Газовая турбина, как тепловой двигатель, объединяет харак­терные особенности паровой турбины и двигателя внутреннего сго­рания, в котором энергия топлива при его горении превращается непосредственно в механическую работу. Рабочим телом газовых турбин, работающих по открытому циклу, являются продукты сгорания топлива, а рабочим телом газовых турбин, работающих по закрытому циклу,- чистый воздух или газ, непрерывно цирку­лирующий в системе. На судах применяют газотурбинные уста­новки (ГТУ), работающие по открытому циклу, со сгоранием топ­лива при постоянном давлении (р = const) и ГТУ, работающие по закрытому циклу.

В настоящее время судовые ГТУ выполняют двух типов: 1) турбокомпрессорные и 2) со свободно-поршневыми генераторами газа (СПГГ).

Схема простейшей турбокомирессорной газотурбинной уста­новки, работающей при постоянном давлении сгорания топлива представлена на рис. 101. Компрессор 9 засасывает чистый атмо­сферный воздух, сжимает его до высокого давления и подает по воздухопроводу 3 в камеру сгорания 2, куда одновременно через форсунку 1 поступает топливо. Топливо, смешиваясь с воздухом, образует рабочую смесь, которая сгорает при р = const. Образо­вавшиеся продукты сгорания охлаждаются воздухом и направля­ются в проточную часть турбины. В неподвижных лопатках 4 про­дукты сгорания расширяются и с большой скоростью поступают на рабочие лопатки 5, где происходит преобразование кинетиче­ской энергии газового потока в механическую работу вращения вала. По патрубку 6 отработавшие газы уходят из турбины. Газо­вая турбина приводит во вращение компрессор 9 и через редук­тор 7 гребной винт 8. Для запуска установки используется пуско­вой двигатель 10, который раскручивает компрессор до минималь­ной частоты вращения.

На этом же рисунке изображен теоретический цикл рассмот­ренной ГТУ в координатах р - ? и S - Т: AВ - процесс сжатия воздуха в компрессоре; ВС-сгорание топлива при постоянном давлении в камере сгорания; СД- расширение газа в турбине, ДА - отвод тепла от отработавших газов.

Для повышения экономичности работы ГТУ применяют реге­неративный подогрев воздуха, поступающего в камеру сгорания, либо ступенчатое сгорание топлива в нескольких последователь­ных камерах сгорания, которые обслуживают отдельные турбины. Из-за конструктивной сложности ступенчатое сгорание применяют редко. С целью повышения эффективного к. п. д. установки наряду с регенерацией используют двухступенчатое сжатие воздуха, при этом между компрессорами включают промежуточный охладитель воздуха, что сокращает потребную мощность компрессора высо­кого давления.

На рис. 102 дана схема простейшей газотурбинной установки со сгоранием топлива при р = const и регенерацией тепла. Воздух, сжатый в компрессоре 1 , проходит через регенератор 2 в камеру сгорания 3 , где подогревается за счет тепла отработавших газов, покидающих турбину 4 со сравнительно высокой температурой. Действительный цикл этой установки показан на диаграмме S-Т (рис. 103): процесс сжатия воздуха в компрессоре 1 - 2 ; нагрев воздуха в регенераторе, сопровождаемый падением давления от р 2 до р 4 2 - 3; подвод тепла в процессе сгорания топлива 3 - 4; действительный процесс расширения газа в турбинах 4-5 ; охлаж­дение газов в регенераторе, со­провождаемое потерей давле­ния р 5 1 5-6; выпуск га­зов- отвод тепла 6-1 . Коли­чество тепла, полученное воз­духом в регенераторе, изобра­жается площадью 2"-2-3-3", а количество тепла, отданного отходящими газами в регенераторе, площадью 6"-6-5-5". Эти площади равны между собой.

В ГТУ закрытого цикла отработавшее рабочее тело не посту­пает в атмосферу, а после предварительного охлаждения вновь направляется в компрессор. Следовательно, в цикле циркулирует рабочее тело, не загрязненное продуктами сгорания. Это улуч­шает условия работы проточных частей турбин в результате чего повышается надежность работы установки и увеличивается ее мо­торесурс. Продукты сгорания не смешиваются с рабочим телом и поэтому для сжигания пригодно топливо любого вида.

На рис. 104 показана принципиальная схема всережимной су­довой ГТУ закрытого цикла. Воздух после предварительного ох­лаждения в воздухоохладителе 4 поступает в компрессор 5 , кото­рый приводится во вращение турбиной высокого давления 7 . Из компрессора воздух направляется в регенератор 3 , а затем в воздухонагреватель 6, выполняющий ту же роль, что и камера сго­рания в установках открытого типа. Из воздухонагревателя рабо­чий воздух при температуре 700° С поступает в турбину высокого давления 7 , которая вращает компрессор, а затем в турбину низ­кого давления 2 , которая через редуктор 1 приводит в действие винт регулируемого шага. Пусковой электродвигатель 8 предназ­начен для запуска установки в работу. К недостаткам ГТУ закры­того цикла следует отнести громоздкость теплообменников.

Особый интерес представляют ГТУ закрытого цикла с ядерным реактором. В этих установках в качестве рабочего тела газовых турбин (теплоносителя) применяют гелий, азот, углекислый газ. Эти газы не активируются в ядерном реакторе. Нагретый в реакторе до высокой температуры газ непосредственно направляется на работу в газовую турбину.

Основными достоинствами газовых турбин по сравнению с па­ровыми являются: малые вес и габариты, так как отсутствуют ко­тельная и конденсационная установка со вспомогательными меха­низмами и устройствами; быстрый пуск в ход и развитие полной мощности в течение 10-15 мин\ весьма малый расход охлаждаю­щей воды; простота обслуживания.

