Реактивное движение - это такой процесс, при котором от определенного тела с некоторой скоростью отделяется одна из его частей. Сила, которая возникает при этом, работает сама по себе, без малейшего контакта с внешними телами. Реактивное движение стало толчком к созданию реактивного двигателя. Принцип работы его основан именно на этой силе. Как же действует такой двигатель? Попробуем разобраться.

Исторические факты

Идею использования реактивной тяги, которая позволила бы преодолеть силу притяжения Земли, выдвинул в 1903 году феномен российской науки - Циолковский. Он опубликовал целое исследование на данную тему, но оно не было воспринято серьезно. Константин Эдуардович, пережив смену политического строя, потратил годы трудов, чтобы доказать всем свою правоту.

Сегодня очень много слухов о том, что первым в данном вопросе был революционер Кибальчич. Но завещание этого человека к моменту публикации трудов Циолковского было погребено вместе с Кибальчичем. Кроме того, это был не полноценный труд, а лишь эскизы и наброски - революционер не смог подвести надежную базу под теоретические выкладки в своих работах.

Как действует реактивная сила?

Чтобы понять принцип работы реактивного двигателя, нужно понимать, как действует эта сила.

Итак, представим выстрел из любого огнестрельного оружия. Это наглядный пример действия реактивной силы. Струя раскаленного газа, который образовался в процессе сгорания заряда в патроне, отталкивает оружие назад. Чем мощнее заряд, тем сильнее будет отдача.

А теперь представим процесс зажигания горючей смеси: он проходит постепенно и непрерывно. Именно так выглядит принцип работы прямоточного реактивного двигателя. Подобным образом работает ракета с твердотопливным реактивным двигателем - это наиболее простая из его вариаций. С ней знакомы даже начинающие ракетомоделисты.

В качестве горючего для реактивных двигателей вначале применяли дымный порох. Реактивные двигатели, принцип работы которых был уже более совершенен, требовали топлива с основой из нитроцеллюлозы, которая растворялась в нитроглицерине. В больших агрегатах, запускающих ракеты, выводящие шаттлы на орбиту, сегодня используют специальную смесь полимерного горючего с перхлоратом аммония в качестве окислителя.

Принцип действия РД

Теперь стоит разобраться с принципом работы реактивного двигателя. Для этого можно рассмотреть классику - жидкостные двигатели, которые практически не изменились со времен Циолковского. В этих агрегатах применяется топливо и окислитель.

В качестве последнего используется жидкий кислород либо же азотная кислота. В качестве горючего применяют керосин. Современные жидкостные двигатели криогенного типа потребляют жидкий водород. Он при окислении кислородом увеличивает удельный импульс (на целых 30 процентов). Идея о том, что можно использовать водород, также родилась в голове Циолковского. Однако на тот момент по причине чрезвычайной взрывоопасности пришлось искать другое горючее.

Принцип работы состоит в следующем. Компоненты поступают в камеру сгорания из двух отдельных баков. После смешивания они превращаются в массу, которая при сгорании выделяет огромное количество тепла и десятки тысяч атмосфер давления. Окислитель подается в камеру сгорания. Топливная смесь по мере прохождения между сдвоенными стенками камеры и сопла охлаждает эти элементы. Далее горючее, подогретое стенками, попадет через огромное количество форсунок в зону воспламенения. Струя, которая формируется при помощи сопла, вырывается наружу. За счет этого и обеспечивается толкающий момент.

Кратко принцип работы реактивного двигателя можно сравнить с паяльной лампой. Однако последняя устроена значительно проще. В схеме ее работы нет различных вспомогательных систем двигателя. А это компрессоры, нужные для создания давления впрыска, турбины, клапана, а также прочие элементы, без которых реактивный двигатель просто невозможен.

Несмотря на то что жидкостные двигатели потребляют очень много горючего (расход топлива составляет примерно 1000 грамм на 200 килограммов груза), их до сих пор используют в качестве маршевых агрегатов для ракеты-носителей и маневровых для орбитальных станций, а также других аппаратов космического назначения.

Устройство

Устроен типичный реактивный двигатель следующим образом. Основные его узлы - это:

Компрессор;

Камера для сгорания;

Турбины;

Выхлопная система.

Рассмотрим данные элементы более подробно. Компрессор представляет собой несколько турбин. Их задача - всасывать и сжимать воздух по мере того, как он проходит через лопасти. В процессе сжатия повышается температура и давление воздуха. Часть такого сжатого воздуха подается в камеру сгорания. В ней воздух смешивается с топливом и происходит воспламенение. Этот процесс еще больше увеличивает тепловую энергию.

Смесь выходит из камеры сгорания на высокой скорости, а затем расширяется. Далее она следует еще через одну турбину, лопасти которой вращаются за счет воздействия газов. Эта турбина, соединяясь с компрессором, находящимся в передней части агрегата, и приводит его в движение. Воздух, нагретый до высоких температур, выходит через выпускную систему. Температура, уже достаточно высокая, продолжает расти за счет эффекта дросселирования. Затем воздух выходит окончательно.

