское Калужской области в Физико-энергетическом институте имени А. И. Лейпунского (Лаборатория «В») был осуществлён пуск первой в мире атомной электростанции, оснащённой одним уран-графитовым канальным реактором с водяным теплоносителем АМ-1 («атом мирный») мощностью 5 МВт. С этой даты начался отсчёт истории атомной энергетики.

В годы Второй мировой войны в Советском Союзе начала проводиться работа по созданию ядерного оружия, которую возглавил учёный-физик, академик И. В. Курчатов. В 1943 г. Курчатов создал в Москве исследовательский центр - Лаборатория № 2 - позже преобразованный в Институт атомной энергии. В 1948 г. был построен плутониевый завод с несколькими промышленными реакторами, а в августе 1949 г. была испытана первая советская атомная бомба . После того, как было организовано и освоено в промышленном масштабе производство обогащённого урана, началось активное обсуждение проблем и направлений создания энергетических ядерных реакторов для транспортного применения и получения электроэнергии и тепла. По поручению Курчатова отечественные физики Е. Л. Фейнберг и Н. А. Доллежаль начали разрабатывать проект реактора для атомной электростанции.

16 мая 1950 г. постановлением Совета Министров СССР было определено строительство трёх опытных реакторов - уран-графитового с водяным охлаждением, уран-графитового с газовым охлаждением и уран-бериллиевого с газовым или жидкометаллическим охлаждением. По первоначальному плану все они поочередно должны были работать на единую паровую турбину и генератор мощностью 5000 кВт.

Строительством атомной электростанции руководила Обнинская физико-энергетическая лаборатория. При строительстве за основу была взята конструкция промышленного реактора, но вместо урановых стержней предусматривались урановые тепловыводящие элементы, так называемые твэлы. Разница между ними заключалась в том, что стержень вода обтекала снаружи, а твэл представлял собой двустенную трубку. Между стенками располагался обогащённый уран, а по внутреннему каналу протекала вода. Научные расчёты показали, что при такой конструкции нагреть её до нужной температуры намного проще. Материал тепловыводящих элементов должен был обладать прочностью, противокоррозийной стойкостью и не должен был менять своих свойств под длительным воздействием радиации. На первой атомной электростанции была тщательно продумана система управления протекающими в реакторе процессами. Для этого были созданы устройства для автоматического и ручного дистанционного управления регулирующими стержнями, для аварийной остановки реактора, приспособлений для замены твэлов.

Помимо выработки энергии, реактор Обнинской атомной электростанции также служил базой для экспериментальных исследований и для выработки изотопов для нужд медицины. Опыт эксплуатации первой, по сути экспериментальной, атомной станции полностью подтвердил инженерно-технические решения, предложенные специалистами атомной отрасли, что позволило приступить к реализации широкомасштабной программы по строительству новых атомных электростанций в Советском Союзе.

В мае 1954 г. был запущен реактор, а в июне того же года Обнинская атомная электростанция дала первый промышленный ток, открыв дорогу использованию атомной энергии в мирных целях. Обнинская АЭС успешно проработала почти 48 лет.

29 апреля 2002 г. в 11 ч. 31 мин. по московскому времени был навсегда заглушен реактор первой в мире атомной электростанции в Обнинске. Как сообщила пресс-служба Министерства Российской Федерации по атомной энергии, станция была остановлена исключительно по экономическим соображениям, поскольку «поддержание её в безопасном состоянии с каждым годом становилось всё дороже».

На базе Обнинской атомной электростанции был создан музей атомной энергетики.

Лит.: Велихов Е. П. От ядерной бомбы к атомной электростанции. Игорь Васильевич Курчатов (1903-1960) // Вестник РАН. 2003. Т. 73. № 1. С. 51-64; Государственная корпорация по атомной энергии «Росатом»: сайт. 2008-2014. URL : http://www.rosatom.ru/ ; Государственный научный центр Российской Федерации - Физико-энергетический институт имени А. И. Лейпунского: сайт. 2004–2011. URL: http://www.ippe.obninsk.ru/ ; 10 лет Первой в мире атомной электростанции СССР. М., 1964; Первая в мире АЭС - как это начиналось: Сб. ист.-арх. док. / Физико-энергетический институт имени академика А. И. Лейпуновского; [Сост. Н. И. Ермолаев]. Обнинск, 1999.

См. также в Президентской библиотеке:

О реструктуризации атомного энергопромышленного комплекса Российской Федерации: Указ Президента Российской Федерации от 27 апреля 2007 г. № 556. М., 2007 .

Атомная электростанция (АЭС)

электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор (см. Ядерный реактор). Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (См. Тепловая электростанция) (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем (См. Ядерное горючее) (в основном 233 U, 235 U. 239 Pu). При делении 1 г изотопов урана или плутония высвобождается 22 500 квт ч, что эквивалентно энергии, содержащейся в 2800 кг условного топлива. Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепловых электростанций. Несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относит увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, которая уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.

Первая в мире АЭС опытно-промышленного назначения (рис. 1 ) мощностью 5 Мвт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась преимущественно в военных целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии (август 1955, Женева).