Основные преимущества газовых турбин по сравнению с дви­гателями внутреннего сгорания являются: отсутствие кривошипно-шатунного механизма и связанных с ним инерционных сил; малые вес и габариты при больших мощностях (ГТУ по весу легче в 2- 2,5 раза и по длине короче в 1,5-2 раза, чем дизели); возмож­ность работы на низкосортном топливе; меньшие эксплуатацион­ные расходы. Недостатки газовых турбин следующие: небольшой срок службы при высоких температурах газа (так, при темпера­туре газа 1173° К срок службы 500-1000 ч); меньшая, чем у ди­зелей, экономичность; значительная шумность при работе.

В настоящее время газовые турбины применяют в качестве главных двигателей морских транспортных судов. В отдельных случаях газовые турбины малой мощности применяют в качестве привода насосов, аварийных электрогенераторов, вспомогатель­ных наддувочных компрессоров и др. Особый интерес представ­ляют газовые турбины как главные двигатели для судов с подвод­ными крыльями и судов на воздушной подушке.

Тепловая турбина постоянного действия, в которой тепловая энергия сжатого и нагретого газа (обычно продуктов сгорания топлива) преобразуется в механическую вращательную работу на валу ; является конструктивным элементом газотурбинного двигателя.

Нагревание сжатого газа, как правило, происходит в камере сгорания. Также можно осуществлять нагрев в ядер-ном реакторе и др. Впервые газовые турбины появились в конце XIX в. в качестве газотурбинного двигателя и по конструктивному выполнению приближались к паровой турбине. Газовая турбина конструктивно представляет собой целый ряд упорядоченно расположенных неподвижных лопаточных венцов аппарата сопла и вращающихся венцов рабочего колеса, которые в результате образуют проточную часть. Ступень турбины представляет собой сопловой аппарат, совмещенный с рабочим колесом . Ступень состоит из статора, в который входят стационарные детали (корпус, сопловые лопатки, бандажные кольца), и ротора , представляющего собой совокупность вращающихся частей (таких, как рабочие лопатки, диски, вал).

Классификация газовой турбины осуществляется по многим конструктивным особенностям: по направлению газового потока, количеству ступеней, способу использования перепада тепла и способу подвода газа к рабочему колесу. По направлению газового потока можно различить газовые турбины осевые (самые распространенные) и радиальные, а также диагональные и тангенциальные. В осевых газовых турбинах поток в меридиональном сечении транспортируется в основном вдоль всей оси турбины; в радиальных турбинах, наоборот, перпендикулярно оси. Радиальные турбины подразделяются на центростремительные и центробежные. В диагональной турбине газ течет под некоторым углом к оси вращения турбины. У рабочего колеса тангенциальной турбины отсутствуют лопатки, такие турбины применяются при очень малом расходе газа, обычно в измерительных приборах. Газовые турбины бывают одно-, двух- и многоступенчатые.

Количество ступеней определяется многими факторами: назначением турбины, ее конструктивной схемой, общей мощностью и развиваемой одной ступенью, а также срабатываемым перепадом давления. По способу использования располагаемого перепада тепла различают турбины со ступенями скорости, у которых в рабочем колесе происходит только поворот потока, без изменения давления (активные турбины), и турбины со ступенями давления, в них давление уменьшается как в сопловых аппаратах, так и на рабочих лопатках (реактивные турбины). В парциальных газовых турбинах подвод газа к рабочему колесу происходит по части окружности соплового аппарата или по его полной окружности.

В многоступенчатой турбине процесс преобразования энергии состоит из целого ряда последовательных процессов в отдельных ступенях. В межлопаточные каналы соплового аппарата подается сжатый и подогретый газ с начальной скоростью, где в процессе расширения происходит преобразование части располагаемого теплоперепада в кинетическую энергию струи вытекания. Дальнейшее расширение газа и преобразование теплоперепада в полезную работу происходят в межлопаточных каналах рабочего колеса. Газовый поток, воздействуя на рабочие лопатки, создает крутящий момент на главном валу турбины. При этом происходит уменьшение абсолютной скорости газа. Чем ниже эта скорость, тем большая часть энергии газа преобразовалась в механическую работу на валу турбины.

КПД характеризует эффективность газовых турбин, представляющую собой отношение работы, снимаемой с вала, к располагаемой энергии газа перед турбиной. Эффективный КПД современных многоступенчатых турбин довольно высок и достигает 92-94%.

Принцип работы газовой турбины состоит в следующем: газ нагнетается в камеру сгорания компрессором , перемешивается с воздухом, формирует топливную смесь и поджигается. Образовавшиеся продукты горения с высокой температурой (900-1200 °С) проходят через несколько рядов лопаток, установленных на валу турбины, и приводят к вращению турбины. Полученная механическая энергия вала передается через редуктор генератору , вырабатывающему электричество.

Тепловая энергия выходящих из турбины газов попадает в теплоутилизатор. Также вместо производства электричества механическая энергия турбины может быть использована для работы различных насосов , компрессоров и т. п. Наиболее часто используемым видом топлива для газовых турбин является природный газ, хотя это не может исключить возможности использования других видов газообразного топлива. Но при этом газовые турбины очень капризны и предъявляют повышенные требования к качеству его подготовки (необходимы определенные механические включения, влажность).

Температура исходящих из турбины газов составляет 450-550 °С. Количественное соотношение тепловой энергии к электрической у газовых турбин составляет от 1,5: 1 до 2,5: 1, что позволяет строить когенерационные системы, различающиеся по типу теплоносителя:

1) непосредственное (прямое) использование отходящих горячих газов;
2) производство пара низкого или среднего давления (8-18 кг/см2) во внешнем котле;
3) производство горячей воды (лучше, когда требуемая температура превышает 140 °С);
4) производство пара высокого давления.

