Вертолет летает потому, что сверху у него крутится большой несущий винт. У винта есть лопасти. Они по форме напоминают крылья самолета. И когда лопасти быстро крутятся на винте, возникает сила, которая поднимает эту машину в воздух.

У разных вертолетов на несущем винте – по-другому он называется ротором – может быть разное количество лопастей.

У вертолета средних размеров обычно бывает три лопасти.

Самые большие вертолеты, у которых четыре лопасти на несущем винте, могут одновременно перевозить много людей или большие грузы.
Они могут летать в разных направлениях.
Пилот, управляя вертолетом, может наклонить несущий винт влево. И тогда его воздушная машина начнет двигаться в сторону левого бока. А стоит наклонить несущий винт вправо, и машина станет двигаться в сторону правого бока.
Если наклонить ротор вперед или назад, то и вертолет будет двигаться вперед или назад – вот такая это послушная машина.
Вертолеты умеют даже зависать в воздухе. Такое свойство очень полезно для разных дел. И оно недоступно другим крылатым машинам.

Это интересно:
На самом верху вертолета укреплен большой пропеллер – ротор. Если ротор из горизонтального положения наклонить в ту или иную сторону, что может с помощью рычагов управления сделать пилот, то вертолет начнет двигаться именно в сторону наклона ротора. Потому что к подъемной силе вращающихся лопастей прибавляется еще и сила их поступательного горизонтального движения. На хвосте у каждого вертолета есть дополнительный маленький пропеллер. Он расположен вертикально и нужен для того, чтобы вертолет не закручивало при работе главного несущего винта.

Как летает вертолет?

Авиация - сколько в этом слове завораживающего и невероятного! Чего стоят одни только самолёты и вертолёты! А задумывались ли вы, как летает вертолет? Ну, с самолётом всё понятно, крылья позволяют ему держаться в небе, не падая, лететь вперёд, в сторону. «А вот вертолёт таких крыльев не имеет» - скажете вы. И будете правы только наполовину. Но об этом подробней.

Принцип полета вертолета

Вероятно, все видели винт, расположенный на крыше у вертолёта. Именно он и отвечает за поднятие машины в воздух. Несущий винт больших размеров состоит из лопастей, которые при вращении и подымают вертолёт. Они выполняют функцию крыла, как у самолёта, вот только по размеру меньше, а количество их больше. Когда заводится двигатель, лопасти винта начинают вращение, заставляя летательный аппарат взлетать в небо. Сила, которая применяется к каждому крылу-лопасти, суммируется в общую силу, которая применяется ко всей машине в целом. Именно эта аэродинамическая сила перпендикулярная по отношению к плоскости, создающейся при вращении всех лопастей и винта в целом, способствует поднятию в воздух тяжёлого летательного аппарата. Если сила вращения винта больше, чем вес всего летательного аппарата, он будет взлетать. Если сила меньше, полёт не будет совершён. А вот если сила одинаковая, вертолёт застрянет на месте. Можно посмотреть подробней о том, как летает вертолет, на видео. Вы заметите, что после того как лопасти набирают обороты, вертолёт начинает взлетать, но не сразу. Сперва он немного зависает, а уж после того как набирает обороты, взлетает.

Топливо для полета

Для вертолёта в основном используют бензин - авиационный керосин. Но с развитием технологий начинают искать более подходящее и менее дорогостояще топливо. Например, метан, вернее, криогенное топливо, которое делают из метана. Оно устойчиво к малым температурам (- 170 градусов). Это природный газ, который можно безопасно транспортировать на тех же вертолётах. Также верным ответом на вопрос о том, на чем летает вертолет, будет и такой газ как бутан или пропан. Такое топливо можно перевозить в условиях обычных температур. Оно отлично подходит для двигателя, не портит качества полета, считается практически лучшим топливом для летательного аппарата.