В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 Мвт (полная проектная мощность 600 Мвт ). В том же году развернулось строительство Белоярской промышленной АЭС, а 26 апреля 1964 генератор 1-й очереди (блок мощностью 100 Мвт ) выдал ток в Свердловскую энергосистему, 2-й блок мощностью 200 Мвт сдан в эксплуатацию в октябре 1967. Отличительная особенность Белоярской АЭС - перегрев пара (до получения нужных параметров) непосредственно в ядерном реакторе, что позволило применить на ней обычные современные турбины почти без всяких переделок.

В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 Мвт. Себестоимость 1 квт-ч электроэнергии (важнейший экономический показатель работы всякой электростанции) на этой АЭС систематически снижалась: она составляла 1,24 коп. в 1965, 1,22 коп. в 1966, 1,18 коп. в 1967, 0,94 коп. в 1968. Первый блок Нововоронежской АЭС был построен не только для промышленного пользования, но и как демонстрационный объект для показа возможностей и преимуществ атомной энергетики, надёжности и безопасности работы АЭС. В ноябре 1965 в г. Мелекессе Ульяновской области вступила в строй АЭС с водо-водяным реактором (См. Водо-водяной реактор) «кипящего» типа мощностью 50 Мвт, реактор собран по одноконтурной схеме, облегчающей компоновку станции. В декабре 1969 был пущен второй блок Нововоронежской АЭС (350 Мвт ).

За рубежом первая АЭС промышленного назначения мощностью 46 Мвт была введена в эксплуатацию в 1956 в Колдер-Холле (Англия).Через год вступила в строй АЭС мощностью 60 Мвт в Шиппингпорте (США).

Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 2 . Тепло, выделяющееся в активной зоне (См. Активная зона) реактора 1, отбирается водой (теплоносителем (См. Теплоноситель)) 1-го контура, которая прокачивается через реактор циркуляционным насосом 2. Нагретая вода из реактора поступает в теплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе, воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образующийся пар поступает в турбину 4.

Наиболее часто на АЭС применяются 4 типа реакторов на тепловых нейтронах: 1) водо-водяные с обычной водой в качестве замедлителя и теплоносителя; 2) графито-водные с водяным теплоносителем и графитовым замедлителем; 3) тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя; 4) графито-газовые с газовым теплоносителем и графитовым замедлителем.

Выбор преимущественно применяемого типа реактора определяется главным образом накопленным опытом в реакторостроении, а также наличием необходимого промышленного оборудования, сырьевых запасов и т. д. В СССР строят главным образом графито-водные и водо-водяные реакторы. На АЭС США наибольшее распространение получили водо-водяные реакторы. Графито-газовые реакторы применяются в Англии. В атомной энергетике Канады преобладают АЭС с тяжеловодными реакторами.

В зависимости от вида и агрегатного состояния теплоносителя создаётся тот или иной термодинамический цикл АЭС. Выбор верхней температурной границы термодинамического цикла определяется максимально допустимой температурой оболочек тепловыделяющих элементов (См. Тепловыделяющий элемент) (ТВЭЛ), содержащих ядерное горючее, допустимой температурой собственно ядерного горючего, а также свойствами тенлоносителя, принятого для данного типа реактора. На АЭС, тепловой реактор которой охлаждается водой, обычно пользуются низкотемпературными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными давлением и температурой. Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур - пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одноконтурная тепловая АЭС. В кипящих реакторах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева (рис. 3 ). В высокотемпературных графито-газовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры сгорания.

При работе реактора концентрация делящихся изотопов в ядерном топливе постепенно уменьшается, т. е. ТВЭЛы выгорают. Поэтому со временем их заменяют свежими. Ядерное горючее перезагружают с помощью механизмов и приспособлений с дистанционным управлением. Отработавшие ТВЭЛы переносят в бассейн выдержки, а затем направляют на переработку.

К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой (См. Биологическая защита), Теплообменник и, Насос ы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура циркуляционного контура; устройства для перезагрузки ядерного горючего; системы спец. вентиляции, аварийного расхолаживания и др.

В зависимости от конструктивного исполнения реакторы имеют отличительные особенности: в корпусных реакторах (См. Корпусной реактор) ТВЭЛы и замедлитель расположены внутри корпуса, несущего полное давление теплоносителя; в канальных реакторах (См. Канальный реактор) ТВЭЛы, охлаждаемые теплоносителем, устанавливаются в специальных трубах-каналах, пронизывающих замедлитель, заключённый в тонкостенный кожух. Такие реакторы применяются в СССР (Сибирская, Белоярская АЭС и др.).

Для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, серпентиновый песок. Оборудование реакторного контура должно быть полностью герметичным. Предусматривается система контроля мест возможной утечки теплоносителя, принимают меры, чтобы появление неплотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружающей местности. Оборудование реакторного контура обычно устанавливают в герметичных боксах, которые отделены от остальных помещений АЭС биологической защитой и при работе реактора не обслуживаются. Радиоактивный воздух и небольшое количество паров теплоносителя, обусловленное наличием протечек из контура, удаляют из необслуживаемых помещений АЭС специальной системой вентиляции, в которой для исключения возможности загрязнения атмосферы предусмотрены очистные фильтры и газгольдеры выдержки. За выполнением правил радиационной безопасности персоналом АЭС следит служба дозиметрического контроля.