Большой вклад в развитие газовых турбин внесли советские ученые Б. С. Стечкин, Г. С. Жирицкий, Н. Р. Брилинг, В. В. Уваров, К. В. Холщевиков, И. И. Кириллов и др. Значительных успехов в создании газовых турбин для стационарных и передвижных газотурбинных установок достигли зарубежные фирмы (швейцарские «Броун-Бовери», в которой работал известный словацкий ученый А. Стодола, и «Зульцер», американская «Дженерал электрик» и др.).

В дальнейшем развитие газовых турбин зависит от возможности повышения температуры газа перед турбиной. Это связано с созданием новых жаропрочных материалов и надежных систем охлаждения рабочих лопаток при значительном усовершенствовании проточной части и др.

Благодаря повсеместному переходу в 1990-е гг. на использование природного газа в качестве основного топлива для электроэнергетики газовые турбины заняли существенный сегмент рынка. Несмотря на то что максимальная эффективность оборудования достигается на мощностях от 5 МВт и выше (до 300 МВт), некоторые производители выпускают модели в диапазоне 1-5 МВт.

Применяются газовые турбины в авиации и на электростанциях.

  • Предыдущее: ГАЗОАНАЛИЗАТОР
  • Следующее: ГАЗОВЫЙ ДВИГАТЕЛЬ
Категория: Промышленность на Г 


Турбина это любое вращающееся устройство, которое использует энергию движущегося рабочего тела (флюида), чтобы производить работу. Типичные флюиды турбин это: ветер, вода, пар и гелий. Ветряные мельницы и гидроэлектростанции использовали турбины десятилетия чтобы вращать электрогенераторы и производить энергию для промышленности и жилья. Простые турбины известны гораздо дольше, первые из них появились в древней Греции.

В истории энергогенерации, тем не менее, собственно газовые турбины появились не так давно. Первая, практически полезная газовая турбина начала генерировать электричество в Neuchatel, Швейцария в 1939 году. Она была разработана Brown Boveri Company. Первая газовая турбина, приводящая в действие самолёт также заработала в 1939 году в Германии, с использованием газовой турбины, разработанной Гансом П. фон Огайн. В Англии в 1930-е изобретение и конструирование газовой турбины Франком Виттлом привело к первому полёту с газотурбинным двигателем в 1941 году.

Рисунок 1. Схема авиационной турбины (а) и газовой турбины для наземного использования (б)

Термин "газовая турбина" легко вводит в заблуждение, поскольку для многих это означает турбинный двигатель, который использует газ в качестве топлива. На самом деле газовая турбина (показанная схематически на рис. 1) имеет компрессор, который подаёт и сжимает газ (как правило - воздух); камеру сгорания, где сжигание топлива нагревает сжатый газ и собственно турбину, которая извлекает энергию из потока горячих, сжатых газов. Этой энергии достаточно, чтобы питать компрессор и остаётся для полезных применений. Газовая турбина - это двигатель внутреннего сгорания (ДВС) использующий непрерывное сгорание топлива для производства полезной работы. Этим турбина отличается от карбюраторных или дизельных двигателей внутреннего сгорания, где процесс сжигания прерывистый.

Поскольку с 1939 года использование газовых турбин началось одновременно и в энергетике и в авиации - для авиационных и наземных газовых турбин используются различные названия. Авиационные газовые турбины называются турбореактивными или реактивными двигателями, а прочие газовые турбины называются газотурбинными двигателями. В английском языке имеется даже больше названий для этих, однотипных в общем, двигателей.

Использование газовых турбин

В авиационном турбореактивном двигателе энергия турбины приводит в действие компрессор, который засасывает воздух в двигатель. Горячий газ, покидающий турбину, выбрасывается в атмосферу через выхлопное сопло, что создаёт силу тяги. На рис. 1а изображена схема турбореактивного двигателя.


Рисунок 2. Схематичное изображение авиационного турбореактивного двигателя.

Типичный турбореактивный двигатель показан на рис. 2. Такие двигатели создают тягу от 45 кгс до 45000 кгс при собственном весе от 13 кг до 9000 кг. Самые маленькие двигатели приводят в движение крылатые ракеты, самые большие - огромные самолёты. Газовая турбина на рис. 2 - это турбовентиляторный двигатель с компрессором большого диаметра. Тяга создаётся и воздухом, который всасывается компрессором и воздухом, который проходит собственно через турбину. Двигатель имеет большие размеры и способен создавать большую тягу на маленькой скорости при взлёте, что и делает его наиболее подходящим для коммерческих самолётов. Турбореактивный двигатель не имеет вентилятора и создаёт тягу воздухом, который полностью проходит через газовый тракт. Турбореактивные двигатели имеют малые фронтальные размеры и производят наибольшую тягу на высоких скоростях, что делает их наиболее подходящими для использования на истребителях.

В газовых турбинах неавиационного применения часть энергии турбины используется для приведения в действие компрессора. Оставшаяся энергия - "полезная энергия" снимается с вала турбины на устройстве использования энергии, таком как электрический генератор или винт корабля.

Типичная газовая турбина для наземного использования показана на рис. 3. Такие установки могут генерировать энергию от 0,05 МВт до 240 МВт. Установка, показанная на рис. 3 это газовая турбина, производная от авиационной, но более лёгкая. Более тяжёлые установки созданы специально для наземного использования и называются промышленными турбинами. Хотя турбины, производные от авиационных, всё чаще используются как основные энергогенераторы, они по-прежнему наиболее часто используются как компрессоры для перекачки природного газа, приводят в действие корабли и используются как дополнительные генераторы электроэнергии на периоды пиковых нагрузок. Генераторы на газовых турбинах могут быстро включаться в работу, поставляя энергию в моменты наибольшей потребности в ней.


Рисунок 3. Наиболее простая, одностадийная, газовая турбина для наземного применения. Например, в энергетике. 1 – компрессор, 2 – камера сгорания, 3 – турбина.