Мотор самолета

В самолетах также используются эти двигатели. Так, например, в огромных пассажирских лайнерах устанавливают турбореактивные агрегаты. Они отличаются от обычных наличием двух баков. В одном находится горючее, а в другом - окислитель. В то время как турбореактивный мотор несет только топливо, а в качестве окислителя используется воздух, нагнетаемый из атмосферы.

Турбореактивный мотор

Принцип работы реактивного двигателя самолета основан на той же реактивной силе и тех же законах физики. Самая важная часть - это лопасти турбины. От размеров лопасти зависит итоговая мощность.

Именно благодаря турбинам вырабатывается тяга, которая нужная для ускорения самолетов. Каждая из лопастей в десять раз мощнее обыкновенного автомобильного ДВС. Турбины установлены после камеры сгорания там, где наиболее высокое давление. А температура здесь может достигать полутора тысяч градусов.

Двухконтурный РД

Эти агрегаты имеют массу преимуществ перед турбореактивными. Например, значительно меньший расход топлива при той же мощности.

Но сам двигатель имеет более сложную конструкцию и больший вес.

Да и принцип работы двухконтурного реактивного двигателя немного другой. Воздух, захватываемый турбиной, частично сжимается и подается в первый контур на компрессор и на второй - к неподвижным лопастям. Турбина при этом работает в качестве компрессора низкого давления. В первом контуре двигателя воздух сжимается и подогревается, а затем посредством компрессора высокого давления подается в камеру сгорания. Здесь происходит смесь с топливом и воспламенение. Образуются газы, которые подаются на турбину высокого давления, за счет чего и вращаются лопасти турбины, подающие, в свою очередь, вращательное движение на компрессор высокого давления. Затем газы проходят через турбину низкого давления. Последняя приводит в действие вентилятор и, наконец, газы попадают наружу, создавая тягу.

Синхронные РД

Это электрические моторы. Принцип работы синхронного реактивного двигателя аналогичен работе шагового агрегата. Переменный ток подается на статор и создает магнитное поле вокруг ротора. Последний вращается за счет того, что пытается минимизировать магнитное сопротивление. Эти моторы не имеют отношения к освоению космоса и запуску шаттлов.

В науке реактивным движением называют движение тела, возникающее при отделении от него некоторой его части. Что это означает?

Можно привести простые примеры. Представьте себе, что Вы находитесь в лодке посреди озера. Лодка неподвижна. Но вот Вы берете со дна лодки увесистый камень и с силой кидаешь его в воду. Что произойдет тогда? Лодка начнет медленно двигаться. Другой пример. Надуем резиновый шарик, а потом позволим воздуху свободно выходить из него. Сдувающийся шарик полетит в сторону, противоположную той, в которую устремится струя воздуха. Сила действия равна силе противодействия. Вы с силой бросили камень, но та же сила заставила лодку двигаться в противоположную сторону.

На этом законе физики и построен реактивный двигатель. В жаропрочной камере сгорает топливо. Образующийся при сгорании раскаленный расширяющийся газ с силой вырывается из сопла. Но та же сила толкает сам двигатель (вместе с ракетой или самолетом в противоположную сторону). Эта сила называется тягой.

Принцип реактивного движения известен человечеству давно — простые ракеты делали еще древние китайцы. Но вот для того, чтобы в небо поднялись современные самолеты и ракеты, инженерам пришлось решить немало технических задач, и сегодняшние реактивные двигатели являются достаточно сложными устройствами.

Давайте попробуем заглянуть внутрь реактивных двигателей, применяемых в авиации. О двигателях космических ракет поговорим как-нибудь в другой раз.

Итак сегодня реактивные самолеты летают на трех типах двигателей:

Турбореактивный двигатель;

Турбовентиляторный двигатель;

Турбовинтовой двигатель.

Как они устроены и чем отличаются друг от друга? Начнем с самого простого — турбореактивного . Само название этого устройства подсказывает нам ключевое слово«турбина» . Турбина — это вал, вокруг которого закреплены лопатки — металлические «лепестки» развернутые под углом. Если на турбину вдоль вала направить поток воздуха (или воды, например) она начнет вращаться. Если, наоборот, начать вращать вал турбины, ее лопасти станут гнать вдоль вала поток воздуха или воды.

Горение — это соединение топлива с кислородом, газом, которого в обычном воздухе не так уж много. Точнее, его вполне достаточно, для того, чтобы мы с вами им дышали. Но для «дыхания» камеры сгорания реактивного двигателя кислород слишком сильно растворен в воздухе .

Что надо сделать, чтобы затухший костер вновь разгорелся? Правильно! Подуть на него или помахать над ним, например, листом фанеры. Силой нагнетая воздух, вы «подкармливаете» тлеющие угли кислородом и пламя загорается вновь. То же самое делает турбина в турбореактивном двигателе.

