Абсолютная пропускная способность характеризует интенсивность выходящего потока обслуженных заявок.

Пример . На станцию технического обслуживания поступает простейший поток заявок с интенсивностью 1 автомобиль за 2 ч. Во дворе в очереди может находиться не более 3 машин. Среднее время ремонта - 2 часа. Дайте оценку работы СМО и разработайте рекомендации по улучшению обслуживания.

Решение:
Определяем тип СМО. Фраза « На станцию» говорит об единственном устройстве обслуживания, т.е. для проверки решения используем сервис Одноканальные СМО .
Определяем вид одноканальной СМО. Поскольку имеется упоминание об очереди, следовательно выбираем «Одноканальная СМО с ограниченной длиной очереди».
Параметр λ необходимо выразить в часах. Интенсивность заявок 1 автомобиль за 2 ч или 0,5 за 1 час.
Интенсивность потока обслуживания μ явно не задана. Здесь приводится время обслуживания t обс = 2 часа.

Исчисляем показатели обслуживания для одноканальной СМО:
Интенсивность потока обслуживания:

1. Интенсивность нагрузки .
ρ = λ t обс = 0.5 2 = 1
Интенсивность нагрузки ρ=1 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.

3. Вероятность, что канал свободен (доля времени простоя канала).


Следовательно, 20% в течение часа канал будет не занят, время простоя равно t пр = 12 мин.

4. Доля заявок, получивших отказ .
Заявки не получают отказ. Обслуживаются все поступившие заявки, p отк = 0.

5. Относительная пропускная способность .
Доля обслуживаемых заявок, поступающих в единицу времени:
Q = 1 - p отк = 1 - 0 = 1
Следовательно, 100% из числа поступивших заявок будут обслужены. Приемлемый уровень обслуживания должен быть выше 90%.

6. Абсолютная пропускная способность .
A = Q λ = 1 0.5 = 0.5 заявок/час.

8. Среднее число заявок в очереди (средняя длина очереди).

ед.

9. Среднее время простоя СМО (среднее время ожидания обслуживания заявки в очереди).
час.

10. Среднее число обслуживаемых заявок .
L обс = ρ Q = 1 1 = 1 ед.

12. Среднее число заявок в системе .
L CMO = L оч + L обс = 1.2 + 1 = 2.2 ед.

13. Среднее время пребывания заявки в СМО .
час.

Число заявок, получивших отказ в течение час: λ p 1 = 0 заявок в час.
Номинальная производительность СМО: 1 / 2 = 0.5 заявок в час.
Фактическая производительность СМО: 0.5 / 0.5 = 100% от номинальной производительности.

Вывод: станция загружена на 100%. При этом отказов не наблюдается.

Простейшая одноканальная модель. Такой моделью с вероятност­ными входным потоком и процедурой обслуживания является мо­дель, характеризуемая показательным распределением как длитель­ностей интервалов между поступлениями требований, так и дли­тельностей обслуживания. При этом плотность распределения дли­тельностей интервалов между поступлениями требований имеет вид

(1)

где - интенсивность поступления заявок в систему.

Плотность распределения длительностей обслуживания:

, (2)

где - интенсивность обслуживания.

Потоки заявок и обслуживаний простейшие.

Пусть система работает с отказами. Необходимо определить абсолютную и относительную пропускную способность системы.

Представим данную систему массового обслуживания в виде графа (рис.1), у которого имеются два состояния:

S 0 - канал свободен (ожидание);

S 1 - канал занят (идет обслуживание заявки).

Рис. 1. Граф состояний одноканальной СМО с отказами

Обозначим вероятности состояний:

P 0 (t) - вероятность состояния «канал свободен»;

Р 1 (t) - вероятность состояния «канал занят».

По размеченному графу состояний (рис. 1) составим систему дифференциальных уравнений Колмогорова для вероятностей со­стояний:

(3)

Система линейных дифференциальных уравнений (3) имеет решение с учетом нормировочного условия = 1. Реше­ние данной системы называется неустановившимся, поскольку оно непосредственно зависит от t и выглядит следующим образом:

(4)

(5)

Нетрудно убедиться, что для одноканальной СМО с отказами вероятность Р 0 (t) есть не что иное, как относительная пропускная способность системы q.