При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в течение несколько секунд) глушение ядерной реакции; аварийная система расхолаживания имеет автономные источники питания.

Наличие биологические защиты, систем специальной вентиляции и аварийного расхолаживания и службы дозиметрического контроля позволяет полностью обезопасить обслуживающий персонал АЭС от вредных воздействий радиоактивного облучения.

Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличительная особенность большинства АЭС - использование пара сравнительно низких параметров, насыщенного или слабоперегретого.

При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепарирующие устройства. Иногда необходимо применение выносных сепараторов и промежуточных перегревателей пара. В связи с тем что теплоноситель и содержащиеся в нём примеси при прохождении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины одноконтурных АЭС должно полностью исключать возможность утечки теплоносителя. На двухконтурных АЭС с высокими параметрами пара подобные требования к оборудованию машинного зала не предъявляются.

В число специфичных требований к компоновке оборудования АЭС входят: минимально возможная протяжённость коммуникаций, связанных с радиоактивными средами, повышенная жёсткость фундаментов и несущих конструкций реактора, надёжная организация вентиляции помещений. На рис. показан разрез главного корпуса Белоярской АЭС с канальным графито-водным реактором. В реакторном зале размещены: реактор с биологической защитой, запасные ТВЭЛы и аппаратура контроля. АЭС скомпонована по блочному принципу реактор - турбина. В машинном зале расположены турбогецераторы и обслуживающие их системы. Между машинным и реакторным залами размещены вспомогательное оборудование и системы управления станцией.

Экономичность АЭС определяется её основными техническими показателями: единичная мощность реактора, кпд, энергонапряжённость активной зоны, глубина выгорания ядерного горючего, коэффициент использования установленной мощности АЭС за год. С ростом мощности АЭС удельные капиталовложения в неё (стоимость установленного квт ) снижаются более резко, чем это имеет место для ТЭС. В этом главная причина стремления к сооружению крупных АЭС с большой единичной мощностью блоков. Для экономики АЭС характерно, что доля топливной составляющей в себестоимости вырабатываемой электроэнергии 30-40% (на ТЭС 60-70%). Поэтому крупные АЭС наиболее распространены в промышленно развитых районах с ограниченными запасами обычного топлива, а АЭС небольшой мощности - в труднодоступных или отдалённых районах, например АЭС в пос. Билибино (Якутская АССР) с электрической мощностью типового блока 12 Мвт. Часть тепловой мощности реактора этой АЭС (29 Мвт ) расходуется на теплоснабжение. Наряду с выработкой электроэнергии АЭС используются также для опреснения морской воды. Так, Шевченковская АЭС (Казахская ССР) электрической мощностью 150 Мвт рассчитана на опреснение (методом дистилляции) за сутки до 150 000 т воды из Каспийского моря.

В большинстве промышленно развитых стран (СССР, США, Англия, Франция, Канада, ФРГ, Япония, ГДР и др.) по прогнозам мощность действующих и строящихся АЭС к 1980 будет доведена до десятков Гвт. По данным Международного атомного агентства ООН, опубликованным в 1967, установленная мощность всех АЭС в мире к 1980 достигнет 300 Гвт.

В Советском Союзе осуществляется широкая программа ввода в строй крупных энергетических блоков (до 1000 Мвт ) с реакторами на тепловых нейтронах. В 1948-49 были начаты работы по реакторам на быстрых нейтронах для промышленных АЭС. Физические особенности таких реакторов позволяют осуществить расширенное воспроизводство ядерного горючего (коэффициент воспроизводства от 1,3 до 1,7), что даёт возможность использовать не только 235 U, но и сырьевые материалы 238 U и 232 Th. Кроме того, реакторы на быстрых нейтронах не содержат замедлителя, имеют сравнительно малые размеры и большую загрузку. Этим и объясняется стремление к интенсивному развитию быстрых реакторов в СССР. Для исследований по быстрым реакторам были последовательно сооружены экспериментальные и опытные реакторы БР-1, БР-2, БР-З, БР-5, БФС. Полученный опыт обусловил переход от исследований модельных установок к проектированию и сооружению промышленных АЭС на быстрых нейтронах (БН-350) в г. Шевченко и (БН-600) на Белоярской АЭС. Ведутся исследования реакторов для мощных АЭС, например в г. Мелекессе построен опытный реактор БОР-60.

Крупные АЭС сооружаются и в ряде развивающихся стран (Индия, Пакистан и др.).

На 3-й Международной научно-технической конференции по мирному использованию атомной энергии (1964, Женева) было отмечено, что широкое освоение ядерной энергии стало ключевой проблемой для большинства стран. Состоявшаяся в Москве в августе 1968 7-я Мировая энергетическая конференция (МИРЭК-VII) подтвердила актуальность проблем выбора направления развития ядерной энергетики на следующем этапе (условно 1980-2000), когда АЭС станет одним из основных производителей электроэнергии.