Наиболее важные преимущества газовой турбины таковы:

  1. Она способна вырабатывать много энергии при относительно небольших размере и весе.
  2. Газовая турбина работает в режиме постоянного вращения, в отличие от поршневых двигателей, работающих с постоянно меняющимися нагрузками. Поэтому турбины служат долго и требуют относительно мало обслуживания.
  3. Хотя газовая турбина запускается при помощи вспомогательного оборудования, такого как электрические моторы или другая газовая турбина, запуск занимает минуты. Для сравнения, время запуск паровой турбины измеряется часами.
  4. В газовой турбине может использоваться разнообразное топливо. В больших наземных турбинах обычно используется природный газ, в то время, как в авиационных преимущественно лёгкие дистилляты (керосин). Дизельное топливо или специально обработанный мазут также может быть использован. Возможно также использование горючих газов от процесса пиролиза, газификации и переработки нефти, а также биогаз.
  5. Обычно газовые турбины используют атмосферный воздух в качестве рабочего тела. При генерации электричества газовой турбине не нужен охладитель (такой как вода).

В прошлом одним из главных недостатков газовых турбин была низкая эффективность по сравнению с прочими ДВС или паровыми турбинами электростанций. Тем не менее, за последние 50 лет совершенствование их конструкции увеличило тепловой КПД с 18% в 1939 году на газовой турбине Neuchatel до нынешнего КПД 40% при работе в простом цикле и около 55% в комбинированном цикле (об этом ниже). В будущем КПД газовых турбин повысится ещё больше, ожидается, что эффективность в простом цикле повысится до 45-47% и в комбинированном цикле до 60%. Эти ожидаемые величины КПД существенно выше, чем у других распространённых двигателей, таких как паровых турбин.

Циклы газовой турбины

Циклограмма показывает, что происходит, когда воздух входит, проходит по газовому тракту и выходит из газовой турбины. Обычно циклограмма показывает отношение между объёмом воздуха и давлением в системе. На рис. 4а показан цикл Брайтона, который показывает изменение свойств фиксированного объёма воздуха проходящего через газовую турбину во время её работы. Ключевые области этой циклограммы показаны также на схематичном изображении газовой турбины на рис. 4б.


Рисунок 4а. Диаграмма цикла Брайтона в координатах P-V для рабочего тела, показывающая потоки работы (W) и тепла (Q).


Рисунок 4б. Схематичное изображение газовой турбины, показывающее точки с диаграммы цикла Брайтона.

Воздух сжимается от точки 1 до точки 2. Давление газа при этом растёт, а объём газа уменьшается. Затем воздух нагревается при постоянном давлении от точки 2 до точки 3. Это тепло производится топливом, вводимым в камеру сгорания и его непрерывным горением.

Горячий сжатый воздух от точки 3 начинает расширяться между точками 3 и 4. Давление и температура в этом интервале падают, а объём газа увеличивается. В двигателе на рис. 4б это представлено потоком газа от точки 3 до через турбину до точки 4. При этом производится энергия, которая затем может быть использована. В рис. 1а поток направляется из точки 3" в точку 4 через выходное сопло и производит тягу. «Полезная работа» на рис. 4а показана кривой 3’-4. Это энергия, способная приводить в действие вал привода наземной турбины или создавать тягу авиационного двигателя. Цикл Брайтона завершается на рис. 4 процессом, в котором объём и температура воздуха уменьшаются, т.к. тепло выбрасывается в атмосферу.


Рисунок 5. Система с закрытым циклом.

Большинство газовых турбин работают в режиме открытого цикла. В открытом цикле воздух забирается из атмосферы (точка 1 на рис. 4а и 4б) и выбрасывается назад в атмосферу в точке 4, таким образом, горячий газ охлаждается в атмосфере, после выброса из двигателя. В газовой турбине работающей по закрытому циклу рабочее тело (жидкость или газ) постоянно используется для охлаждения отходящих газов (в точке 4) в теплообменнике (показанном схематично на рис. 5) и направляется на вход в компрессор. Поскольку используется закрытый объём с ограниченным количеством газа, турбина закрытого цикла – это не двигатель внутреннего сгорания. В системе с закрытым циклом горение не может поддерживаться и обычная камера сгорания заменяется вторичным теплообменником, который нагревает сжатый воздух перед тем, как он войдёт в турбину. Тепло обеспечивается внешним источником, например, ядерным реактором, угольной топкой с псевдоожиженным слоем или иным источником тепла. Предлагалось использовать газовые турбины закрытого цикла в полётах на Марс и других длительных космических полётах.

Газовая турбина, которая сконструирована и работает в соответствии с циклом Брайсона (рис. 4) называется газовой турбиной простого цикла. Большинство газовых турбин на самолётах работают по простому циклу, так как необходимо поддерживать вес и фронтальный размер двигателя как можно меньшими. Тем не менее, для наземного или морского использования становится возможным добавить дополнительное оборудование к турбине простого цикла, чтобы увеличить эффективность и/или мощность двигателя. Используются три типа модификаций: регенерация, промежуточное охлаждение и двойной нагрев.

Регенерация предусматривает установку теплообменника (рекуператора) на пути отходящих газов (точка 4 на рис. 4б). Сжатый воздух из точки 2 на рис. 4б предварительно нагревается на теплообменнике выхлопными газами перед входом в камеру сжигания (рис. 6а).

Если регенерация хорошо реализована, то есть эффективность теплооменника велика, а падение давления в нём мало, эффективность будет больше, чем при простом цикле работы турбины. Тем не менее, следует брать во внимание также стоимость регенератора. Регенераторы использовались в газотурбинных двигателях в танках Абрамс М1 - главном боевом танке операции "Буря в пустыне" и в экспериментальных газотурбинных двигателях автомобилей. Газовые турбины с регенерацией повышают эффективность на 5-6% и их эффективность ещё выше при работе под неполной нагрузкой.