Стоит сказать, что топливо для вертолёта может использоваться совершенно разное, но при этом портится качество полета. Как и в машине, если залить плохой, некачественный бензин, автомобиль ездит плохо, так и с вертолетами: плохое топливо негативно влияет на работу вертолета.

Второй винт

Часто можно увидеть вертолёт с двумя винтами, один из которых располагается на хвосте. Благодаря ему он и взлетает. Хвостовой винт создаёт противодействие основному. Его лопасти вращаются не в унисон несущему винту, а наоборот. Таким образом, создавая тягу, второй винт уравновешивает силу несущего, чем и заставляет вертолёт взлететь, при этом защищая его от «заносов» влево или вправо при вращении большого винта.

Но на некоторых вертолётах нет хвостового винта. На моделях такого летательного аппарата находится ещё один несущий винт. Он расположен под верхним несущим. Его лопасти так же, как и у хвостового, вращаются противоположно. Вертолёты с таким механизмом взлетают быстрее, поскольку винты имеют одинаковую силу при подъёме. Такие вертолеты подымаются в воздух немного быстрее.

Многие дети хоть раз в жизни видели в небе летящий вертолет. А у кого-то может быть есть вертолет на радиоуправлении. Вертолет может быть транспортом для быстрого передвижения и участником боевых действий на войне. Он летает так, что дух захватывает и невозможно оторвать взгляд. Но как же такая тяжелая железная машина может оторваться от земли и лететь в нужном направлении?

Давайте разбираться. На крыше вертолета закреплен огромный крутящийся винт с лопастями . Он выполняет функцию крыльев. Этот винт, вместе с еще одним винтом, поменьше способен поднять вертолет вверх, задержать его в воздухе и заставить лететь. Когда винт крутится, лопасти с силой захватываю поток воздуха и, при помощи аэродинамической силы, вертолет летит.

Аэродинамическая сила – это сила, с которой воздух действует на поверхность вертолета. Благодаря вращению лопастей винта над вертолетом создается зона пониженного давления, и частички воздуха как бы выталкивают его вверх. Загребая лопастями воздух, вертолет мчится вперед. Главный винт помогает вертолету лететь прямо вперед.

А при наклоне винта изменяется аэродинамическая сила. Благодаря этому вертолет может лететь не только вперед, но и вбок или даже назад. Но как же наклонить винт, чтобы заставить вертолет лететь вбок? Для этого надо изменить угол атаки. Что такое угол атаки? Каждая лопасть винта может оборачиваться вокруг своей оси (стержня). Угол атаки – это величина, на которую может «задраться» лопасть навстречу воздуху. Когда пилот увеличивает угол атаки сразу у всех лопастей, вертолет взлетает вверх, а когда угол атаки уменьшается – вертолет опускается. Если растет угол атаки лопасти, когда она будет находиться над носом вертолета, то сзади соответственно он уменьшится и вертолет полетит назад. А если растет угол атаки у лопасти пролетающей над левым бортом – вертолет полетит направо.

Если за рычагом управления опытный пилот, вертолет может даже летать вверх ногами, то есть вверх колесами. Вернее летать он так не сможет, а сможет только делать фигуры в воздухе. Для того, чтобы «кувыркнуться» вертолету хватит аэродинамической силы. Но летать вниз лопастями долго вертолет не может. Если сравнивать вертолет с самолетом, можно найти много отличий. Самолету нужно разогнаться, чтобы взлететь и он не может держаться вертикально в воздухе, ему нужно все время лететь вперед. А вертолет может подняться вверх, например, с крыши дома, и висеть в воздухе столько времени, сколько надо. Это позволило вертолету найти применение в разных областях нашей жизни.