Когда самолет движется вперед, струя воздуха попадает в двигатель. Здесь воздух встречается с вращающимися с огромной скоростью турбинами компрессора. Слово «компрессор» можно перевести на русский язык как «сжиматель». Лопатки турбин компрессора сжимают воздух примерно в 30 раз и «проталкивают» его в камеру сгорания. Раскаленный газ, получившийся в ходе сгорания топлива устремляется дальше, к соплу. Но на его пути оказывается еще одна турбина. Попадая на ее лопатки, струя газа заставляет ее вал вращаться. Но к этому же валу прикреплены турбины компрессора. Получается такой своеобразный «тяни-толкай» . Компрессор накачивает воздух в двигатель, смесь сжатого воздуха и топлива сгорает, выделяя раскаленный газ, а газ на пути к соплу вращает турбины компрессора.

Возникает интересный вопрос — как же завести такой двигатель? Ведь пока сжатый воздух не поступит в камеру сгорания, топливо не начнет гореть. Значит не будет раскаленного газа, который станет вращать турбину компрессора. Но пока турбина компрессора не закрутится, не будет сжатого воздуха.

Оказывается, двигатель запускается с помощью электромотора , который соединен с валом турбины. Электромотор заставляет вращаться компрессор, и как только в камере сгорание появится необходимое давление воздуха, туда поступает топливо и срабатывает зажигание. Реактивный двигатель заработал!

Устройство турбореактивного двигателя.

Турбореактивные двигатели отличаются большой мощностью и относительно мало весят. Поэтому их обычно устанавливают на сверхзвуковых военных самолетах, а также на сверхзвуковых пассажирских лайнерах. Но есть у таких моторов и серьезные недостатки — они сильно шумят и сжигают слишком много топлива.

Поэтому, на самолетах, летающих на дозвуковых скоростях (меньше 1200 километров в час) ставятся так называемые .

Устройство турбовентиляторного двигателя.

Отличаются они от турбореактивного двигателя тем, что впереди, до компрессора, на валу закреплена еще одна турбина с большими лопатками — вентилятор. Именно она первой встречает поток встречного воздуха и с силой гонит его назад. Часть этого воздуха, как и в турбореактивном двигателе, поступает в компрессор и дальше, в камеру сгорания, а другая часть «обтекает» камеру и тоже отбрасывается назад, создавая дополнительную тягу. Точнее говоря, для турбовентиляторного двигателя основная реактивная тяга (примерно 3/4) создается как раз этим самым потоком воздуха, который гонит вентилятор. И лишь 1/4 тяги дают вырывающиеся из сопла раскаленные газы.

Такой мотор гораздо меньше шумит и сжигает значительно меньше топлива, что очень важно для самолетов, используемых для перевозки пассажиров.

Устройство турбовинтового двигателя.

вращение вала турбины передаются на пропеллер — воздушный винт, который толкает самолет вперед. Винт с огромными лопастями не может вращаться с такой же бешеной скоростью, как вал турбины. Поэтому пропеллер с валом соединяет редуктор, понижающий скорость вращения. И хотя турбовинтовой двигатель «съедает» мало топлива, а значит делает стоимость перелета дешевле, он не может разогнать самолет до большой скорости. Поэтому в наши дни такие моторы используются в основном в транспортной авиации и на небольших пассажирских самолетах, совершающих местные рейсы.

Для опыта Вам понадобятся:

1. нитка покрепче;

2. широкая соломинка для коктейля;

3. воздушный шарик продолговатой формы;

4. моток скотча;

5. бельевая прищепка.

Натяните нитку (можно под углом), продев ее предварительно сквозь соломинку. Надуй шарик, а чтобы он не сдулся, защипните его бельевой прищепкой как показано на рисунке слева. Теперь примотайте шарик к соломинке скотчем. Реактивный двигатель готов!

На старт! Разожмите прищепку. Из шарика вырвется струя воздуха, а сам он, вместе с соломинкой заскользит вперед по нитке.

©При частичном или полном использовании данной статьи - активная гиперссылка ссылка на сайт ОБЯЗАТЕЛЬНА

Вы задумывались когда-нибудь о том, как работает двигатель реактивного самолета? О реактивной тяге, которая приводит его в действие, знали еще в Античные времена. Применить же ее на практике смогли только в начале прошлого века, в результате гонки вооружений между Англией и Германией.

Принцип работы двигателя реактивного самолета довольно прост, но имеет некоторые нюансы, которые строго соблюдаются при их производстве. Чтобы самолет смог надежно держаться в воздухе, они должны работать идеально. Ведь от этого зависят жизни и безопасность всех, кто находится на борту самолета.

Его приводит в действие реактивная тяга. Для этого нужна какая-то жидкость, выталкиваемая из задней части системы и придающая ей движение вперед. Здесь работает третий закон Ньютона , который гласит: “Любое действие вызывает равное противодействие”.

У реактивного двигателя вместо жидкости применяется воздух . Он создает силу, обеспечивающую движение.

В нем используются горячие газы и смесь воздуха со сгораемым топливом. Эта смесь выходит из него с высокой скоростью и толкает самолет вперед, давая ему лететь.

Если говорить об устройстве двигателя реактивного самолета, то оно представляет из себя соединение четырех самых важных деталей:

  • компрессора;
  • камеры горения;
  • турбины;
  • выхлопа.

Компрессор состоит из нескольких турбин , которые засасывают воздух и сжимают его по мере прохождения через расположенные под углом лопасти. При сжатии температура и давление воздуха повышаются. Часть сжатого воздуха попадает в камеру горения, где смешивается с топливом и поджигается. Это увеличивает тепловую энергию воздуха.