Лит.: Некоторые вопросы ядерной энергетики. Сб. ст., под ред. М. А. Стыриковича, М., 1959; Канаев А. А., Атомные энергетические установки, Л., 1961; Калафати Д. Д., Термодинамические циклы атомных электростанций, М.-Л., 1963; 10 лет Первой в мире атомной электростанции СССР. [Сб. ст.], М., 1964; Советская атомная наука и техника. [Сборник], М., 1967; Петросьянц А. М., Атомная энергетика наших дней, М., 1968.

С. П. Кузнецов.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Атомная электростанция" в других словарях:

    Электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую энергию. Генератором энергии на АЭС является атомный реактор. Синонимы: АЭС См. также: Атомные электростанции Электростанции Ядерные реакторы Финансовый словарь… … Финансовый словарь

    - (АЭС) электростанция, на которой ядерная (атомная) энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в ядерном реакторе, используется для получения водного пара, вращающего турбогенератор. 1 я в мире АЭС мощнностью 5 МВт была… … Большой Энциклопедический словарь

Первая в мире атомная электростанция

После испытания первой атомной бомбы Курчатов и Доллежаль обсудили возможность создания атомной электростанции, ориентируясь на опыт конструирования и эксплуатации промышленных реакторов. 16 мая 1949 года вышло соответствующее постановление Правительства. Несмотря на кажущуюся простоту перехода от одного ядерного реактора к другому, дело оказалось чрезвычайно сложным. Промышленные реакторы работали при низком давлении воды в рабочих каналах, вода охлаждала урановые блоки и этого было достаточно.

Схема атомной электростанции существенно усложнялась именно тем, что в рабочих каналах требовалось поддерживать высокое давление, чтобы получить пар необходимых параметров для работы турбины Приходилось вводить в активную зону реактора больше конструктивных материалов, что требовало обогащения урана изотопом 235. Чтобы не загрязнять радиоактивностью турбинное отделение АЭС, была применена двухконтурная схема, еще больше усложнявшая электростанцию.

Первый радиоактивный контур включал в себя технологические каналы реактора, насосы для циркуляции воды, трубчатую часть парогенераторов и соединительные трубопроводы первого контура. Парогенератор представляет собою сосуд, рассчитанный на значительное давление воды и пара. В нижней части сосуда размещены пучки тонких трубок, через которые прокачивается вода первого контура с давлением около 100 атмосфер и температурой 300 градусов. Между трубными пучками находится вода второго контура, которая, воспринимая тепло от трубных пучков, нагревается и кипит. Образующийся пар при давлении более 12 атмосфер направляется в турбину. Таким образом, вода первого контура не смешивается в парогенераторе со средой второго контура и он остается «чистым.» Пар, отработавший в турбине, охлаждается в турбинном конденсаторе и превращается в воду, ее снова перекачивают насосом в парогенератор. Так поддерживается циркуляция теплоносителя во втором контуре.

Обычные урановые блоки не были пригодны для АЭС. Пришлось конструировать специальные технологические каналы, состоящие из системы тонкостенных трубок небольшого диаметра, на наружных поверхностях которых размещалось ядерное топливо. Технологические каналы в несколько метров длиною загружались в ячейки графитовой кладки реактора мостовым краном реакторного зала и присоединялись к трубопроводам первого контура съемными деталями. Имелось много других отличий, усложнявших сравнительно небольшую атомную установку для производства электроэнергии.

Когда определились основные характеристики проекта АЭС, о нем доложили Сталину. Он высоко оценил зарождение отечественной атомной энергетики, ученые получили не только одобрение, но и помощь в реализации нового направления.

В феврале 1950 года в Первом Главном управлении, возглавляемом Б. Л, Ванниковым и А. П. Завенягиным, детально были обсуждены предложения ученых, а 29 июля того же года Сталин подписал Постановление Совмина СССР о разработке и сооружении в городе Обнинске АЭС с реактором, получившим условное наименование «АМ.» Проектировал реактор Н.А. Доллежаль со своим коллективом. Одновременно велось проектирование станционного оборудования, другими организациями, а также здания АЭС.

Своим заместителем по научному руководству Обнинской АЭС, Курчатов назначил Д. И. Блохинцева, приказом ПГУ Блохинцеву поручалось не только научное но и организационное руководство строительством и пуском АЭС. Первым директором АЭС был назначен Н. А. Николаев.

В 1952 году велись научные и проектные работы по реактору «АМ» и АЭС в целом. В начале года развернулись работы по подземной части АЭС, строительству жилья и соцкультбыта, подъездных путей, плотины на реке Протве. В 1953 году выполнен основной объем строительных и монтажных работ: возведен реакторный корпус и здание турбогенератора, смонтированы металлоконструкции реактора, парогенераторы, трубопроводы, турбина и многое другое. В 1953 году стройке дан статус важнейшей в Минсредмаше (в 1953 году ПГУ было преобразовано в Министерство среднего машиностроения). Курчатов часто приезжал на строительство, ему построили небольшой деревянный домик в соседнем лесу, где он проводил совещания с руководителями объекта.