Промежуточное охлаждение также подразумевает использование теплообменников. Промежуточный охладитель (интеркулер) охлаждает газ во время его сжатия. Например, если компрессор состоит из двух модулей, высокого и низкого давления, интеркулер должен быть установлен между ними, чтобы охлаждать поток газа и уменьшить количество работы, необходимой для сжатия в компрессоре высокого давления (рис. 6б). Охлаждающим агентом может быть атмосферный воздух (так называемые аппараты воздушного охлаждения) или вода (например, морская вода в судовой турбине). Несложно показать, что мощность газовой турбины с хорошо сконструированным интеркулером увеличивается.

Двойной нагрев используется в турбинах и это способ увеличить выходную мощность турбины без изменения работы компрессора или повышения рабочей температуры турбины. Если газовая турбина имеет два модуля, высокого и низкого давления, то используется перегреватель (обычно ещё одна камера сжигания), чтобы повторно нагреть поток газа между турбинами высокого и низкого давления (рис. 6в). Это может увеличить выходную мощность на 1-3%. Двойной нагрев в авиационных турбинах реализуется добавлением камеры дожигания у сопла турбины. Это увеличивает тягу, но существенно увеличивает потребление топлива.

Газотурбинная электростанция с комбинированным циклом часто обозначается аббревиатурой ПГЦ. Комбинированый цикл означает электростанцию в которой газовая турбина и паровая турбина используются вместе чтобы достичь большей эффективности, чем при их использовании по-отдельности. Газовая турбина приводит в действие электрогенератор. Выхлопные газы турбины используются для получения пара в теплообменнике, этот пар приводит в действие паровую турбину, которая также производит электричество. Если пар используется для отопления, установка называется когенерационной электростанцией. Прочем, в России обычно используется аббревиатура ТЭЦ (теплоэнергоцентраль). Но на ТЭЦ, как правило, работают не газовые турбины, а обычные паровые турбины. А использованный пар используется для нагрева, так что ТЭЦ и когенерационная электростанция - не синонимы. На рис. 7 упрощённая схема когенерационной электростанции, там показано два последовательно установленных тепловых двигателя. Верхний двигатель - это газовая турбина. Она передаёт энергию нижнему двигателю - паровой турбине. Паровая турбина затем передаёт тепло в конденсатор.


Рисунок 7. Схема электростанции комбинированного цикла.

Эффективность комбинированного цикла \(\nu_{cc} \) может быть представлена довольно простым выражением: \(\nu_{cc} = \nu_B + \nu_R - \nu_B \times \nu_R \) Другими словами - это сумма КПД каждой из ступеней минус их произведение. Это уравнение показывает, почему когенерация так эффективна. Предположим, \(\nu_B = 40% \), это разумная верхняя оценка эффективности для газовой турбины, работающей по циклу Брайтона. Разумная оценка эффективности паровой турбины, работающей по циклу Ранкина на второй ступени когенерациии - \(\nu_R = 30% \). Подставив эти значения в уравнение получим: \(\nu_{cc} = 0,40 + 0,30 - 0,40 \times 0,3 = 0,70 - 0,12 = 0,58 \). То есть КПД такой системы составит 58%.

Это верхняя оценка эффективности когенерационной электростанции. Практическая эффективность будет ниже из-за неизбежных потерей энергии между ступенями. Практически в системах когенерации энергии, введённых в эксплуатацию в последние годы, достигнута эффективность 52-58%.

Компоненты газовой турбины

Работу газовой турбины лучше всего разобрать, разделив её на три подсистемы: компрессор, камеру сгорания и турбину, как это сделано на рис. 1. Далее мы кратко рассмотрим каждую из этих подсистем.

Компрессоры и турбины

Компрессор соединен с турбиной общим валом, так что турбина может вращать компрессор. Газовая турбина с одним валом имеет единственный вал, соединяющий турбину и компрессор. Двухвальная газовая турбина (рис. 6б и 6в) имеют два конических вала. Более длинный соединён с компрессором низкого давления и турбиной низкого давления. Он вращается внутри более короткого полого вала, который соединяет компрессор высокого давления с турбиной высокого давления. Вал, соединяющий турбину и компрессор высокого давления вращается быстрее, чем вал турбины и компрессора низкого давления. Трёхвальная газовая турбина имеет третий вал, соединяющий турбину и компрессор среднего давления.

Газовые турбины могут быть центробежными или осевыми, либо комбинированного типа. Центробежный компрессор, в котором сжатый воздух выходит вокруг наружного периметра машины, надёжен, обычно стоит меньше, но ограничен степенью сжатия 6-7 к 1. Они широко применялись ранее и используются по сей день в небольших газовых турбинах.

В более эффективных и производительных осевых компрессорах сжатый воздух выходит вдоль оси механизма. Это наиболее распространённый тип газовых компрессоров (см. рис. 2 и 3). Центробежные компрессоры состоят из большого количества одинаковых секций. Каждая секция содержит вращающееся колесо с лопатками турбины и колесо с неподвижными лопатками (статорами). Секции расположены таким образом, что сжатый воздух последовательно проходит каждую секцию отдавая часть своей энергии на каждой из них.

Турбины имеют более простую конструкцию, по сравнению с компрессором, так как сжать поток газа труднее, чем вызывать его обратное расширение. Осевые турбины, подобные изображённым на рис. 2 и 3 имеют меньше секций, чем центробежный компрессор. Существуют небольшие газовые турбины, которые используют центробежные турбины (с радиальным вводом газа), но наиболее распространены осевые турбины.

Конструирование и производство турбины сложно, так как требуется увеличить срок жизни компонентов в горячем газовом потоке. Проблема с надёжностью конструкции наиболее критична в первой ступени турбины, где температуры наиболее велики. Используются специальные материалы и проработанная система охлаждения, чтобы лопатки турбины, которые плавятся при температуре 980-1040 градусов Цельсия в газовом потоке, температура которого достигает 1650 градусов Цельсия.