20.06.2015

Принцип полета самолета и вертолета


Всякое тело, движущееся в воздухе, непрерывно испытывает со стороны последнего противодействие своему движению. Поэтому, чтобы продвинуть тело, нужно преодолеть сопротивление, приложить некоторую силу. Сила сопротивления воздуха, которую встречает движущееся в нем тело, прямо пропорциональна плотности воздуха, площади тела, квадрату скорости движения и зависит от формы тела, его гладкости и положения в воздушном потоке.
На основании этого основного закона аэродинамики можно установить, что если телам различной формы и размеров, помещенным в различную среду, придать одну и ту же силу, то скорость продвижения их будет различной.
Если в поток воздуха поместить тела различной формы - пластинку, тело с угловатыми формами и каплевидное тело, то окажется, что чем больше разница давлений спереди и сзади их, тем больше область завихрения, меньше скорость продвижения тел в воздухе и больше сила сопротивления. Эта сила, направленная прямо против движения тел, называется силой лобового сопротивления, или лобовым сопротивлением.
При обтекании тела с угловатыми формами поток тормозится меньше, чем при обтекании пластинки, следовательно, меньшими будут и область пониженного давления, и лобовое сопротивление (рис. 1).

Если же в поток воздуха поместить каплевидное тело, имеющее более совершенную аэродинамическую форму, то давление впереди и сзади этого тела будет незначительным, так как струйки воздуха плотно обтекают его и почти не образуют завихрений. При наличии таких тел для преодоления лобового сопротивления потребуется наименьшая сила. Из сказанного становится понятным, что в авиации решающее значение имеют обтекаемые формы тел, создающие возможно малое сопротивление и не вызывающие завихрений. К таким телам прежде
всего относятся каплевидные и крылообразные тела. Крылья в самолете являются его основными частями. Они создают подъемную силу и делают возможным полет.
Рассмотрим в общих чертах причины возникновения подъемной силы (рис. 2). Пусть крыло движется в воздухе под некоторым углом атаки. Частицы воздуха, ударяясь о летящее крыло, будут огибать как верхнюю, выпуклую, так и нижнюю, плоскую или слегка вогнутую, поверхность крыла. В одно и то же время струйкам, обтекающим крыло сверху, приходится пройти больший путь, чем струйкам, обтекающим крыло снизу. Значит верхние струйки будут двигаться с большей скоростью, чем нижние.


Из закона Бернулли следует, что чем больше скорость потока, тем меньше в нем давление. Поэтому над крылом создается меньшее давление, чем под крылом. В результате разности давлений крыло, с одной стороны, как бы подсасывается вверх за счет пониженного давления, а с другой - подпирается тоже вверх за счет повышенного давления. Вследствие этого и возникает подъемная сила, действующая снизу вверх и направленная перпендикулярно потоку воздуха. На этом свойстве крыла и основан полет самолета и вертолета как аппаратов тяжелее воздуха.
Подъемная сила у самолета появляется только в том случае, если он движется с достаточной скоростью. Чтобы самолет мог оторваться от земли, подъемная сила его крыла должна быть больше веса самолета.
Для того чтобы самолет мог двигаться в воздухе с определенной скоростью, он должен все время преодолевать сопротивление воздуха, а при разбеге во время взлета еще и трение колес о землю. Силой, преодолевающей сопротивление воздуха и придающей поступательную скорость самолету, является сила тяги воздушного винта, вращаемого мотором.

Устройство самолета


К числу основных частей самолета относятся крылья, корпус, органы устойчивости и управления, органы для передвижения и посадки, винтомоторная группа (рис. 3).
Крылья являются одной из наиболее важных частей самолета. От формы в плане и в поперечном сечении, а также от размеров крыльев зависят лётные качества самолета.
Самолет типа моноплан имеет одно крыло, а типа биплан - два крыла. Верхние и нижние крылья связаны между собой стойками. К верхним и нижним крыльям подвешены на шарнирах элероны. В плане крыло самолета с элероном чаще всего имеет прямоугольную форму с эллиптическим закруглением концов.