В начале 1954 года велась графитовая кладка реактора. Герметичность корпуса реактора заранее испытали чувствительным гелиевым методом. Внутрь корпуса подали газ гелий под небольшим давлением, а снаружи все сварные соединения «ощупали» гелиевым течеискателем, который обнаруживает малые протечки гелия. Во время гелиевых испытаний были выявлены неудачные конструктивные решения и пришлось кое-что переделать. После ремонта сварных соединений и повторной проверки на герметичность внутренние поверхности металлоконструкций тщательно обеспылшю и сдали под кладку.

Работы по графитовой кладке с нетерпением ждут как рабочие, так и руководители. Это своеобразная веха на длинном пути монтажа реактора. Кладка относится к разряду чистых работ и в самом деле требует стерильной чистоты. Даже пыль, попав в реактор, ухудшит его качество. Ряд за рядом укладывают рабочие графитовые блоки, проверяя зазоры между ними и другие размеры. Рабочих теперь не узнать, все они в белой спецодежде и спецобуви, белых шапочках, чтобы волосок не упал. В реакторном зале такая же стерильная чистота, ничего лишнего, влажная уборка почти непрерывно. Кладку ведут быстро, круглосуточно, а закончив работу, сдают придирчивым контролерам. В завершении закрывают и заваривают люки в реактор. Затем приступают к монтажу технологических каналов и каналов управления и защиты реактора (каналы СУЗ) На первой АЭС они доставили много хлопот. Дело в том, что трубки каналов имели очень тонкие стенки, а работали при высоких давлении и температуре. Промышленность впервые осваивала производство и сварку таких тонкостенных труб, отчего имели место протечки воды через неплотности сварки Текущие каналы приходилось менять, технологию их изготовления тоже, все это отнимало время. Были и другие сложности, однако все препятствия преодолели. Начались пусковые работы.

9 мая 1954 года реактор достиг критичности, до 26 июня на разных уровнях мощности проводили наладочные работы на многочисленных системах АЭС. 26 июня в присутствии И. В. Курчатова подали пар на турбину и вели дальнейший подъем мощности. 27 нюня состоялся официальный пуск первой в мире Обнинской АЭС с выдачей электроэнергии в систему Мосэнерго.

Атомная станция имела выходную мощность 5000 киловатт. В реактор устанавливалось 128 технологических каналов и 23 канала СУЗ. Одной загрузки хватало для работы АЭС на полной мощности в течение 80-100 суток. Обнинская АЭС привлекла внимание людей всего мира. На ней побывали многочисленные делегации почти из всех стран. Они хотели своими глазами посмотреть на русское чудо. Не надо каменного угля, нефти или горючего газа, здесь тепло от реактора, скрытого за надежной защитой из бетона и чугуна, приводит в движение турбогенератор и вырабатывает электроэнергию, которой по тем временам было достаточно для нужд города с населением 30–40 тысяч человек, при расходе ядерного топлива около 2 тонн в год.

Пройдут годы и на земле в разных странах появятся сотни АЭС огромной мощности, но все они, как Волга из родника, берут начало на русской земле недалеко от Москвы, в известном всему миру городе Обнинске, где впервые разбуженный атом толкнул лопатки турбины и дал электрический ток под славным русским девизом: «Пусть будет атом рабочим, а не солдатом!»

В 1959 году Георгий Николаевич Ушаков, сменивший Николаева на посту директора Обнинской АЭС, издал книгу - «Первая атомная электростанция.» По этой книге училось целое поколение атомщиков.

Обнинская АЭС еще во времена строительства и пуска превратилась в замечательную школу подготовки строительных и монтажных кадров, научных работников и эксплуатационного персонала. Эту свою роль АЭС выполняла многие десятилетия во время промышленной эксплуатации и многочисленных экспериментальных работ на ней. Обнинскую школу прошли такие известные в атомной энергетике специалисты как: Г. Шашарин, А. Григорьянц, Ю. Евдокимов, М. Колмановский, Б. Семенов, В. Коночкин, П. Палибин, А. Красин и многие другие.

В 1953 году на одном из совещаний министр Минсредмаша СССР В. А. Малышев поставил перед Курчатовым, Александровым и другими учеными вопрос о разработке атомного реактора для мощного ледокола, в котором нуждалась страна, чтобы существенно продлить навигацию в наших северных морях, а потом сделать ее круглогодичной. Крайнему Северу уделялось тогда особое внимание, как важнейшему хозяйственному и стратегическому региону. Прошло 6 лет и первый в мире атомный ледокол «Ленин» вышел в свое первое плавание. Этот ледокол прослужил 30 лет в тяжелых условиях Арктики.

Одновременно с ледоколом строилась атомная подводная лодка (АПЛ) Правительственное решение о ее строительстве было подписано в 1952 году, а в августе 1957 года лодку спустили на воду. Эта первая советская АПЛ получила название - «Ленинский комсомол». Она совершила подледный поход к Северному полюсу и благополучно вернулась на базу.

Из книги Миражи и призраки автора Бушков Александр

ЧАСТЬ ПЕРВАЯ. ЕСТЕСТВОЗНАНИЕ В МИРЕ ДУХОВ.