Камера сгорания

Удачная конструкция камеры сгорания должна удовлетворять многим требованиям и её правильное конструирование было непростым делом со времён турбин Виттла и фон Огайна. Относительная важность каждого из требований к камере сгорания зависит от области применения турбины и, разумеется, некоторые требования вступают в противоречие друг с другом. При конструировании камеры сгорания неизбежны компромиссы. Большинство требований к конструкции имеют отношение к цене, эффективности и экологической безопасности двигателя. Вот перечень базовых требований к камере сгорания:

  1. Высокая эффективность сгорания топлива при любых условиях работы.
  2. Низкий уровень выбросов недогара топлива и монооксида углерода (угарного газа), низкие выбросы оксидов азота при большой нагрузке и отсутствие видимых выбросов дыма (минимизация загрязнения окружающей среды).
  3. Малое падение давления при прохождении газа через камеру сгорания. 3-4% потери давления – это обычная величина падения давления.
  4. Горение должно быть устойчивым при всех режимах работы.
  5. Горение должно быть устойчивым при очень низких температурах и низком давлении на большой высоте (для авиационных двигателей).
  6. Горение должно быть ровным, без пульсаций или срывов.
  7. Температура должна быть стабильной.
  8. Большой срок службы (тысячи часов), особенно для промышленных турбин.
  9. Возможность использования разных видов топлива. Для наземных турбин типично использование природного газа или дизельного топлива. Для авиационных турбин керосина.
  10. Длина и диаметр камеры сгорания должны соответствовать размера двигательной сборки.
  11. Общая стоимость владения камерой сгорания должна быть минимальной (это включает исходную стоимость, стоимость эксплуатации и ремонта).
  12. Камера сгорания для авиационных двигателей должна иметь минимальный вес.

Камера сгорания состоит из минимум трёх основных частей: оболочки, жаровой трубы и системы впрыска топлива. Оболочка должна выдерживать рабочее давление и может быть частью конструкции газовой турбины. Оболочка закрывает относительно тонкостенную жаровую трубу в которой и происходит сгорания и систему впрыска топлива.

По сравнению с другими типами двигателей, такими как дизельные и поршневые автомобильные двигатели, газовые турбины производят наименьшее количество выбросов загрязняющих веществ в атмосферу на единицу мощности. Среди выбросов газовых турбин наибольшие опасения вызывают недогоревшее топливо, монооксид углерода (угарный газ), оксиды азота (NOx) и дым. Хотя вклад авиационных турбин в общие выбросы загрязняющих веществ составляет менее 1%, выбросы производимые непосредственно в тропосферу удвоились между 40 и 60 градусами северной широты, вызвав увеличение концентрации озона на 20%. В стратосфере, где летают сверхзвуковые самолёты, выбросы NOx вызывают разрушение озона. Оба эффекта вредят окружающей среде, так что уменьшение содержания оксидов азота (NOx) в выбросах авиационных двигателей – это то, что должно произойти в 21 столетии.

Это довольно короткая статья, которая старается охватить все аспекты применения турбин, от авиации до энергетики, да ещё и не полагается на формулы. Чтобы лучше ознакомиться с темой могу порекомендовать книгу «Газовая турбина на железнодорожном транспорте» http://tapemark.narod.ru/turbo/index.html . Если опустить главы, связанные со спецификой использования турбин на железной дороге – книга по-прежнему очень понятная, но гораздо более подробная.

Паровая турбина. Попытки сконструировать паровую турбину, способную конкурировать с паровой машиной, до середины XIX в. были безуспешными, так как в механическую энергию вращения турбины удавалось преобразовать лишь незначительную долю кинетической энергии струи пара. Дело в том, что изобретатели

не учитывали зависимость КПД турбины от соотношения скорости пара и линейной скорости лопаток турбины.

Выясним, при каком соотношении скорости струи газа и линейной скорости лопатки турбины произойдет наиболее полная передача кинетической энергии струи газа лопатке турбины (рис. 36). При полной передаче кинетической энергии пара лопатке турбины скорость струи относительно Земли должна быть равна нулю, т.е.

В системе отсчета, движущейся со скоростью скорость струи равна: .

Так как в этой системе отсчета лопатка в момент взаимодействия со струей неподвижна, то скорость струи после упругого отражения остается неизменной по модулю, но меняет направление на противоположное:

Переходя вновь в систему отсчета, связанную с Землей, получим скорость струи после отражения:

Так как то

Мы получили, что полная передача кинетической энергии струи турбине будет происходить при условии, когда линейная скорость движения лопаток турбины вдвое меньше скорости струи Первая паровая турбина, нашедшая практическое применение, была изготовлена шведским инженером Густавом Лавалем в 1889 г. Ее мощность была меньше при частоте вращения об/мин.

Рис. 36. Передача кинетической энергии струи пара лопатке турбины

Большая скорость истечения газа даже при средних перепадах давлений, составляющая примерно 1200 м/с, требует для эффективной работы турбины придания ее лопаткам линейной скорости около 600 м/с. Следовательно, для достижения высоких значений КПД турбина должна быть быстроходной. Нетрудно подсчитать силу инерции, действующую на лопатку турбины массой 1 кг, расположенную на ободе ротора радиусом 1 м, при скорости лопатки 600 м/с:

Возникает принципиальное противоречие: для экономичной работы турбины требуются сверхзвуковые скорости вращения ротора, но при таких скоростях турбина разрушится силами инерции. Для разрешения этого противоречия приходится конструировать турбины, вращающиеся со скоростью, меньшей оптимальной, но для полного использования кинетической энергии струи пара делать их многоступенчатыми, насаживая на общий вал несколько роторов возрастающего диаметра. Из-за недостаточно большой скорости вращения турбины пар отдает только часть своей кинетической энергии ротору меньшего диаметра. Затем отработавший в первой ступени пар направляется на второй ротор большего диаметра, отдавая его лопаткам часть оставшейся кинетической энергии и т. д. Отработавший пар конденсируется в охладителе-конденсаторе, а теплая вода направляется в котел.