Реактивный двигатель.

Горячая смесь на высокой скорости выходит из камеры и расширяется. Там она проходит через еще одну турбину с лопастями, которые вращаются, благодаря энергии газа.

Турбина соединена с компрессором в передней части двигателя , и таким образом приводит его в движение. Горячий воздух выходит через выхлоп. К этому моменту температура смеси очень высока. И еще увеличивается, благодаря эффекту Дросселирования . После этого воздух выходит из него.

Разработка самолетов с реактивным двигателем началась в 30х годах прошлого века. Англичане и немцы начали разрабатывать подобные модели. В этой гонке победили немецкие ученые. Поэтому первым самолетом с реактивным двигателем стала “Ласточка” в Люфтваффе. “Глостерский метеор” поднялся в воздух немного позднее. О первых самолетах с такими двигателями подробно рассказано

Двигатель сверхзвукового самолета — тоже реактивный, но уже в совершенно другой модификации.

Как работает турбореактивный двигатель?

Реактивные двигатели применяются повсеместно, а турбореактивные устанавливаются больших . Отличие их в том, что первый несет с собой запас топлива и окислителя, а конструкция обеспечивает их подачу из баков.

Турбореактивный двигатель самолета несет с собой лишь топливо, а окислитель — воздух — нагнетается турбиной из атмосферы. В остальном принцип его работы совпадает с тем же, что и у реактивного.

Одна из самых важных деталей у них — это лопасть турбины. От нее зависит мощность двигателя.

Схема турбореактивного двигателя.

Именно они вырабатывают тяговые усилия, необходимые для самолета. Каждый из лопастей производит в 10 раз больше энергии, чем самый обычный, автомобильный двигатель. Они устанавливаются позади камеры сгорания, в той части двигателя, где самое высокое давление, а температура доходит до 1400 градусов по Цельсию.

В процессе производства лопастей они проходят через процесс монокристаллизации , что придает им твердости и прочности.

Перед тем, как установить на самолет, каждый двигатель проверяется на полное тяговое усилие. Он должен пройти сертификацию Европейского совета по безопасности и компанией, которая его произвела. Одной из самых крупных фирм по их производству является Роллс-Ройс.

Что такое самолет с атомным двигателем?

Во время Холодной войны были предприняты попытки создания реактивного двигателя не на химической реакции, а на тепле, который бы вырабатывал ядерный реактор. Его ставили вместо камеры сгорания.

Воздух проходит через активную зону реактора, понижая его температуру и повышая свою. Он расширяется и истекает из сопла со скоростью, большей чем скорость полета.

Комбинированный турбреактивно-атомный двигатель.

В СССР проводились его испытания на базе ТУ-95. В США тоже не отставали от ученых в Советском Союзе.

В 60х годах исследования в обеих сторонах постепенно прекратились. Основными тремя проблемами, которые помешали разработке, стали:

  • безопасность летчиков во время полета;
  • выброс радиоактивных частиц в атмосферу;
  • в случае падения самолета, радиоактивный реактор может взорваться, нанеся непоправимый вред всему живому.

Как производят реактивные двигатели для моделей самолетов?

Их производство для моделей самолетов занимает около 6 часов. Сначала вытачивается базовая пластина из алюминия , к которой крепятся все остальные детали. По размеру она совпадает с хоккейной шайбой.

К ней прикрепляют цилиндр , поэтому получается что-то вроде консервной банки. Это будущий двигатель внутреннего сгорания. Далее устанавливается система подачи . Чтобы его закрепить, в основную пластину вкручиваются шурупы, предварительно опущенные в специальный герметик.

Двигатель для модели самолета.

Каналы стартера крепятся с другой стороны камеры , чтобы перенаправлять выбросы газа в турбинное колесо. В отверстие сбоку от камеры сгорания устанавливается спираль накаливания. Она поджигает топливо внутри двигателя.

Потом ставят турбину и центральную ось цилиндра. На нее ставят колесо компрессора , которое нагнетает воздух в камеру сгорания. Его проверяют с помощью компьютера, прежде чем закрепить пусковую установку.

Готовый двигатель еще раз проверяют на мощность. Его звук немногим отличается от звука двигателя самолета. Он, конечно, меньшей силы, но полностью напоминает его, придавая больше схожести модели.

ВНИМАНИЕ! Устаревший формат новостей. Возможны проблемы с корректным отображением контента.

Реактивный двигатель

Ранние самолёты с реактивными двигателями: Me.262 и Як-15

Идеи создания теплового двигателя, к которому относится и реактивный двигатель, известны человеку с древнейших времен. Так, в трактате Герона Александрийского под названием «Пневматика» присутствует описание Эолипила - шара «Эола». Данная конструкция представляла собой не что иное, как паровую турбину, в которой пар подавался через трубки в бронзовую сферу и, вырываясь из нее, эту сферу и раскручивал. Вероятнее всего, устройство использовалось для развлечений.

Не обошел стороной идею и великий Леонардо, вознамерившийся при помощи горячего воздуха, подаваемого на лопасти, вращать вертел для жарки.

