Силикатные стёкла

Самым древним и известным оптическим материалом является обычное стекло , состоящее из смеси диоксида кремния и других веществ. Развитие технологии и ужесточение требований по мере роста совершенства оптических приборов привели к созданию особого класса технических стёкол - оптического стекла .

От прочих стёкол оно отличается особенно высокой прозрачностью, чистотой, бесцветностью, однородностью, а также строго нормированными преломляющей способностью и дисперсией .

Кварцевое стекло

См. также

Примечания

Литература

  • Винчелл А. Н., Винчелл Г., Оптические свойства искусственных минералов, пер. с англ., М., 1967;
  • Сонин А. С., Василевская А. С., Электрооптические кристаллы, М., 1971;
  • Физико-химические основы производства оптического стекла, под ред. Н. И. Демкиной, Л., 1976;
  • Мидвин-тер Д. Э., Волоконные световоды для передачи информации, пер. с англ., М., 1983;
  • Кочкин Ю. И., Румянцева Г. Н., «Зарубежная радиоэлектроника», 1985, № 9, с. 89-96;
  • Леко В. К., Мазурин О. В., Свойства кварцевого стекла, Л., 1985;
  • Deutsch Т. F., «J. Electronic Materials», 1975, v. 4, № 4, р.663-719;
  • Lucas I., «Infrared Physics», 1985, v.25, № 1/2, p.277-81.

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Оптические материалы" в других словарях:

    Кристаллич. или аморфные материалы, предназначенные для передачи или преобразования света в разл. участках спектрального диапазона. Различаются по строению, св вам, функцией, назначению, а также по технологии изготовления. Структура и свойства.… … Химическая энциклопедия

    Полимеры, использующиеся в создании оптических систем. Виды оптических полимерных материалов * Материалы с эпоксидной композицией «черного» цвета для герметизации фотодиодов, предназначенных для дистанционного управления приборами. *… … Википедия

    Оптические свойства горной породы - – свойства, характеризующие поглощение, пропускание и отражение электромагнитных волн оптического диапазона в горной породе. [ГОСТ Р 50544 93] Рубрика термина: Свойства горной породы Рубрики энциклопедии: Абразивное оборудование, Абразивы,… … Энциклопедия терминов, определений и пояснений строительных материалов

    Интенсивноразрабатываемое в 1980 90 е гг. новое поколение вычислит. техники (компьютеров)на основе использования оптич. излучения в качестве носителя информации … Физическая энциклопедия

    Материаловедение междисциплинарный раздел науки, изучающий изменения свойств материалов, как в твердом, так и в жидком состоянии в зависимости от некоторых факторов. К изучаемым свойствам относятся структура веществ, электронные, термические,… … Википедия

    Основная статья: Оптические материалы Волновод на базе прозрачной керамики Прозрачные керамические материалы материалы, прозрачные для электромагнитных … Википедия

    Материалы, применяемые в летательных аппаратах. В отечественной практике А. м. по назначению подразделяются на конструкционные, определяющими характеристиками которых являются механические свойства, и материалы неконструкционного назначения,… … Энциклопедия техники

    Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление. Дополнительные сведения могут быть на странице обсуждения. И … Википедия

    авиационные материалы Энциклопедия «Авиация»

    авиационные материалы - авиационные материалы — материалы, применяемые в летательных аппаратах. В отечественной практике А. м. по назначению подразделяются на конструкционные, определяющими характеристиками которых являются механические свойства, и материалы… … Энциклопедия «Авиация»

Книги

  • Оптические материалы. Учебное пособие , Зверев Виктор Алексеевич, Кривопустова Екатерина Всеволодовна, Точилина Татьяна Вячеславовна. Понятие "оптические материалы" охватывает сегодня огромное множество оптических сред, различающихся не только показателем преломления и коэффициентом дисперсии, но и прозрачностью для…

Основные характеристики оптических материалов.

Диаграмма пропускания оптических материалов для инфракрасной области спектра.

Кристаллографические характеристики

Кристаллы - твердые тела c упорядоченной атомной трехмерно-периодической пространственной структурой, называемойкристаллической решеткой. Кристаллические оптические материалы обладают высокой прозрачностью в ультрафиолетовой и инфракрасной областях спектрального диапазона и разнообразием дисперсионных свойств, что обуславливает их использование в оптике. Приведенные кристаллографические данные включают сингонию, класс симметрии, параметры решетки и спайность.
Сингония характеризует кристаллы по признаку формы элементарной ячейки, определяя тип симметрии.
Класс симметрии кристалла отражает полную совокупность его возможных симметричных преобразований.
Параметры решетки – это ее три элементарные трансляции a, b и c.
Спайность - способность кристалла раскалываться по определенным кристаллографическим плоскостям, в направлениях, где химические связи решетки ослаблены. Для обозначения спайности указывают кристаллографический символ плоскости легкого раскола. Качественно, спайность характеризуется как " высоко-совершенная ", "совершенная" или "несовершенная".
Кристалл может состоять из одного целостного блока - монокристалл или из хаотически ориентированных монокристаллических зерен разного размера - поликристаллы. Кристаллографические особенности поликристаллов определяются свойствами зерен, из которых они образованы, а также их величиной, взаимным расположением и силами взаимодействия между ними.