автора

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Великие загадки мира искусства автора Коровина Елена Анатольевна

Первая в мире женщина-скульптор Судьбе было угодно, чтобы в 1491 году в Болонье в семье богатого и знатного горожанина родилась дочь, которую родители назвали Проперцией. И еще судьбе было угодно, чтобы эта самая Проперция воспылала страстью к… ваянию и живописи.Если вы

Из книги Запрещенная история автора Кеньон Дуглас

Глава 31. «ЭЛЕКТРОСТАНЦИЯ В ГИЗЕ: ТЕХНОЛОГИИ ДРЕВНЕГО ЕГИПТА» Летом 1997 г. в журнал «Атлантис Райзинг» обратился ученый, занимавшийся правительственными исследованиями нелетального акустического оружия. Он сказал, что его команда анализировала Великую пирамиду с

Из книги Охота за атомной бомбой: Досье КГБ №13 676 автора Чиков Владимир Матвеевич

1. Атомная проблема Триумф документов Когда последний советский руководитель Михаил Горбачев начал в конце 80-х годов осуществлять политику гласности, расширив круг разрешенных к публикации произведений, он рассчитывал вдохнуть жизнь в умирающие государственные

Из книги Неизвестный Байконур. Сборник воспоминаний ветеранов Байконура [Под общей редакцией составителя книги Б. И. Посысаева] автора Романов Александр Петрович

Виктор Иванович Васильев ПЕРВАЯ В МИРЕ КОСМИЧЕСКАЯ ПОЧТА Родился 27 ноября 1931 г. в Балаклее Харьковской области. В 1959 г. окончил Ленинградскую Краснознаменную военно-воздушную инженерную академию им. А. Ф. Можайского. На космодроме Байконур проходил службу с 1960 по

Из книги Всемирная история в сплетнях автора Баганова Мария

Первая в мире поэтесса Шумеры оставили миру многочисленные литературные памятники: это гимны богам, восхваления царей, сказания, плачи… Увы, их авторы нам неизвестны. Не можем мы и точно сказать, кем была Пуаби, удостоившаяся столь пышных похорон.Зато многое мы можем

Из книги Победы и беды России автора Кожинов Вадим Валерианович

Глава первая О МЕСТЕ РОССИИ В МИРЕ 1С чисто географической точки зрения проблема вроде бы совершенно ясна: Россия со времени начавшегося в XVI веке присоединения к ней территорий, находящихся восточнее Уральского хребта, являет собой страну, которая частью входит в

Из книги Голосуйте за Цезаря автора Джонс Питер

Атомная теория Некоторые древнегреческие философы, в отличие от Сократа, целиком и полностью разделяли идею о полной зависимости человеческой жизни от физических свойств окружающего мира. Одна из теорий на этот счет имела чрезвычайное значение.Для того чтобы чуть

Из книги Сможет ли Россия конкурировать? История инноваций в царской, советской и современной России автора Грэхэм Лорен Р.

Атомная энергетика Россия является мощным международным игроком в области атомной энергетики. Исторически ее сильные стороны в данной сфере уходят корнями в советскую программу ядерного оружия. Однако и в постсоветский период российское правительство продолжило

Из книги История Дальнего Востока. Восточная и Юго-Восточная Азия автора Крофтс Альфред

Атомная бомба Если Япония нашла абсолютное оружие (термин, обозначающий оружие, от которого нет защиты. - Пер.) в сердце самурая, то США взяли его из первичной энергии вселенной. Восточные ученые знали зловещее значение формулы Эйнштейна E = Mc2. Некоторые ученые расщепили

Из книги Большая война автора Буровский Андрей Михайлович

Из книги Аз Есьм Человек автора Сухов Дмитрий Михайлович

В которой повествуется о мире человеческих переживаний, страстей – эмоций, их месте в духовном мире разных индивидов, особенностях и различиях у разных ЛХТ Про эмоции все знают все. Еще бы! - в отличие от прочих разных человечьих качеств, которые могут быть «скрыты» от

Из книги Памятное. Книга 2. Испытание временем автора Громыко Андрей Андреевич

Литвинов и первая в мире женщина-посол Коллонтай Преемником Чичерина на посту наркома по иностранным делам в 1930 году стал Максим Максимович Литвинов. (Настоящие его имя и фамилия были Макс Валлах.)Он занимал этот пост до 1939 года, когда его сменил В.М. Молотов.В 1941 году

Из книги Популярная история - от электричества до телевидения автора Кучин Владимир

Производство электроэнергии с использованием цепной ядерной реакции в Советском Союзе впервые произошло на Обнинской АЭС. По сравнению с сегодняшними гигантами первая атомная электростанция имела всего лишь 5 МВт мощности, а самая большая в мире на сегодняшний день действующая АЭС "Касивадзаки-Карива" (Япония) - 8212 МВт.

Обнинская АЭС: от пуска до музея

Советские ученые во главе с И. В. Курчатовым по окончании военных программ сразу приступили к созданию атомного реактора с целью использования тепловой энергии для преобразования ее в электричество. Первая атомная электростанция была разработана ими в кратчайшие сроки, и в 1954 году состоялся пуск промышленного ядерного реактора.