Действительно, Р 0 - вероятность того, что в момент t канал сво­боден и заявка, пришедшая к моменту t, будет обслужена, а следо­вательно, для данного момента времени t среднее отношение числа обслуженных заявок к числу поступивших также равно , т. е.

q = . (6)

По истечении большого интервала времени () дости­гается стационарный (установившийся) режим:

Зная относительную пропускную способность, легко найти абсолютную. Абсолютная пропускная способность (А) - среднее число, которое может обслужить система массового обслуживания в единицу времени:

Вероятность отказа в обслуживании заявки будет равна вероят­ности состояния «канал занят»:

Данная величина может быть интерпретирована как сред­няя доля не обслуженных заявок среди поданных.

Пример 1. Пусть одноканальная СМО с отказами представ­ляет собой один пост ежедневного обслуживания (ЕО) для мойки автомобилей. Заявка - автомобиль, прибывший в момент, когда пост занят, - получает отказ в обслуживании. Интенсивность по­тока автомобилей = 1,0 (автомобиль в час). Средняя продолжи­тельность обслуживания - 1,8 часа. Поток автомобилей и поток обслуживании являются простейшими.

Требуется определить в установившемся режиме предельные значения:

относительной пропускной способности q;

абсолютной пропускной способности А;

вероятности отказа .

Сравните фактическую пропускную способность СМО с номи­нальной, которая была бы, если бы каждый автомобиль обслужи­вался точно 1,8 часа и автомобили следовали один за другим без перерыва.

Решение

1. Определим интенсивность потока обслуживания:

2. Вычислим относительную пропускную способность:

Величина q означает, что в установившемся режиме система бу­дет обслуживать примерно 35% прибывающих на пост ЕО автомо­билей.

3. Абсолютную пропускную способность определим по формуле:

1 0,356 = 0,356.

Это означает, что система (пост ЕО) способна осуществить в среднем 0,356 обслуживания автомобилей в час.

3. Вероятность отказа:

Это означает, что около 65% прибывших автомобилей на пост ЕО получат отказ в обслуживании.

4. Определим номинальную пропускную способность системы:

(автомобилей в час).

Оказывается, что в 1,5 раза больше, чем фак­тическая пропускная способность, вычисленная с учетом случай­ного характера потока заявок и времени обслуживания.

Одноканальная СМО с ожиданием. Система массового обслужи­вания имеет один канал. Входящий поток заявок на обслуживание - простейший поток с интенсивностью . Интенсивность потока обслуживания равна (т. е. в среднем непрерывно занятый канал будет выдавать обслуженных заявок). Длительность обслужива­ния - случайная величина, подчиненная показательному закону распределения. Поток обслуживаний является простейшим пуассоновским потоком событий. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Предположим, что независимо от того, сколько требований по­ступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N-требований (заявок), т. е. клиенты, не попавшие в ожидание, вынуждены об­служиваться в другом месте. Наконец, источник, порождающий за­явки на обслуживание, имеет неограниченную (бесконечно боль­шую) емкость.

Граф состояний СМО в этом случае имеет вид, показанный на рис. 2.

Рис. 2. Граф состояний одноканальной СМО с ожиданием

(схема гибели и размножения)

Состояния СМО имеют следующую интерпретацию:

S 0 - канал свободен;

S 1 - канал занят (очереди нет);

S 2 - канал занят (одна заявка стоит в очереди);

……………………

S n - канал занят (n - 1 заявок стоит в очереди);

…………………...

S N - канал занят (N - 1 заявок стоит в очереди).

Стационарный процесс в данной системе будет описываться следующей системой алгебраических уравнений:

п - номер состояния.

Решение приведенной выше системы уравнений (10) для на­шей модели СМО имеет вид

(11)

Следует отметить, что выполнение условия стационарности для данной СМО необязательно, поскольку число допу­скаемых в обслуживающую систему заявок контролируется путем введения ограничения на длину очереди (которая не может превы­шать N - 1), а не соотношением между интенсивностями входно­го потока, т. е. не отношением

Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N- 1):

вероятность отказа в обслуживании заявки:

(13)

относительная пропускная способность системы:

(14)

абсолютная пропускная способность:

А = q 𝝀; (15)

среднее число находящихся в системе заявок:

(16)

среднее время пребывания заявки в системе:

средняя продолжительность пребывания клиента (заявки) в очереди:

среднее число заявок (клиентов) в очереди (длина очереди):

L q = (1 - P N)W q . (19)

Рассмотрим пример одноканальной СМО с ожиданием.