Впервые идею газотурбинного двигателя предложил в 1791 году английский изобретатель Дж. Барбер: конструкция его ГТД была оснащена газогенератором, поршневым компрессором, камерой сгорания и газовой турбиной.

Использовал в качестве силовой установки для своего самолета, разработанного в 1878 году, тепловой двигатель и А.Ф. Можайский: два паросиловых двигателя приводили в движение пропеллеры машины. Из-за низкого КПД желаемого эффекта достичь не удалось.

Другой русский инженер - П.Д. Кузьминский - в 1892 году разработал идею газотурбинного двигателя, в котором топливо сгорало при постоянном давлении. Начав реализацию проекта в 1900 году, он решил установить ГТД с многоступенчатой газовой турбиной на небольшой катер. Однако смерть конструктора помешала закончить начатое.

Более интенсивно за создание реактивного двигателя принялись лишь в ХХ веке: сначала теоретически, а через несколько лет - уже и практически.

В 1903 году в работе «Исследование мировых пространств реактивными приборами» К.Э. Циолковским были разработаны теоретические основы жидкостных ракетных двигателей (ЖРД) с описанием основных элементов реактивного двигателя, использующего жидкое топливо.

Идея создания воздушно-реактивного двигателя (ВРД) принадлежит Р. Лорину, запатентовавшему проект в 1908 году. При попытке создания двигателя, после обнародования чертежей устройства в 1913 году, изобретатель потерпел неудачу: скорости, необходимой для функционирования ВРД, достигнуть так и не удалось.

Попытки создания газотурбинных двигателей продолжались и далее. Так, в 1906 году русский инженер В.В. Караводин разработал, а через два года и построил бескомпрессорный ГТД с четырьмя камерами прерывистого сгорания и газовой турбиной. Однако мощность, развиваемая устройством, даже при 10000 об/мин не превышала 1,2 квт (1,6 л.с.).

Создал газотурбинный двигатель прерывистого горения и немецкий конструктор Х. Хольварт. Построив ГТД в 1908 году, к 1933 году, после многолетних работ по его совершенствованию, он довёл КПД двигателя до 24%. Тем не менее, идея не нашла широкого применения.

Идея же турбореактивного двигателя была озвучена в 1909 году русским инженером Н.В. Герасимовым, получившим патент на газотурбинный двигатель для создания реактивной тяги. Работы по реализации этой идеи не прекращались в России и впоследствии: в 1913 году М.Н. Никольской проектирует ГТД мощностью 120 квт (160 л.с.) с трёхступенчатой газовой турбиной; в 1923 году В.И. Базаров предлагает принципиальную схему газотурбинного двигателя, близкую по схеме современным турбовинтовым двигателям; в 1930 году В.В. Уваров совместно с Н.Р. Брилингом проектирует, а в 1936 году и реализует газотурбинный двигатель с центробежным компрессором.

Огромный вклад в создание теории реактивного двигателя внесли работы русских ученых С.С. Неждановского, И.В. Мещерского, Н.Е. Жуковского. французского учёного Р. Эно-Пельтри, немецкого учёного Г. Оберта. На создание воздушно-реактивного двигателя повлияла и работа известного советского ученого Б.С. Стечкина, который опубликовал в 1929 году свой труд «Теория воздушно-реактивного двигателя».

Не останавливались работы по созданию и жидкостного реактивного двигателя: в 1926 году американский ученый Р. Годдард осуществил запуск ракеты на жидком топливе. Работы над этой темой происходили и в Советском Союзе: в период с 1929 по 1933 год В.П. Глушко разработал и испытал в действии в Газодинамической лаборатории электротермический реактивный двигатель. Им же в этот период были созданы и первые отечественные жидкостные реактивные двигатели - ОРМ, ОРМ-1, ОРМ-2.

Наибольший вклад в практическое воплощение реактивного двигателя внесли немецкие конструкторы и ученые. Имея поддержку и финансирование со стороны государства, рассчитывавшего этим путем добиться технического превосходства в грядущей войне, инженерный корпус III Рейха с максимальной отдачей и в короткие сроки подошел к созданию боевых комплексов, имевших в своей основе идеи реактивного движения.

Концентрируя внимание на авиационной составляющей, можно сказать, что уже 27 августа 1939 года летчик-испытатель фирмы Heinkel флюг-капитан Э. Варзиц поднял в воздух He.178 - реактивный самолет, технологические наработки которого были впоследствии использованы при создании истребителей Heinkel He.280 и Messerschmitt Me.262 Schwalbe.

Установленный на Heinkel He.178 двигатель Heinkel Strahltriebwerke HeS 3 конструкции Х.-И. фон Охайна хоть и не обладал высокой мощностью, но сумел открыть эру реактивных полетов боевой авиации. Достигнутая He.178 максимальная скорость в 700км/ч с использованием двигателя, мощность которого не превышала 500 кгс, говорила о многом. Впереди лежали безграничные возможности, которые лишали будущего поршневые моторы.