Цикл паротурбинной установки в координатах показан на рисунке 37. В котле рабочее тело получает количество тепла нагревается и расширяется при постоянном давлении (изобара АВ). В турбине пар адиабатически расширяется (адиабата ВС), совершая работу по вращению ротора. В конденсаторе-охладителе, омываемом, например, речной водой, пар отдает воде количество тепла и конденсируется при постоянном давлении. Этому процессу соответствует изобара . Теплая вода из конденсатора насосом подается в котел. Этому процессу соответствует изохора Как видно, цикл паротурбинной установки замкнутый. Работа пара за один цикл численно равна площади фигуры ABCD.

Современные паровые турбины обладают высоким КПД преобразования кинетической

Рис. 37. Диаграмма рабочего цикла паротурбинной установки

энергии струи пара в механическую энергию, несколько превышающим 90%. Поэтому электрические генераторы практически всех тепловых и атомных электростанций мира, дающие более 80% всей вырабатываемой электроэнергии, приводятся в действие паровыми турбинами.

Так как температура пара, применяемого в современных паротурбинных установках, не превышает 580 С (температура нагревателя ), а температура пара на выходе из турбины обычно не ниже 30 °С (температура холодильника ), максимальное значение КПД паротурбинной установки как тепловой машины равно:

а реальные значения КПД паротурбинных конденсационных электростанций достигают лишь около 40%.

Мощность современных энергоблоков котел - турбина - генератор достигает кВт. На очереди в 10-й пятилетке сооружение энергоблоков мощностью до кВт.

Паротурбинные двигатели нашли широкое применение на водном транспорте. Однако их применению на сухопутном транспорте и тем более в авиации препятствует необходимость иметь топку и котел для полу ения пара, а также большое количество воды для использования в качестве рабочего тела.

Газовые турбины. Мысль об устранении топки и котла в тепловой машине с турбиной путем перенесения места сжигания топлива в само рабочее тело давно занимала конструкторов. Но разработка таких турбин внутреннего сгорания, в которых рабочим телом является не пар, а расширяющийся от нагревания воздух, сдерживалась отсутствием материалов, способных работать длительное время при высоких температурах и больших механических нагрузках.

Газотурбинная установка состоит из воздушного компрессора 1, камер сгорания 2 и газовой турбины 3 (рис. 38). Компрессор состоит из ротора, укрепленного на одной оси с турбиной, и неподвижного направляющего аппарата.

При работе турбины ротор компрессора вращается. Лопатки ротора имеют такую форму, что при их вращении давление перед компрессором понижается, а за ним повышается. Воздух засасывается в компрессор, и давление его за первым рядом лопаток ротора повышается. За первым рядом лопаток ротора расположен ряд лопаток неподвижного направляющего аппарата компрессора, с помощью которого изменяется направление движения воздуха и обеспечивается возможность его дальнейшего сжатия с помощью лопаток второй ступени ротора и т. д. Несколько ступеней лопаток компрессора обеспечивают позышенне давления воздуха в 5-7 раз.

Процесс сжатия протекает адиабатически, поэтому температура воздуха значительно повышается, достигая 200 °С и более.

Рис. 38. Устройство газотурбинной установки

Сжатый воздух поступает в камеру сгорания (рис. 39). Одновременно через форсунку в нее впрыскивается под большим давлением жидкое топливо - керосин, мазут.

При горении топлива воздух, служащий рабочим телом, получает некоторое количество тепла и нагревается до температуры 1500-2200 °С. Нагревание воздуха происходит при постоянном давлении, поэтому воздух расширяется и скорость его движения увеличивается.

Движущиеся с большой скоростью воздух и продукты горения направляются в турбину. Переходя от ступени к ступени, они отдают свою кинетическую энергию лопаткам турбины. Часть полученной турбиной энергии расходуется на вращение компрессора, а остальная используется, например, для вращения винта самолета или ротора электрического генератора.

Для предохранения лопаток турбины от разрушающего действия раскаленной и высокоскоростной газовой струи в камеру сгорания

Рис. 39. Камера сгорания

нагнетается с помощью компрессора значительно больше воздуха, чем необходимо для полного сжигания топлива. Воздух, входящий в камеру сгорания за зоной горения топлива (рис. 38), снижает температуру газовой струи, направляемой на лопатки турбины. Понижение температуры газа в турбине ведет к снижению КПД, поэтому ученые и конструкторы ведут поиски путей повышения верхнего предела рабочей температуры в газовой турбине. В некоторых современных авиационных газотурбинных двигателях температура газа перед турбиной достигает 1330 °С.

Отработавший воздух вместе с продуктами сгорания при давлении, близком к атмосферному, и температуре более 500 °С со скоростью более 500 м/с обычно выбрасывается в атмосферу либо для повышения КПД направляется в теплообменник, где отдает часть тепла на нагревание воздуха, поступающего в камеру сгорания.

Цикл работы газотурбинной установки на диаграмме представлен на рисунке 40. Процессу сжатия воздуха в компрессоре соответствует адиабата АВ, процессу нагревания и расширения в камере сгорания - изобара ВС. Адиабатический процесс расширения горячего газа в турбине представлен участком CD, процесс охлаждения и уменьшения объема рабочего тела представлен изобарой DA.

КПД газотурбинных установок достигает значений 25-30%. У газотурбинных двигателей нет громоздких паровых котлов, как у паровых машин и паровых турбин, нет поршней и механизмов, преобразующих возвратно-поступательное движение во вращательное, как у паровых машин и двигателей внутреннего сгорания. Поэтому газотурбинный двигатель занимает втрое меньше места, чем дизель той же мощности, а его удельная масса (отношение массы к мощности) в 6 - 9 раз меньше, чем у авиационного поршневого двигателя внутреннего сгорания. Компактность и быстроходность в сочетании с большой мощностью на единицу массы определили первую практически важную область применения газотурбинных двигателей - авиацию.