Корпус самолета (фюзеляж) является основной частью конструкции, с которой соединяются центроплан, крылья, моторная установка, шасси и хвостовое оперение. Кроме того, он служит для размещения полезной нагрузки самолета (пассажиров, грузов и т. п.).
Органы устойчивости и управления самолетом состоят из элеронов и хвостового оперения.
Элероны являются частью крыла и представляют собой подвижные небольшие крылышки, расположенные по концам крыльев самолета. Элероны служат для сохранения самолетом поперечной устойчивости и для наклона его при поворотах вокруг продольной оси.
Хвост самолета состоит из горизонтального и вертикального оперений. При их помощи самолет сохраняет в воздухе продольную устойчивость, поднимается вверх, снижается и изменяет направление полета.
Горизонтальное оперение состоит из стабилизатора - неподвижной части, обеспечивающей самолету продольную устойчивость в полете (в вертикальном направлении), и подвижной части - рулей высоты. Они являются органами управления самолетом в вертикальной плоскости и служат для перевода его на подъем или снижение.
Вертикальное оперение состоит из киля, неподвижно соединенного с хвостовой частью фюзеляжа и служащего для придания устойчивости самолету в полете (в горизонтальном направлении), подвижной части - руля направления, являющегося органом путевой устойчивости и управляемости. При его помощи можно изменить направление полета самолета вправо и влево, т. е. в горизонтальной плоскости.
Органы для передвижения и посадки - это шасси с хвостовым или передним колесом. Шасси самолета является взлетно-посадочным приспособлением, необходимым для разбега при взлете, смягчения удара при посадке и улучшения управляемости при рулении на земле. В зимних условиях для предохранения от зарывания в снег устанавливается хвостовая лыжа (лыжонок).
Посадка самолета происходит на три точки, например на два передних колеса и одно хвостовое.
Управление самолетом осуществляется при помощи рулей высоты, руля направления и элеронов, Основным требованием, предъявляемым к самолету в полете, является устойчивость и управляемость относительно трех осей (рис. 4), проходящих через центр тяжести самолета - продольной оси ХХ1, поперечной оси УУ1 и вертикальной оси ZZ1, перпендикулярной этим осям. Управляемость самолетом вокруг продольной оси достигается элеронами, поперечной оси - рулями высоты, вертикальной оси - рулем направления. Для управления самолетом служат штурвал и ножные педали. Штурвал соединяется с рулями высоты и элеронами, а ножные педали - с рулем направления и хвостовым колесом. При отклонении штурвала влево поднимаются элероны левых крыльев и опускаются элероны правых крыльев; при этом самолет получает левый крен. При взятии штурвала на себя поднимаются рули высоты и самолет идет на подъем. При подаче штурвала от себя самолет пойдет на снижение.


Управление рулем направления осуществляется путем нажатия ногой педали. Например, при нажатии правой ногой руль повернется направо и самолет развернется вправо.
Винтомоторная группа состоит из мотора, воздушного винта, моторной рамы, системы бензо- и маслопитания и управления мотором. Воздушный винт самолета имеет несколько лопастей правого вращения (по часовой стрелке).