Пример 2. Специализированный пост диагностики пред­ставляет собой одноканальную СМО. Число стоянок для автомо­билей, ожидающих проведения диагностики, ограничено и равно 3 [(N - 1) = 3]. Если все стоянки заняты, т. е. в очереди уже нахо­дится три автомобиля, то очередной автомобиль, прибывший на диагностику, в очередь на обслуживание не становится. Поток ав­томобилей, прибывающих на диагностику, распределен по закону Пуассона и имеет интенсивность 𝝀 = 0,85 (автомобиля в час). Вре­мя диагностики автомобиля распределено по показательному зако­ну и в среднем равно 1,05 час.

Требуется определить вероятностные характеристики поста ди­агностики, работающего в стационарном режиме.

Решение

1. Параметр потока обслуживании автомобилей:

.

2. Приведенная интенсивность потока автомобилей определяется как отношение интенсивностей 𝝀 и µ, т. е.

3. Вычислим финальные вероятности системы:

4. Вероятность отказа в обслуживании автомобиля:

5. Относительная пропускная способность поста диагностики:

6. Абсолютная пропускная способность поста диагностики

А = 𝝀 q = 0,85 0,842 = 0,716 (автомобиля в час).

7. Среднее число автомобилей, находящихся на обслуживании и в очереди (т.е. в системе массового обслуживания):

8. Среднее время пребывания автомобиля в системе:

9. Средняя продолжительность пребывания заявки в очереди на обслуживание:

10. Среднее число заявок в очереди (длина очереди):

L q = (1 - P N)W q = 0,85 (1 - 0,158) 1,423 = 1,02.

Работу рассмотренного поста диагностики можно считать удов­летворительной, так как пост диагностики не обслуживает автомо­били в среднем в 15,8% случаев отк = 0,158).

Одноканальная СМО с ожиданием без ограничения на вмести­мость блока ожидания (т. е. ). Остальные условия функцио­нирования СМО остаются без изменений.

Стационарный режим функционирования данной СМО суще­ствует при для любого n = 0, 1, 2,... и когда 𝝀< µ. Система алгебраических уравнений, описывающих работу СМО при для любого п =0,1,2,…, имеет вид

Решение данной системы уравнений имеет вид

Характеристики одноканальной СМО с ожиданием, без огра­ничения на длину очереди, следующие:

среднее число находящихся в системе клиентов (заявок) на об­служивание:

(22)

средняя продолжительность пребывания клиента в системе:

(23)

среднее число клиентов в очереди на обслуживании:

средняя продолжительность пребывания клиента в очереди:

Пример 3. Вспомним о ситуации, рассмотренной в примере 2, где речь идет о функционировании поста диагностики. Пусть рассматриваемый пост диагностики располагает неограниченным количеством площадок для стоянки прибывающих на обслужива­ние автомобилей, т. е. длина очереди не ограничена.

Требуется определить финальные значения следующих вероят­ностных характеристик:

Вероятности состояний системы (поста диагностики);

Среднее число автомобилей, находящихся в системе (на об­служивании и в очереди);

Среднюю продолжительность пребывания автомобиля в сис­теме (на обслуживании и в очереди);

Среднее число автомобилей в очереди на обслуживании;

4. Средняя продолжительность пребывания клиента в системе:

5. Среднее число автомобилей в очереди на обслуживание:

6. Средняя продолжительность пребывания автомобиля в очереди:

7. Относительная пропускная способность системы:

т. е. каждая заявка, пришедшая в систему, будет обслужена.

8 . Абсолютная пропускная способность:

A = q = 0,85 1 = 0,85.

Следует отметить, что предприятие, осуществляющее диагнос­тику автомобилей, прежде всего, интересует количество клиентов, которое посетит пост диагностики при снятии ограничения на длину очереди.

Допустим, в первоначальном варианте количество мест для сто­янки прибывающих автомобилей было равно трем (см. пример 2). Частота т возникновения ситуаций, когда прибывающий на пост диагностики автомобиль не имеет возможности присоединиться к очереди:

т = λP N .

В нашем примере при N=3 + 1= 4 и ρ = 0,893,

т = λ Р 0 ρ 4 = 0,85 0,248 0,8934 = 0,134 автомобиля в час.

При 12-часовом режиме работы поста диагностики это эквива­лентно тому, что пост диагностики в среднем за смену (день) будет терять 12 0,134 = 1,6 автомобиля.