Самолеты с винтом, насаженным на вал газотурбинного двигателя, появились в 1944 г. Турбовинтовые двигатели имеют такие известные самолеты, как АН-24, ТУ-114, ИЛ-18, АН-22 - «Антей».

Максимальная масса «Антея» на взлете 250 т, грузоподъемность 80 т, или 720 пассажиров,

Рис. 40. Диаграмма рабочего цикла газотурбинной установки

скорость 740 км/ч, мощность каждого из четырех двигателей кВт.

Газотурбинные двигатели начинают вытеснять паротурбинные на водном транспорте, особенно на кораблях военно-морского флота. Переход от дизельных двигателей на газотурбинные позволил увеличить грузоподъемность судов на подводных крыльях в четыре раза, с 50 до 200 т.

Газотурбинные двигатели мощностью 220-440 кВт устанавливаются на большегрузных автомобилях. Проходит испытание в горнодобывающей промышленности 120-тонный БелАЗ-549В с газотурбинным двигателем.

Турбиной называется двигатель, в лопаточном аппарате которого потенциальная энергия сжимаемой жидкости превращается в кинетическую энергию, а последняя в рабочих колесах – в механическую работу, передаваемую непрерывно вращающемуся валу.

Паровые турбины по своей конструкции представляют тепловой двигатель, который постоянно находится в работе. В период эксплуатации перегретый или насыщенный пар воды, который поступает в проточную часть, и благодаря своему расширению принуждает вращаться ротор. Вращение происходит в результате воздействия на лопаточный аппарат потока пара.

Турбина паровая входит в состав паротурбинной конструкции, которая предназначена для вырабатывания энергии. Также существуют установки, способные кроме электроэнергии вырабатывать тепловую энергию – пар, прошедший через лопатки пар, поступает на нагреватели сетевой воды. Подобный вид турбин именуется промышленно-теплофикационным или теплофикационным типом турбин. В первом случае, в турбине отбор пара предусмотрен для промышленных целей. В комплекте с генератором паровая турбина представляет турбоагрегат.

Типы паровых турбин

Турбины делятся, в зависимости от того, в каком направлении движется пар, на радиальные и аксиальные турбины. Паровой поток в радиальных турбинах направлен перпендикулярно оси. Паровые турбины могут быть одно-, двух- и трехкорпусные. Паровая турбина снабжена разнообразными техническими устройствами, которые предупреждают попадание внутрь корпуса окружающего воздуха. Это разнообразные уплотнители, на которые подается водяной пар в небольшом количестве.

На переднем участке вала размещается регулятор безопасности, предназначенный для отключения паровой подачи при увеличении частоты вращения турбины.

Характеристика основных параметров номинальных значений

· Номинальная мощность турбины - наибольшая мощность, которую турбина должна длительно развивать на зажимах электрогенератора, при нормальных величинах основных параметров или при изменении их в пределах, оговоренных отраслевыми и государственными стандартами. Турбина с регулируемым отбором пара может развивать мощность выше номинальной, если это соответствует условиям прочности её деталей.

· Экономическая мощность турбины - мощность, при которой турбина работает с наибольшей экономичностью. В зависимости от параметров свежего пара и назначения турбины номинальная мощность может быть равна экономической или более её на 10-25 %.

· Номинальная температура регенеративного подогрева питательной воды - температура питательной воды за последним по ходу воды подогревателем.

· Номинальная температура охлаждающей воды - температура охлаждающей воды при входе в конденсатор.

Газовая турбина (фр. turbine от лат. turbo вихрь, вращение ) - это тепловой двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и нагретого газа преобразуется в механическую работу на валу. Состоит из ротора (рабочие лопатки, закреплённые на дисках) и статора (направляющие лопатки, закреплённые в корпусе).

Газ, имеющий высокую температуру и давление, поступает через сопловой аппарат турбины в область низкого давления за сопловой частью, попутно расширяется и ускоряется. Далее, поток газа попадает на рабочие лопатки турбины, отдавая им часть своей кинетической энергии и сообщая лопаткам крутящий момент. Рабочие лопатки передают крутящий момент через диски турбины на вал. Полезные свойства газовой турбины: газовая турбина, например, приводит во вращение находящийся с ней на одном валу генератор, что и является полезной работой газовой турбины.

Газовые турбины используются в составе газотурбинных двигателей (применяются для транспорта) и газотурбинных установок (применяются на ТЭЦ в составе стационарных ГТУ, ПГУ). Газовые турбины описываются термодинамическим циклом Брайтона, в котором сначала происходит адиабатическое сжатие воздуха, затем сжигание при постоянном давлении, а после этого осуществляется адиабатическое расширение обратно до стартового давления.

Типы газовых турбин

- Авиационные и реактивные двигатели

- Вспомогательная силовая установка

- Промышленные газовые турбины для производства электричества

- Турбовальные двигатели

- Радиальные газовые турбины

- Микротурбины

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Простые турбины могут иметь одну движущуюся часть: вал / компрессор / турбина / альтернативный ротор в сборе (см. изображение выше), не учитывая топливную систему.

Более сложные турбины (те, которые используются в современных реактивных двигателях), могут иметь несколько валов (катушек), сотни турбинных лопаток, движущихся статорных лезвий, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Как правило, чем меньше двигатель, тем выше должна быть частота вращения вала(ов), необходимая для поддержания максимальной линейной скорости лопаток. Максимальная скорость турбинных лопаток определяет максимальное давление, которое может быть достигнуто, что приводит к получению максимальной мощности, независимо от размера двигателя. Реактивный двигатель вращается с частотой около 10000 об/мин и микро-турбина - с частотой около 100000 об/мин.