Созданная в Германии целая серия реактивных двигателей, например, Jumo-004 производства фирмы Junkers, позволила ей уже в конце Второй мировой войны обладать серийными реактивными истребителями и бомбардировщиками, опередив другие страны в этом направлении на несколько лет. После поражения III Рейха именно немецкие технологии дали толчок развитию реактивного самолетостроения во многих странах мира.

Единственной страной, сумевшей ответить на немецкий вызов, была Великобритания: созданный Ф. Уиттлом турбореактивный двигатель Rolls-Royce Derwent 8 был установлен на истребителе Gloster Meteоr.


Трофейный Jumo 004

Первым в мире турбовинтовым двигателем стал венгерский двигатель Jendrassik Cs-1 конструкции Д. Ендрашика, построившего его в 1937 году на заводе Ganz в Будапеште. Несмотря на возникшие в ходе внедрения проблемы, двигатель предполагалось устанавливать на венгерский двухмоторный штурмовик Varga RMI-1 X/H, специально сконструированный для этого авиаконструктором Л. Варго. Однако довести работы до конца венгерские специалисты так и не сумели - предприятие было перенацелено на выпуск немецких моторов Daimler-Benz DB 605, выбранных для установки на венгерские Messerschmitt Me.210.

Перед началом войны в СССР продолжались работы по созданию различных типов реактивных двигателей. Так, в 1939 году прошли испытания ракеты, на которых стояли прямоточные воздушно-реактивные двигатели конструкции И.А. Меркулова.

В том же году на ленинградском Кировском заводе начались работы по постройке первого отечественного турбореактивного двигателя конструкции А.М. Люльки. Однако начавшаяся война прекратила опытные работы над двигателем, направив всю мощность производства на нужды фронта.

Настоящая эра реактивных двигателей началась после завершения Второй мировой войны, когда за короткий промежуток времени был покорен не только звуковой барьер, но и земное притяжение, что позволило вывести человечество в космическое пространство.

Реактивный двигатель - двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.

Рабочее тело с большой скоростью истекает из двигателя, и, в соответствии с законом сохранения импульса, образуется реактивная сила, толкающая двигатель в противоположном направлении. Для разгона рабочего тела может использоваться как расширение газа, нагретого тем или иным способом до высокой термотемпературы (т. н. тепловые реактивные двигатели), так и другие физические принципы, например, ускорение заряженных частиц в электростатическом поле (см. ионный двигатель).

Реактивный двигатель сочетает в себе собственно двигатель с движителем, то есть он создает тяговое усилие только за счет взаимодействия с рабочим телом, без опоры или контакта с другими телами. По этой причине чаще всего он используется для приведения в движение самолетов, ракет и космических аппаратов.

В реактивном двигателе сила тяги, необходимая для движения, создается путем преобразования исходной энергии в кинетическую энергию рабочего тела. В результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде отдачи (струи). Отдача перемещает в пространстве двигатель и конструктивно связанный с ним аппарат. Перемещение происходит в направлении, противоположном истечению струи. В кинетическую энергию реактивной струи могут преобразовываться различные виды энергии: химическая, ядерная, электрическая, солнечная. Реактивный двигатель обеспечивает собственное движение без участия промежуточных механизмов.

Для создания реактивной тяги необходимы источник исходной энергии, которая преобразуется в кинетическую энергию реактивной струи, рабочее тело, выбрасываемое из двигателя в виде реактивной струи, и сам реактивный двигатель, преобразующий первый вид энергии во второй.

Основной частью реактивного двигателя является камера сгорания, в которой создается рабочее тело.

Все реактивные двигатели делятся на два основных класса, в зависимости от того, используется в их работе окружающая среда или нет.

Первый класс – воздушнореактивные двигатели (ВРД). Все они тепловые, в которых рабочее тело образуется при реакции окисления горючего вещества кислородом окружающего воздуха. Основную массу рабочего тела составляет атмосферный воздух.

В ракетном двигателе все компоненты рабочего тела находятся на борту оснащенного им аппарата.

Существуют также комбинированные двигатели, сочетающие в себе оба вышеназванные типа.

Впервые реактивное движение было использовано в шаре Герона – прототипе паровой турбины. Реактивные двигатели на твердом топливе появились в Китае в X в. н. э. Такие ракеты применялись на Востоке, а затем в Европе для фейерверков, сигнализации, а затем как боевые.

Важным этапом в развитии идеи реактивного движения была идея применения ракеты в качестве двигателя для летательного аппарата. Ее впервые сформулировал русский революционернародоволец Н. И. Кибальчич, который в марте 1881 г., незадолго до казни, предложил схему летательного аппарата (ракетоплана) с использованием реактивной тяги от взрывных пороховых газов.

H. Е. Жуковский в работах "О реакции вытекающей и втекающей жидкости" (1880е годы) и "К теории судов, приводимых в движение силой реакции вытекающей воды" (1908 г.) впервые разработал основные вопросы теории реактивного двигателя.

Интересные работы по исследованию полета ракеты принадлежат также известному русскому ученому И. В. Мещерскому, в частности в области общей теории движения тел переменной массы.