Снятие ограничения на длину очереди позволяет увеличить ко­личество обслуженных клиентов в нашем примере в среднем на 1,6 автомобиля за смену (12 ч. работы) поста диагностики. Ясно, что ре­шение относительно расширения площади для стоянки автомоби­лей, прибывающих на пост диагностики, должно основываться на оценке экономического ущерба, который обусловлен потерей кли­ентов при наличии всего трех мест для стоянки этих автомобилей.


Похожая информация.


Дано : система имеет один канал обслуживания, на который поступает простейший поток заявок с интенсивностью . Поток обслуживаний имеет интенсивность . Заявка, заставшая систему занятой, сразу же покидает ее.

Найти : абсолютную и относительную пропускную способность СМО и вероятность того, что заявка, пришедшая в момент времени t, получит отказ.

Система при любом t > 0 может находиться в двух состояниях: S 0 – канал свободен; S 1 – канал занят. Переход из S 0 в S 1 связан с появлением заявки и немедленным началом ее обслуживания. Переход из S 1 в S 0 осуществляется, как только очередное обслуживание завершится (рис.9).

Рис.9. Граф состояний одноканальной СМО с отказами

Выходные характеристики (характеристики эффективности) этой и других СМО будут даваться без выводов и доказательств.

(среднее число заявок, обслуживаемых в единицу времени):

где – интенсивность потока заявок (величина, обратная среднему промежутку времени между поступающими заявками - ); – интенсивность потока обслуживаний (величина, обратная среднему времени обслуживания ).

Относительная пропускная способность (средняя доля заявок, обслуживаемых системой):

Вероятность отказа (вероятность того, что заявка покинет СМО необслуженной):

Очевидны следующие соотношения: и .

N – канальная СМО с отказами (задача Эрланга). Это одна из первых задач теории массового обслуживания. Она возникла из практических нужд телефонии и была решена в начале 20 века датским математиком Эрлангом.

Дано : в системе имеется n – каналов, на которые поступает поток заявок с интенсивностью . Поток обслуживаний имеет интенсивность . Заявка, заставшая систему занятой, сразу же покидает ее.

Найти : абсолютную и относительную пропускную способность СМО; вероятность того, что заявка, пришедшая в момент времени t , получит отказ; среднее число заявок, обслуживаемых одновременно (или, другими словам, среднее число занятых каналов).

Решение . Состояние системы S (СМО) нумеруется по максимальному числу заявок, находящихся в системе (оно совпадает с числом занятых каналов):

· S 0 – в СМО нет ни одной заявки;

· S 1 – в СМО находится одна заявка (один канал занят, остальные свободны);

· S 2 – в СМО находится две заявки (два канала заняты, остальные свободны);

· S n – в СМО находится n – заявок (все n – каналов заняты).

Граф состояний СМО представлен на рис. 10.

Рис.10. Граф состояний для n – канальной СМО с отказами

Почему граф состояний размечен именно так? Из состояния S 0 в состояние S 1 систему переводит поток заявок с интенсивностью (как только приходит заявка, система переходит из S 0 в S 1). Если система находилась в состоянии S 1 и пришла еще одна заявка, то она переходит в состояние S 2 и т.д.

Почему такие интенсивности у нижних стрелок (дуг графа)? Пусть система находится в состоянии S 1 (работает один канал). Он производит обслуживаний в единицу времени. Поэтому дуга перехода из состояния S 1 в состояние S 0 нагружена интенсивностью . Пусть теперь система находится в состоянии S 2 (работают два канала). Чтобы ей перейти в S 1 , нужно, чтобы закончил обслуживание первый канал, либо второй. Суммарная интенсивность их потоков равна и т.д.

Выходные характеристики (характеристики эффективности) данной СМО определяются следующим образом.

Абсолютная пропускная способность :

где n – количество каналов СМО; – вероятность нахождения СМО в начальном состоянии, когда все каналы свободны (финальная вероятность нахождения СМО в состоянии S 0);

Для того, чтобы написать формулу для определения , рассмотрим рис.11.

Рис.11. Граф состояний для схемы «гибели и размножения»

Граф, представленный на этом рисунке, называют еще графом состояний для схемы «гибели и размножения». Напишем сначала для общую формулу (без доказательства):

Кстати, остальные финальные вероятности состояний СМО запишутся следующим образом.

Вероятность того, что СМО находится в состоянии S 1 , когда один канал занят.