Применяемые самолеты и требования к ним


К самолетам, применяемым для аэрофотосъемки лесов и в лесном хозяйстве, предъявляются различные требования.
В лесном хозяйстве для охраны лесов от пожаров, их тушения, аэротаксации лесов, авиахимической борьбы с вредными насекомыми и других работ наибольшее применение получили самолеты ЯК-12 и АН-2. Самолет ПО-2 снят с производства.
Самолет ЯК-12 - моноплан, с закрытой, но хорошо остекленной кабиной, вмещает четырех человек, включая летчика. Удобен для аэровизуальных наблюдений, имеет хороший обзор и небольшую скорость полета - 90-150 км/ч. Крупно- и среднемасштабная аэрофотосъемка с него возможна только для лесохозяйственных целей при условии невысоких требований в отношении строгого соблюдения высоты полета и угла наклона аэроснимков.
Самолет АН-2 широко используется для авиационной охраны лесов от пожаров, их тушения, авиахимической борьбы с вредными насекомыми, транспорта людей и грузов, а также для аэрофотосъемки. В кабине его свободно размещаются два аэрофотоаппарата, специальное к ним оборудование, в том числе радиовысотомер, статоскоп, и другие приборы, и экипаж до б человек. Это позволяет одновременно производить аэровизуальные наблюдения над лесными массивами. При хорошей устойчивости в воздухе, крейсерской скорости 130-210 км/ч пригоден для средне- и крупномасштабной аэрофотосъемки. Обзор у него для аэровизуальных наблюдений хуже, чем у ЯК-12.
Самолеты ЛИ-2 и ИЛ-12 оборудованы наиболее совершенными пилотажными и аэронавигационными приборами, обладают большой грузоподъемностью и скоростью полета (230-400 км/ч), практической высотой полета до 5000 м, что позволяет применять их для мелко- и среднемасштабной аэрофотосъемки.
К числу специфических требований к аэрофотосъемочным самолетам следует отнести:
1. Необходимость иметь достаточные размеры кабины, позволяющие разместить аэрофотоаппараты и все оборудование к ним (радиовысотомеры, статоскопы и контрольные приборы) и создавать возможность управления ими в полете и устранения мелких неисправностей.
2. Возможность хорошего обзора для аэросъемщика вперед, в стороны и вниз.
3. Способность быстро набирать высоту до 6000 м, обладать крейсерской скоростью до 350 км/ч, иметь запас горючего на 6-8 ч полета.
4. На заданном режиме горизонтального полета самолет должен обладать хорошей продольной, поперечной и путевой устойчивостью, чтобы обеспечить требования, предъявляемые к геометрическому качеству фотографического изображения местности.
Для авиационного обслуживания лесного хозяйства необходимо иметь самолеты как легкого типа, удобные для аэровизуальных наблюдений, с большим диапазоном скорости - от 80 до 200 км/ч, позволяющие производить полеты на низкой высоте, так и тяжелые самолеты с грузоподъемностью в несколько тонн, способные перевозить грузы, рабочих, парашютистов, разные механизмы и вместе с тем пригодные для посадки и взлета с небольших площадей.

Устройство вертолета


Вертолет - летательный аппарат тяжелее воздуха. Иностранное название его - «геликоптер», происходящее от греческих слов hélicos (винт) и pteron (крыло), т. е. винтокрылый. Русское название «вертолет» указывает на основную особенность этого летательного аппарата - «вертикальный полет».
Вертолет способен взлетать вертикально, прямо с места, садиться также вертикально, без пробега. В воздухе он может двигаться в любом направлении, может неподвижно висеть как над пологом леса, так и на высоте нескольких сот метров. Вертолет может производить посадку на поляну среди леса, на сухое безлесное болото и т. д. Взлетные и посадочные скорости, длина разбега и пробега равны нулю, поэтому вертолет не нуждается в специальных аэродромах, он является представителем безаэродромной авиации. Вертолет имеет большой диапазон скоростей - от 0 до 150-200 км/ч. Благодаря этим свойствам он является незаменимым средством связи, транспорта, для выполнения различных заданий при исследовании малодоступных мест в необжитых условиях Севера и Сибири.
К основным частям вертолета относятся; несущий винт, корпус, двигатель, трансмиссия, система управления вертолетом, рулевой (хвостовой) винт и шасси (рис. 5).