В 1903 г. К. Э. Циолковский в своей работе "Исследование мировых пространств реактивными приборами" дал теоретическое обоснование полета ракеты, а также принципиальную схему ракетного двигателя, предвосхищавшую многие принципиальные и конструктивные особенности современных жидкостноракетных двигателей (ЖРД). Так, Циолковский предусматривал применение для реактивного двигателя жидкого топлива и подачу его в двигатель специальными насосами. Управление полетом ракеты он предлагал осуществить посредством газовых рулей – специальных пластинок, помещаемых в струе вылетающих из сопла газов.

Особенность жидкостнореактивного двигателя в том, что в отличие от других реактивных двигателей он несет с собой вместе с топливом весь запас окислителя, а не забирает необходимый для сжигания горючего воздух, содержащий кислород, из атмосферы. Это единственный двигатель, который может быть применен для сверхвысотного полета вне земной атмосферы.

Первую в мире ракету с жидкостным ракетным двигателем создал и запустил 16 марта 1926 г. американец Р. Годдард. Она весила около 5 килограммов, а ее длина достигала 3 м. Топливом в ракете Годдарда служили бензин и жидкий кислород. Полет этой ракеты продолжался 2,5 секунды, за которые она пролетела 56 м.

Систематические экспериментальные работы над этими двигателями начались в 30х годах XX века.

Первые советские ЖРД были разработаны и созданы в 1930–1931 гг. в ленинградской Газодинамической лаборатории (ГДЛ) под руководством будущего академика В. П. Глушко. Эта серия называлась ОРМ – опытный ракетный мотор. Глушко применил некоторые новинки, например охлаждение двигателя одним из компонентов топлива.

Параллельно разработка ракетных двигателей велась в Москве Группой изучения реактивного движения (ГИРД). Ее идейным вдохновителем был Ф. А. Цандер, а организатором – молодой С. П. Королев. Целью Королева была постройка нового ракетного аппарата – ракетоплана.

В 1933 г. Ф. А. Цандер построил и успешно испытал ракетный двигатель ОР1, работавший на бензине и сжатом воздухе, а в 1932–1933 гг. – двигатель ОР2, на бензине и жидком кислороде. Этот двигатель был спроектирован для установки на планере, который должен был совершить полет в качестве ракетоплана.

В 1933 г. в ГИРДе создана и испытана первая советская ракета на жидком топливе.

Развивая начатые работы, советские инженеры в последующем продолжали работать над созданием жидкостных реактивных двигателей. Всего с 1932 по 1941 г. в СССР было разработано 118 конструкций жидкостных реактивных двигателей.

В Германии в 1931 г. состоялись испытания ракет И. Винклера, Риделя и др.

Первый полет на самолетеракетоплане с жидкостнореактивным двигателем был совершен в Советском Союзе в феврале 1940 г. В качестве силовой установки самолета был применен ЖРД. В 1941 г. под руководством советского конструктора В. Ф. Болховитинова был построен первый реактивный самолет – истребитель с жидкостноракетным двигателем. Его испытания были проведены в мае 1942 г. летчиком Г. Я. Бахчиваджи.

В это же время состоялся первый полет немецкого истребителя с таким двигателем. В 1943 г. в США провели испытания первого американского реактивного самолета, на котором был установлен жидкостнореактивный двигатель. В Германии в 1944 г. были построены несколько истребителей с этими двигателями конструкции Мессершмитта и в том же году применены в боевой обстановке на Западном фронте.

Кроме того, ЖРД применялись на немецких ракетах Фау2, созданных под руководством В. фон Брауна.

В 1950е годы жидкостноракетные двигатели устанавливались на баллистических ракетах, а затем на искусственных спутниках Земли, Солнца, Луны и Марса, автоматических межпланетных станциях.

ЖРД состоит из камеры сгорания с соплом, турбонасосного агрегата, газогенератора или парогазогенератора, системы автоматики, органов регулирования, системы зажигания и вспомогательных агрегатов (теплообменники, смесители, приводы).

Идея воздушнореактивных двигателей не раз выдвигалась в разных странах. Наиболее важными и оригинальными работами в этом отношении являются исследования, проведенные в 1908–1913 гг. французским ученым Р. Лореном, который, в частности, в 1911 г. предложил ряд схем прямоточных воздушнореактивных двигателей. Эти двигатели используют в качестве окислителя атмосферный воздух, а сжатие воздуха в камере сгорания обеспечивается за счет динамического напора воздуха.

В мае 1939 г. в СССР впервые состоялось испытание ракеты с прямоточным воздушнореактивным двигателем конструкции П. А. Меркулова. Это была двухступенчатая ракета (первая ступень – пороховая ракета) с взлетным весом 7,07 кг, причем вес топлива для второй ступени прямоточного воздушнореактивного двигателя составлял лишь 2 кг. При испытании ракета достигла высоты 2 км.

В 1939–1940 гг. впервые в мире в Советском Союзе проводились летние испытания воздушнореактивных двигателей, установленных в качестве дополнительных двигателей на самолете конструкции Н. П. Поликарпова. В 1942 г. в Германии испытывались прямоточные воздушнореактивные двигатели конструкции Э. Зенгера.