В качестве показателей эффективности СМО с отказами будем рассматривать:

1) A - абсолютную пропускную способность СМО , т.е. среднее число заявок, обслуживаемых в единицу времени;

2) Q - относительную пропускную способность , т.е. среднюю долю пришедших заявок, обслуживаемых системой;

3) P_{\text{otk}} - вероятность отказа , т.е. того, что заявка покинет СМО необслуженной;

4) \overline{k} - среднее число занятых каналов (для многоканальной системы).

Одноканальная система (СМО) с отказами

Рассмотрим задачу. Имеется один канал, на который поступает поток заявок с интенсивностью \lambda . Поток обслуживании имеет интенсивность \mu . Найти предельные вероятности состояний системы и показатели ее эффективности.


Примечание. Здесь и в дальнейшем предполагается, что все потоки событий, переводящие СМО из состояния в состояние, будут простейшими. К ним относится и поток обслуживании - поток заявок, обслуживаемых одним непрерывно занятым каналом. Среднее время обслуживания обратно по величине интенсивности \mu , т.е. \overline{t}_{\text{ob.}}=1/\mu .

Система S (СМО) имеет два состояния: S_0 - канал свободен, S_1 - канал занят. Размеченный граф состояний представлен на рис. 6.

В предельном, стационарном режиме система алгебраических уравнений для вероятностей состояний имеет вид (см. выше правило составления таких уравнений)

\begin{cases}\lambda\cdot p_0=\mu\cdot p_1,\\\mu\cdot p_1=\lambda\cdot p_0,\end{cases}


т.е. система вырождается в одно уравнение. Учитывая нормировочное условие p_0+p_1=1 , найдем из (18) предельные вероятности состояний

P_0=\frac{\mu}{\lambda+\mu},\quad p_1=\frac{\lambda}{\lambda+\mu}\,


которые выражают среднее относительное время пребывания системы в состоянии S_0 (когда канал свободен) и S_1 (когда канал занят), т.е. определяют соответственно относительную пропускную способность Q системы и вероятность отказа P_{\text{otk}}:

Q=\frac{\mu}{\lambda+\mu}\,

P_{\text{otk}}=\frac{\lambda}{\lambda+\mu}\,.

Абсолютную пропускную способность найдем, умножив относительную пропускную способность Q на интенсивность потока отказов

A=\frac{\lambda\mu}{\lambda+\mu}\,.

Пример 5. Известно, что заявки на телефонные переговоры в телевизионном ателье поступают с интенсивностью \lambda , равной 90 заявок в час, а средняя продолжительность разговора по телефону мин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера.

Решение. Имеем \lambda=90 (1/ч), \overline{t}_{\text{ob.}}=2 мин. Интенсивность потока обслуживании \mu=\frac{1}{\overline{t}_{\text{ob.}}}=\frac{1}{2}=0,\!5 (1/мин) =30 (1/ч). По (20) относительная пропускная способность СМО Q=\frac{30}{90+30}=0,\!25 , т.е. в среднем только 25% поступающих заявок осуществят переговоры по телефону. Соответственно вероятность отказа в обслуживании составит P_{\text{otk}}=0,\!75 (см. (21)). Абсолютная пропускная способность СМО по (29) A=90\cdot0.\!25=22,\!5 , т.е. в среднем в час будут обслужены 22,5 заявки на переговоры. Очевидно, что при наличии только одного телефонного номера СМО будет плохо справляться с потоком заявок.

Многоканальная система (СМО) с отказами

Рассмотрим классическую задачу Эрланга . Имеется n каналов, на которые поступает поток заявок с интенсивностью \lambda . Поток обслуживании имеет интенсивность \mu . Найти предельные вероятности состояний системы и показатели ее эффективности.

Система S (СМО) имеет следующие состояния (нумеруем их по числу заявок, находящихся в системе): S_0,S_1,S_2,\ldots,S_k,\ldots,S_n , где S_k - состояние системы, когда в ней находится k заявок, т.е. занято k каналов.

Граф состояний СМО соответствует процессу гибели и размножения и показан на рис. 7.

Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое с одной и той же интенсивностью \lambda . Интенсивность же потока обслуживании, переводящих систему из любого правого состояния в соседнее левое состояние, постоянно меняется в зависимости от состояния. Действительно, если СМО находится в состоянии S_2 (два канала заняты), то она может перейти в состояние S_1 (один канал занят), когда закончит обслуживание либо первый, либо второй канал, т.е. суммарная интенсивность их потоков обслуживании будет 2\mu . Аналогично суммарный поток обслуживании, переводящий СМО из состояния S_3 (три канала заняты) в S_2 , будет иметь интенсивность 3\mu , т.е. может освободиться любой из трех каналов и т.д.

В формуле (16) для схемы гибели и размножения получим для предельной вероятности состояния

P_0={\left(1+ \frac{\lambda}{\mu}+ \frac{\lambda^2}{2!\mu^2}+\ldots+\frac{\lambda^k}{k!\mu^k}+\ldots+ \frac{\lambda^n}{n!\mu^n}\right)\!}^{-1},

где члены разложения \frac{\lambda}{\mu},\,\frac{\lambda^2}{2!\mu^2},\,\ldots,\,\frac{\lambda^k}{k!\mu^k},\,\ldots,\, \frac{\lambda^n}{n!\mu^n} , будут представлять собой коэффициенты при p_0 в выражениях для предельных вероятностей p_1,p_2,\ldots,p_k,\ldots,p_n . Величина

\rho=\frac{\lambda}{\mu}


называется приведенной интенсивностью потока заявок или интенсивностью нагрузки канала . Она выражает среднее число заявок, приходящее за среднее время обслуживания одной заявки. Теперь

P_0={\left(1+\rho+\frac{\rho^2}{2!}+\ldots+\frac{\rho^k}{k!}+\ldots+\frac{\rho^n}{n!}\right)\!}^{-1},

P_1=\rho\cdot p,\quad p_2=\frac{\rho^2}{2!}\cdot p_0,\quad \ldots,\quad p_k=\frac{\rho^k}{k!}\cdot p_0,\quad \ldots,\quad p_n=\frac{\rho^n}{n!}\cdot p_0.

Формулы (25) и (26) для предельных вероятностей получили названия формул Эрланга в честь основателя теории массового обслуживания.

Вероятность отказа СМО есть предельная вероятность того, что все я каналов системы будут заняты, т.е.

P_{\text{otk}}= \frac{\rho^n}{n!}\cdot p_0.

Относительная пропускная способность - вероятность того, что заявка будет обслужена:

Q=1- P_{\text{otk}}=1-\frac{\rho^n}{n!}\cdot p_0.

Абсолютная пропускная способность:

A=\lambda\cdot Q=\lambda\cdot\left(1-\frac{\rho^n}{n!}\cdot p_0\right)\!.

Среднее число занятых каналов \overline{k} есть математическое ожидание числа занятых каналов:

\overline{k}=\sum_{k=0}^{n}(k\cdot p_k),


где p_k - предельные вероятности состояний, определяемых по формулам (25), (26).

Однако среднее число занятых каналов можно найти проще, если учесть, что абсолютная пропускная способность системы A есть не что иное, как интенсивность потока обслуженных системой заявок (в единицу времени). Так как каждый занятый канал обслуживает в среднем \mu заявок (в единицу времени), то среднее число занятых каналов

\overline{k}=\frac{A}{\mu}

Или, учитывая (29), (24):

\overline{k}=\rho\cdot\left(1-\frac{\rho^n}{n!}\cdot p_0\right)\!.

Пример 6. В условиях примера 5 определить оптимальное число телефонных номеров в телевизионном ателье, если условием оптимальности считать удовлетворение в среднем из каждых 100 заявок не менее 90 заявок на переговоры.

Решение. Интенсивность нагрузки канала по формуле (25) \rho=\frac{90}{30}=3 , т.е. за время среднего (по продолжительности) телефонного разговора \overline{t}_{\text{ob.}}=2 мин. поступает в среднем 3 заявки на переговоры.

Будем постепенно увеличивать число каналов (телефонных номеров) n=2,3,4,\ldots и определим по формулам (25), (28), (29) для получаемой n-канальной СМО характеристики обслуживания. Например, при n=2 имеем

З_0={\left(1+3+ \frac{3^2}{2!}\right)\!}^{-1}=0,\!118\approx0,\!12;\quad Q=1-\frac{3^2}{2!}\cdot0,\!118=0,\!471\approx0,\!47;\quad A=90\cdot0,\!471=42,\!4 и т.д.


Значение характеристик СМО сведем в табл. 1.