Несущий винт у вертолета играет роль крыла. Он приводится во вращение двигателем и служит для создания подъемной силы и тяги. Кроме того, несущий винт является органом управления вертолетом. На вертолетах применяются несущие винты с тремя-четырьмя длинными и узкими (диаметром 15-20 л и более) лопастями. Лопасти несущего винта могут поворачиваться относительно своей оси в осевом шарнире.
Управление движением вертолета по вертикали осуществляется путем изменения оборотов несущего винта или угла установки лопастей. При увеличении скорости вращения винта или угла установки лопастей подъемная сила возрастает и вертолет поднимается. Если обороты винта падают или уменьшается угол установки, то убывает подъемная сила и вертолет снижается. Когда подъемная сила полностью уравновешивается полетным весом вертолета, то он «висит» в воздухе, не снижаясь и не поднимаясь. Как только подъемная сила превысит вес вертолета, он поднимается. Вращаясь, несущий винт стремится повернуть вертолет в сторону, противоположную вращению винта, т. е. создается реактивный момент. Для уравновешивания его используется рулевой винт, который при вращении создает тягу и уравновешивает кручение.
Корпус вертолета выполняет те же функции, что и у самолета. Он связывает все части в одно целое. В нем размещаются двигатель, система управления, специальное оборудование, механизм трансмиссии, кабина для пилота и груза.
Силовая установка и трансмиссия. На современных вертолетах применяются обычные поршневые двигатели внутреннего сгорания с воздушным охлаждением, авиационные газовые турбины и турбореактивные двигатели.
Для того чтобы передать мощность двигателя на несущий и хвостовой винты, применяют специальный механизм, называемый трансмиссией.
Управление, например одновинтовым вертолетом, состоит из трех систем; управления несущим винтом, управления рулевым винтом и управления газом двигателя.
Управление несущим винтом осуществляется ручкой управления обычного самолетного типа при помощи автомата-перекоса и рычагом «шаг-газ». Управление рулевым винтом осуществляется обычными педалями ножного управления. Управление двигателем выполняется тем же рычагом «шаг-газ», которым управляется и несущий винт.
Рычаг «шаг-газ» называется так потому, что при его перемещении одновременно изменяются шаг винта и мощность (газ) двигателя. Например, при движении рычага «шаг-газ» вниз установочные углы или шаг лопасти несущего винта будут уменьшаться, уменьшится при этом и мощность двигателя. Следовательно, вертолет начнет снижаться.
Хвостовой винт устанавливается только на одновинтовых вертолетах. Он уравновешивает реактивный момент несущего винта и осуществляет путевое управление, т. е. используется для выполнения поворота.
Шасси служит для погашения возможных ударов, толчков при приземлении и опорой при стоянке. Шасси бывает колесное, поплавковое и полозковое.
На легких вертолетах обычно бывает три колеса, а на тяжелых - четыре.

Классификация вертолетов


Вертолеты различаются по количеству несущих винтов, их расположению, способу привода вращения. В соответствии с этими признаками вертолеты бывают одновинтовыми с рулевым винтом, с двумя несущими винтами, расположенными соосно, с двумя продольно расположенными винтами, с двумя поперечно расположенными несущими винтами, с реактивным приводом несущего винта и др. (рис. 6).
Наиболее распространенными являются одновинтовые вертолеты с рулевым винтом конструкции М.Л, Миля (МИ-1, МИ-4, МИ-6, В-2, В-8 и др.). Они просты по конструкции и в управлении. Недостатками их являются длинный хвост (большие габариты) и значительная потеря мощности (до 10%) на работу рулевого винта.


У вертолетов соосной конструкции оба винта находятся на одной оси, один под другим. Вал верхнего винта проходит внутри полого вала нижнего винта. За счет вращения несущих винтов в противоположных направлениях погашается реактивный момент. Эти вертолеты имеют небольшие размеры, малый вес, хорошую управляемость и маневренность,
К недостаткам соосных вертолетов относятся потеря мощности нижним несущим винтом, работающим в струе воздуха, отброшенного верхним винтом, и трудность расчета при конструировании.
По этой схеме создаются легкие вертолеты Н.И. Камовым: одноместные КА-10, двухместные КА-15 и четырехместные КА-18.
У вертолетов с двумя продольно расположенными несущими винтами один винт находится над носовой частью фюзеляжа, а другой - над хвостовой. Винты вращаются в противоположные стороны для взаимного погашения реактивного момента. Недостатком их является то, что задний винт работает в воздушной среде, предварительно возмущенной передним винтом, а это уменьшает коэффициент его полезного действия.
Винты у вертолетов с двумя поперечно расположенными несущими винтами укреплены на специальных балках по бокам фюзеляжа. Вращаясь в противоположных направлениях, они создают хорошую поперечную устойчивость.