Высвобождение потенциала, как промышленного, так и профессионального, после создания и испытания ядерного вооружения позволило И. В. Курчатову заняться порученной ему проблемой получения электричества путем освоения тепловыделений при протекании управляемой ядерной реакции. Технические решения по созданию ядерного реактора были освоены еще при пуске самого первого опытного уран-графитового реактора Ф-1 в 1946 году. На нем была проведена первая цепная ядерная реакция, подтверждены практически все теоретические наработки за последнее время.

Для промышленного реактора нужно было найти конструктивные решения, связанные с непрерывной работой установки, съемом тепла и подачи его на генератор, циркуляцией теплоносителя и защитой его от радиоактивного загрязнения.

Коллективом лаборатории № 2, возглавляемой И. В. Курчатовым, совместно с НИИхиммаш под руководством Н. А. Доллежаля были проработаны все нюансы сооружения. Физику Е. Л. Фейнбергу была поручена теоретическая разработка процесса.

Пуск реактора (достижение критических параметров) был произведен 9 мая 1954 года, 26 июня этого же года атомная электростанция подключена в сеть, а уже в декабре выведена на проектную производительность.

После того как Обнинская АЭС безаварийно проработала как промышленная электростанция почти 48 лет, она была остановлена в апреле 2002 года. В сентябре этого же года закончена выгрузка ядерного топлива.

Еще во время работы на АЭС приезжало множество экскурсий, станция работала как учебный класс для будущих ядерщиков. Сегодня на ее базе организован мемориальный музей атомной энергетики.

Первая зарубежная АЭС

Атомные электростанции по примеру Обнинской не сразу, но начали создаваться за рубежом. В США решение о строительстве своей атомной электростанции было принято лишь в сентябре 1954 года, и только в 1958 году состоялся пуск АЭС "Шиппингпорт" в Пенсильвании. Мощность атомной электростанции "Шиппингпорт" составила 68 МВт. Зарубежные эксперты называют ее первой коммерческой атомной электростанцией. Строительство атомных электростанций достаточно дорого, АЭС обошлась казне США в 72,5 млн долларов.

Через 24 года, в 1982-м, станция была остановлена, к 1985 году было выгружено топливо и начат демонтаж этого огромного сооружения весом 956 тонн для последующего захоронения.

Предпосылки создания мирного атома

После открытия деления ядер урана немецкими учеными Отто Ганом и Фрицем Штрассманом в 1938 году начали проводиться исследования цепных реакций.

И. В. Курчатов, подталкиваемый А. Б. Иоффе, совместно с Ю. Б. Харитоном составили записку в Президиум Академии наук о ядерной проблематике и важности работ в этом направлении. И. В. Курчатов работал в это время в ЛФТИ (Ленинградском физико-техническом институте), возглавляемом А. Б. Иоффе, над проблемами физики ядра.

В ноябре 1938 года по результатам изучения проблемы и после выступления И. В. Курчатова на Пленуме АН (Академии наук) была составлена записка в Президиум АН об организации работ в СССР по физике атомного ядра. В ней прослеживается обоснование обобщения всех разрозненных лабораторий и институтов в СССР, принадлежащих разным министерствам и ведомствам, занимающихся, по сути, одной проблематикой.

Приостановка работ по физике ядра

Часть из этих организационных работ удалось сделать еще до ВОВ, но основные подвижки начали происходить только с 1943 года, когда И. В. Курчатову было предложно возглавить атомный проект.

После 1 сентября 1939 года начал постепенно образовываться своеобразный вакуум вокруг СССР. Это не тотчас почувствовали ученые, хотя агенты советской разведки сразу стали предупреждать о засекречивании форсирования работ по изучению ядерных реакций в Германии и Великобритании.

Великая Отечественная война немедленно внесла коррективы в работу всех ученых страны, в том числе и физиков-ядерщиков. Уже в июле 1941 года ЛФТИ был эвакуирован в Казань. И. В. Курчатов стал заниматься проблемой разминирования морских судов (защиты от морских мин). За работы по этой тематике в условиях военного времени (три месяца на судах в Севастополе до ноября 1941-го, когда город был почти полностью в осаде), за организацию в Поти (Грузия) службы размагничивания он был награжден Сталинской премией.

После тяжелого простудного заболевания по приезде в Казань только к концу 1942 года И. В. Курчатов смог вернуться к теме ядерной реакции.

Атомный проект под руководством И. В. Курчатова

В сентябре 1942 года И. В. Курчатову было всего 39 лет, по возрастным меркам науки он был молодым ученым рядом с Иоффе и Капицей. Именно в это время состоялось назначение Игоря Васильевича на пост руководителя проекта. Все атомные электростанции России и плутониевые реакторы этого периода создавались в рамках атомного проекта, которым до 1960 года руководил Курчатов.

С точки зрения сегодняшнего дня невозможно представить, что именно тогда, когда 60% промышленности было разрушено на оккупированных территориях, когда основное население страны работало для фронта, руководством СССР было принято решение, предопределившее развитие ядерной энергетики в будущем.