По условию оптимальности Q\geqslant0,\!9 , следовательно, в телевизионном ателье необходимо установить 5 телефонных номеров (в этом случае Q=0,\!9 - см. табл. 1). При этом в час будут обслуживаться в среднем 80 заявок (A=80,\!1) , а среднее число занятых телефонных номеров (каналов) по формуле (30) \overline{k}=\frac{80,\!1}{30}=2,\!67 .

Пример 7. В вычислительный центр коллективного пользования с тремя ЭВМ поступают заказы от предприятий на вычислительные работы. Если работают все три ЭВМ, то вновь поступающий заказ не принимается, и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 ч. Интенсивность потока заявок 0,25 (1/ч). Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра.

Решение. По условию n=3,~\lambda=0,\!25 (1/ч), \overline{t}_{\text{ob.}} =3 (ч). Интенсивность потока обслуживании \mu=\frac{1}{\overline{t}_{\text{ob.}}}=\frac{1}{3}=0,\!33 . Интенсивность нагрузки ЭВМ по формуле (24) \rho=\frac{0,\!25}{0,\!33}=0,\!75 . Найдем предельные вероятности состояний:

– по формуле (25) p_0={\left(1+0,\!75+ \frac{0,\!75^2}{2!}+ \frac{0,\!75^3}{3!}\right)\!}^{-1}=0,\!476 ;

– по формуле (26) p_1=0,!75\cdot0,\!476=0,\!357;~p_2=\frac{0,\!75^2}{2!}\cdot0,\!476=0,\!134;~p_3=\frac{0,\!75^3}{3!}\cdot0,\!476=0,\!033 ;


т.е. в стационарном режиме работы вычислительного центра в среднем 47,6% времени нет ни одной заявки, 35,7% - имеется одна заявка (занята одна ЭВМ), 13,4% - две заявки (две ЭВМ), 3,3% времени - три заявки (заняты три ЭВМ).

Вероятность отказа (когда заняты все три ЭВМ), таким образом, P_{\text{otk}}=p_3=0,\!033 .

По формуле (28) относительная пропускная способность центра Q=1-0,\!033=0,\!967 , т.е. в среднем из каждых 100 заявок вычислительный центр обслуживает 96,7 заявок.

По формуле (29) абсолютная пропускная способность центра A=0,\!25\cdot0,\!967=0,\!242 , т.е. в один час в среднем обслуживается. 0,242 заявки.

По формуле (30) среднее число занятых ЭВМ \overline{k}=\frac{0,\!242}{0,\!33}=0,\!725 , т.е. каждая из трех ЭВМ будет занята обслуживанием заявок в среднем лишь на \frac{72,\!5}{3}= 24,\!2%. .

При оценке эффективности работы вычислительного центра необходимо сопоставить доходы от выполнения заявок с потерями от простоя дорогостоящих ЭВМ (с одной стороны, у нас высокая пропускная способность СМО, а с другой стороны - значительный простой каналов обслуживания) и выбрать компромиссное решение.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!
Абсолютная пропускная способность – среднее число заявок, которое может быть обслужено в единицу времени. p 0 - вероятность того, что канал свободен, Q - относительная пропускная способность

Интенсивность нагрузки ρ=3 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.
2. Время обслуживания .
мин.

Следовательно, 3% в течение часа канал будет не занят, время простоя равно t пр = 1.7 мин.

занят 1 канал:
p 1 = ρ 1 /1! p 0 = 3 1 /1! 0.0282 = 0.0845
заняты 2 канала:
p 2 = ρ 2 /2! p 0 = 3 2 /2! 0.0282 = 0.13
заняты 3 канала:
p 3 = ρ 3 /3! p 0 = 3 3 /3! 0.0282 = 0.13
.

Значит, 13% из числа поступивших заявок не принимаются к обслуживанию.
.

p отк + p обс = 1

p обс = 1 - p отк = 1 - 0.13 = 0.87
Следовательно, 87% из числа поступивших заявок будут обслужены. Приемлемый уровень обслуживания должен быть выше 90%.
.
n з = ρ p обс = 3 0.87 = 2.6 каналов
.
n пр = n - n з = 3 - 2.6 = 0.4 каналов
.

Следовательно, система на 90% занята обслуживанием.
8. Абсолютная пропускная способность для многоканальной СМО .

A = p обс λ = 0.87 6 = 5.2 заявок/мин.
9. Среднее время простоя СМО .
t пр = p отк ∙ t обс = 0.13∙ 0.5 = 0.06 мин.
.