Максимальная высота полета определяется двумя «потолками»: статическим и динамическим. В первом случае речь идет о вертикальном подъеме только с помощью несущего винта. Этот показатель обычно ниже. Во втором случае подъем осуществляется и с помощью винта, и за счет скорости линейного перемещения. В таком случае можно подняться выше.

Вертолет: особенности

У самолета образуется за счет скорости и конфигурации крыла. Совсем иначе поднимается вверх вертолет. Максимальная высота полета редко превышает 3000-3500 м. Для поднятия используется силовая установки и несущий винт. Скорость не сравнима с самолетами, зато вертолет может легко взлетать без разбега, садиться на неподготовленную посадочную полосу, зависать на месте, перемещаться боком.

По инструкции, пилотам запрещается выключать двигатели во время посадки на высотных площадках от 3000 метров. Нормальная работа для большинства вертолетов в штатном режиме возможна до 4,5 км. Выше этого порога воздух становится разреженным и лопастям винтов нужно придавать предельные углы атаки. А это может приводить к нештатным ситуациям.

Разновидности

Для объективного определения показателей необходимо выделять, к какому типу относится вертолет. Максимальная высота полета может быть установлена для четырех подклассов винтокрылых машин, на которые их поделила Международная авиационная федерация (FAI) в соответствии с конструктивными особенностями.

Кроме вертолетов, еще определяют автожиры, у которых основной винт не изменяет угол наклона и используется только для создания подъемной силы. Еще один подкласс - конвертопланы. Их винты вместе с двигателями при взлете направлены вверх, а во время горизонтального полета поворачиваются и работают, как самолетные. Отдельно выделяют подкласс винтокрылов, у которых для создания подъемной силы, кроме основного винта, используются и боковые аэродинамические плоскости на корпусе (крылья).

Еще все геликоптеры разделяют на пять групп в зависимости от взлетной массы: от 500 кг до 4500 кг. Кроме этого, определяют тип назначения: гражданские или военные. Среди них могут выделяться отдельные подклассы в зависимости от специфики использования: транспортные, многоцелевые, поисково-спасательные, пожарные, сельскохозяйственные, вертолеты-краны и прочие.

Вертолет: максимальная высота полета

И статический, и динамический «потолки» имеют предельные показатели. Ограничения вводятся для определения границ, превышение которых может приводить к срыву воздушного потока с лопастей несущего винта. Уверенней винтокрылые машины держатся в воздухе на высотах до 4500 м с определением максимального «потолка» у отдельных машин до 6 км.

Максимальная высота полета вертолета, зафиксированная как абсолютный рекорд, составляет 12442 м. Установил его французский воздухоплаватель Жан Буле. Его Aerospatiale «Лама», относящийся к подклассу "вертолеты", смог преодолеть 12-километровый рубеж в 1972 году. Тот полет мог закончиться фатально, так как на высоте, где температура была ниже - 60 °С, заглох двигатель. Пилоту пришлось установить еще один рекорд - максимальное высотное снижение в режиме самовращения основного винта.

Вертолет «Акула»

Принятая на вооружение двухвинтовая машина с соосным их расположением - Ка-50 - имеет статический потолок, определенный техническими характеристиками на уровне 4000 метров. Максимальная высота полета вертолета «Акула» в динамике может составлять до 5500 метров. Скорость полета в крейсерском режиме - 260 км/час, боком - 80 км/час, задом - до 90 км/час. Высоту набирает в режиме 28 м/с. Способен выполнить полную «мертвую петлю», хоть такой маневр опасен из-за высокой вероятности схлестывания винтов.

Для сравнения максимальная высота полета вертолета Ми-26 составляет 6500 м, а у Ми-28 - 5800 м. Американский Apache АН-64 может подниматься до 6400 м. Модернизированный Ка-52 «Аллигатор», так же, как и «Акула», летает на высоте 5700 м.