После оценки донесений разведки о положении дел с работами по физике атомного ядра в Германии, Великобритании, США Курчатову стал ясен размах отставания. Он начал собирать по стране и действующим фронтам ученых, которых можно было задействовать в вопросах создания ядерного потенциала.

Нехватка урана, графита, тяжелой воды, отсутствие циклотрона не остановили ученого. Работы, как теоретические, так и практические, возобновились в Москве. Высокий уровень секретности был определен ГКО (Государственным комитетом обороны). Для наработки оружейного плутония был построен реактор («котел» по терминологии самого Курчатова). Велись работы по обогащению урана.

Отставание от США в период с 1942 по 1949 год

2 сентября 1942 года в США, на первом в мире ядерном реакторе, была осуществлена управляемая ядерная реакция. В СССР к этому времени, кроме теоретических наработок ученых и данных разведки, не было практически ничего.

Становилось ясно, что догнать США в короткое время страна не сможет. Подготовить (сберечь) кадры, создать предпосылки к быстрому освоению процессов по обогащению урана, созданию ядерного реактора по производству оружейного плутония, восстановить работу заводов по производству чистого графита - это задачи, которые нужно было сделать за военное и послевоенное время.

Протекание ядерной реакции связано с выделением колоссального количества тепловой энергии. Ученые США - первые создатели атомной бомбы использовали это как дополнительный поражающий эффект при взрыве.

Атомные электростанции мира

На сегодняшний день ядерная энергетика хоть и вырабатывает колоссальное количество электроэнергии, но распространена в ограниченном количестве стран. Связано это с огромными капиталовложениями при возведении АЭС, начиная с геологоразведки, строительства, создания защиты и заканчивая обучением сотрудников. Окупаемость может произойти через десятки лет при условии постоянной, непрекращающейся работы станции.

Целесообразность строительства АЭС определяется, как правило, правительствами стран (естественно, после рассмотрения различных вариантов). В условиях развития промышленного потенциала, при отсутствии собственных внутренних запасов энергоносителей в больших количествах или их дороговизны предпочтение отдается строительству АЭС.

К концу 2014 года атомные реакторы работали в 31 стране мира. Строительство атомных электростанций начато в Белоруссии и ОАЭ.

№ п/п

Страна

Кол-во работающих АЭС

Кол-во работающих реакторов

Генерируемая мощность

Аргентина

Бразилия

Болгария

Великобритания

Германия

Нидерланды

Пакистан

Словакия

Словения

Финляндия

Швейцария

Южная Корея

Атомные электростанции России

На сегодняшний день в РФ работают десять атомных электростанций.

Название АЭС

Количество работающих блоков

Тип реакторов

Установленная мощность, МВт

Балаковская

Белоярская

БН-600, БН-800

Билибинская

Калининская

Кольская

Ленинградская

Нововоронежская

ВВЭР-440, ВВЭР-1000

Ростовская

ВВЭР-1000/320

Смоленская

Сегодня атомные электростанции России входят в Госкорпорацию «Росатом», объединившую все структурные подразделения отрасли от добычи-обогащения урана и производства ядерного топлива до эксплуатации и сооружения атомных электростанций. По генерируемой атомными электростанциями мощности Россия находится на втором месте в Европе после Франции.

Атомная энергетика в Украине

Атомные электростанции Украины построены во времена Советского Союза. Совокупная установленная мощность украинских АЭС сравнима с российскими.

Название АЭС

Количество работающих блоков

Тип реакторов

Установленная мощность, МВт

Запорожская

Ровенская

ВВЭР-440,ВВЭР-1000

Хмельницкая

Южно-Украинская

До распада СССР атомная энергетика Украины была интегрирована в единую отрасль. В постсоветский период до событий 2014 года на Украине работали промышленные предприятия, выпускающие комплектующие и для российских АЭС. В связи с разрывом промышленных отношений между РФ и Украиной задержаны запланированные на 2014 и 2015 годы пуски энергоблоков, строящихся в России.

Атомные электростанции Украины работают на ТВЭЛах (тепловыделяющих элементах с ядерным топливом, где происходит реакция деления ядер), изготовляющихся в РФ. Желание Украины перейти на американское топливо чуть не привело в 2012 году к аварии на Южно-Украинской АЭС.

К 2015 году госконцерн «Ядерное топливо», в состав которого входит Восточный горно-обогатительный комбинат (добыча урановой руды), пока не смог организовать решение вопроса о производстве собственных ТВЭЛов.

Перспективы атомной энергетики

После 1986 года, когда произошла авария на Чернобыльской АЭС, во многих странах были остановлены атомные электростанции. Повышение уровня безопасности вывело атомную энергетику из состояния стагнации. До 2011 года, когда произошла авария на японской АЭС "Фукусима-1" в результате цунами, атомная энергетика развивалась стабильно.

На сегодняшний день постоянные (как мелкие, так и крупные) аварии на атомных электростанциях будут тормозить принятие решений о строительстве или расконсервации установок. Отношение населения Земли к проблеме получения электроэнергии путем ядерной реакции можно определить как настороженно-пессимистичное.