ед.
мин.
.
L обс = ρ Q = 3 0.87 = 2.62 ед.
.
L CMO = L оч + L обс = 1.9 + 2.62 = 4.52 ед.
.
мин.
Число заявок, получивших отказ в течение часа: λ p 1 = 0.78 заявок в мин.
Номинальная производительность СМО: 3 / 0.5 = 6 заявок в мин.
Фактическая производительность СМО: 5.2 / 6 = 87% от номинальной производительности.

Пример №2 . Универсам получает ранние овощи и зелень из теплиц пригородного совхоза. Машины с товаром прибывают в универсам в неопределенное время. В среднем прибывает λ автомашин в день. Подсобные помещения и оборудование для подготовки овощей к продаже позволяют обработать и хранить товар объемом не более m автомашин одновременно. В универсаме работают n фасовщиков, каждый из которых в среднем может обработать товар с одной машины в течение t обсл дня. Определить вероятность обслуживания приходящей автомашины P обс. Какова должна быть емкость подсобных помещений m 1 , чтобы вероятность обслуживания была бы больше или равна заданной величине, т.е. Pобс.> P*обс.
λ = 3; t обс = 0,5; n = 2; m = 2, P* обс = 0,92.
Решение .

Исчисляем показатели обслуживания многоканальной СМО:
Переводим интенсивность потока заявок в часы: λ = 3/24 = 0.13
Интенсивность потока обслуживания:
μ = 1/12 = 0.0833
1. Интенсивность нагрузки .
ρ = λ t обс = 0.13 12 = 1.56
Интенсивность нагрузки ρ=1.56 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.
Поскольку 1.56<2, то процесс обслуживания будет стабилен.
3. Вероятность, что канал свободен (доля времени простоя каналов).

Следовательно, 18% в течение часа канал будет не занят, время простоя равно t пр = 11 мин.
Вероятность того, что обслуживанием:
занят 1 канал:
p 1 = ρ 1 /1! p 0 = 1.56 1 /1! 0.18 = 0.29
заняты 2 канала:
p 2 = ρ 2 /2! p 0 = 1.56 2 /2! 0.18 = 0.22
4. Доля заявок, получивших отказ .

Значит, 14% из числа поступивших заявок не принимаются к обслуживанию.
5. Вероятность обслуживания поступающих заявок .
В системах с отказами события отказа и обслуживания составляют полную группу событий, поэтому:
p отк + p обс = 1
Относительная пропускная способность: Q = p обс.
p обс = 1 - p отк = 1 - 0.14 = 0.86
Следовательно, 86% из числа поступивших заявок будут обслужены. Приемлемый уровень обслуживания должен быть выше 90%.
6. Среднее число каналов, занятых обслуживанием .
n з = ρ p обс = 1.56 0.86 = 1.35 канала.
Среднее число простаивающих каналов .
n пр = n - n з = 2 - 1.35 = 0.7 канала.
7. Коэффициент занятости каналов обслуживанием .
K 3 = n 3 /n = 1.35/2 = 0.7
Следовательно, система на 70% занята обслуживанием.
8. Находим абсолютную пропускную способность .
A = p обс λ = 0.86 0.13 = 0.11 заявок/час.
9. Среднее время простоя СМО .
t пр = p отк t обс = 0.14 12 = 1.62 час.
Вероятность образования очереди .


10. Среднее число заявок, находящихся в очереди .

ед.
11. Среднее время простоя СМО (среднее время ожидания обслуживания заявки в очереди).
T оч = L оч /A = 0.44/0.11 = 3.96 час.
12. Среднее число обслуживаемых заявок .
L обс = ρ Q = 1.56 0.86 = 1.35 ед.
13. Среднее число заявок в системе .
L CMO = L оч + L обс = 0.44 + 1.35 = 1.79 ед.
13. Среднее время пребывания заявки в СМО .
T CMO = L CMO /A = 1.79/0.11 = 16.01 час.

Теперь ответим на вопрос: какова должна быть емкость подсобных помещений m 1 , чтобы вероятность обслуживания была бы больше или равна заданной величине, т.е. P обс. > 0.92. Расчет производим исходя из условия:

где
Для наших данных:

Далее необходимо подобрать такое k (см. п.3 "доля времени простоя каналов"), при котором p отк 0.92.
например, при k = m 1 = 4, p отк = 0.07 или p обс = 0.93.