Воздушнореактивный двигатель состоит из диффузора, в котором за счет кинетической энергии набегающего потока воздуха происходит сжатие воздуха. В камеру сгорания через форсунку впрыскивается топливо и происходит воспламенение смеси. Реактивная струя выходит через сопло.

Процесс работы ВРД непрерывен, поэтому в них отсутствует стартовая тяга. В связи с этим при скоростях полета меньше половины скорости звука воздушнореактивные двигатели не применяются. Наиболее эффективно применение ВРД на сверхзвуковых скоростях и больших высотах. Взлет самолета с воздушнореактивным двигателем происходит при помощи ракетных двигателей на твердом или жидком топливе.

Большее развитие получила другая группа воздушнореактивных двигателей – турбокомпрессорные двигатели. Они подразделяются на турбореактивные, в которых тяга создается струей газов, вытекающих из реактивного сопла, и турбовинтовые, в которых основная тяга создается воздушным винтом.

В 1909 г. проект турбореактивного двигателя был разработан инженером Н. Герасимовым. В 1914 г. лейтенант русского морского флота М. Н. Никольской сконструировал и построил модель турбовинтового авиационного двигателя. Рабочим телом для приведения в действие трехступенчатой турбины служили газообразные продукты сгорания смеси скипидара и азотной кислоты. Турбина работала не только на воздушный винт: отходящие газообразные продукты сгорания, направленные в хвостовое (реактивное) сопло, создавали реактивную тягу дополнительно к силе тяги винта.

В 1924 г. В. И. Базаров разработал конструкцию авиационного турбокомпрессорного реактивного двигателя, состоявшую из трех элементов: камеры сгорания, газовой турбины, компрессора. Поток сжатого воздуха здесь впервые делился на две ветви: меньшая часть шла в камеру сгорания (к горелке), а большая подмешивалась к рабочим газам для понижения их температуры перед турбиной. Тем самым обеспечивалась сохранность лопаток турбины. Мощность многоступенчатой турбины расходовалась на привод центробежного компрессора самого двигателя и отчасти на вращение воздушного винта. Дополнительно к винту тяга создавалась за счет реакции струи газов, пропускаемых через хвостовое сопло.

В 1939 г. на Кировском заводе в Ленинграде началась постройка турбореактивных двигателей конструкции А. М. Люльки. Его испытаниям помешала война.

В 1941 г. в Англии был впервые осуществлен полет на экспериментальном самолетеистребителе, оснащенном турбореактивным двигателем конструкции Ф. Уиттла. На нем был установлен двигатель с газовой турбиной, которая приводила в действие центробежный компрессор, подающий воздух в камеру сгорания. Продукты сгорания использовались для создания реактивной тяги.


Самолет Уиттла Gloster (E.28/39)

В турбореактивном двигателе воздух, поступающий при полете, сжимается сначала в воздухозаборнике, а затем в турбокомпрессоре. Сжатый воздух подается в камеру сгорания, куда впрыскивается жидкое топливо (чаще всего – авиационный керосин). Частичное расширение газов, образовавшихся при сгорании, происходит в турбине, вращающей компрессор, а окончательное – в реактивном сопле. Между турбиной и реактивным двигателем может быть установлена форсажная камера, предназначенная для дополнительного сгорания топлива.

Сейчас турбореактивными двигателями оснащено большинство военных и гражданских самолетов, а также некоторые вертолеты.

В турбовинтовом двигателе основная тяга создается воздушным винтом, а дополнительная (около 10 %) – струей газов, вытекающих из реактивного сопла. Принцип действия турбовинтового двигателя схож с турбореактивным, с той разницей, что турбина вращает не только компрессор, но и воздушный винт. Эти двигатели применяются в дозвуковых самолетах и вертолетах, а также для движения быстроходных судов и автомобилей.

Наиболее ранние реактивные твердотопливные двигатели использовались в боевых ракетах. Их широкое применение началось в XIX в., когда во многих армиях появились ракетные части. В конце XIX в. были созданы первые бездымные порохи, с более устойчивым горением и большей работоспособностью.

В 1920–1930е годы велись работы по созданию реактивного оружия. Это привело к появлению реактивных минометов – "катюш" в Советском Союзе, шестиствольных реактивных минометов в Германии.

Получение новых видов пороха позволило применять реактивные твердотопливные двигатели в боевых ракетах, включая баллистические. Кроме этого они применяются в авиации и космонавтике как двигатели первых ступеней ракетносителей, стартовые двигатели для самолетов с прямоточными воздушнореактивными двигателями и тормозные двигатели космических аппаратов.

Реактивный твердотопливный двигатель состоит из корпуса (камеры сгорания), в котором находится весь запас топлива и реактивного сопла. Корпус выполняется из стали или стеклопластика. Сопло – из графита, тугоплавких сплавов, графита.

Зажигание топлива производится воспламенительным устройством.

Регулирование тяги производится изменением поверхности горения заряда или площади критического сечения сопла, а также впрыскиванием в камеру сгорания жидкости.

Направление тяги может меняться газовыми рулями, отклоняющейся насадкой (дефлектором), вспомогательными управляющими двигателями и т. п.

Реактивные твердотопливные двигатели очень надежны, могут долго храниться, а следовательно, постоянно готовы к запуску.