Оптические характеристики

. Показатель преломления n , обозначает отношение фазовых скоростей света в и в материале. Показатель определяется свойствами вещества и длиной световой волны. Для некоторых кристаллов показатель преломления сильно меняется при изменении длины волны излучения, а также может еще более резко меняться в областях частотной шкалы где возрастает поглощение излучения материалом. Существуют оптически анизотропные вещества, в которых показатель преломления зависит от направления и поляризации света.
Температурный коэффициент показателя преломления определяется по следующей формуле: b(t,l) = dn(l)/dt, º Cˉ¹ где t – температура. Для анизотропных и оптически одноосных кристаллов фтористого магния и сапфира значения показателей преломления и относительного температурного коэффициента показателя преломления приведены для обыкновенного nо и необыкновенного nе лучей.
Коэффициент пропускания t(l) - отношение потока монохроматического излучения, прошедшего сквозь образец материала, к потоку падающего излучения. В некоторых случаях вместо коэффициента пропускания указывается значение показателя ослабления, который рассчитывается по следующей формуле:

Где t i (l) - коэффициент внутреннего пропускания, который равен отношению потока монохроматического излучения, достигшего выходной поверхности образца, к потоку излучения, прошедшему через его входную поверхность, S - толщина образца, измеренная в сантиметрах. Ослабление излучения вызывается поглощением и рассеянием внутри материала, но оно не включает потери на отражение, которые могут быть определены по формуле:

Потери на отражение = (n-1)2 / (n+1)2

В таблицах приведены коэффициенты для пропускания для образцов материала толщиной 10 мм.

Тепловые характеристики

Температурный коэффициент линейного расширения a t , °С -1 , характеризует относительное изменение длины образца при изменении его температуры на 1 °С и определяется по формуле:

Где l - длина образца; t-температура.
Теплопроводность , Вт/(м °С) , характеризует способность материала проводить тепло и определяется количеством теплоты, передаваемым через единичную площадку за единицу времени при единичном градиенте температуры. Для анизотропных кристаллов фтористого магния и сапфира значения температурного коэффициента линейного расширения и теплопроводности приведены в направлениях параллельном и перпендикулярном оптической оси.
Удельная теплоемкость , Дж/(кг °С) , определяется как количество тепловой энергии, необходимой для повышения температуры одного килограмма вещества на один градус по Цельсию..
Термостойкость , °С, характеризует способность v материала выдерживать термические напряжения не разрушаясь. Мерой термостойкости является максимальная разность температур при быстрой их смене, выдерживаемая образцом без разрушения.

Механические характеристики

Плотность , г/см³ , определяется отношением массы вещества к его объему.
Твердость по Моосу , характеризует способность материала подвергаться царапанию другим материалом. Приведены справочные числа твердости по условной шкале Мооса, в которой 10 стандартных минералов расположены в ряд по степени возрастания твердости.
Микротвердостъ по Виккерсу , Па, характеризует сопротивление поверхности материала вдавливанию твердого наконечника - индентора в виде четырехгранной алмазной пирамидки при определенной нагрузке. Приведены справочные значения микротвердости при нагрузке 1 Н.
Постоянные упругой податливости S 11, S 12, S 44 , Па -1 являются коэффициентами пропорциональности между составляющими напряжения и деформации.
Модуль упругости (модуль Юнга) E, Па, - нормальное напряжение, изменяющее линейный размер тела в два раза.
Модуль сдвига G, Па, - касательное напряжение, вызывающее относительный сдвиг, равный единице.
Коэффициент поперечной деформации (коэффициент Пуассона) – отношение относительного поперечного сжатия к его относительному удлинению.

Фотоупругие характеристики

Оптические коэффициенты напряжений В 1 , В 2 , Па -1 отражают взаимосвязь между двулучепреломлением и вызывающем его напряжениями:

Где Dn12 - двулучепреломление, вызываемое напряжением сдвига s12.

Фотоупругие постоянные С 1 , С 2, Па -1 характеризуют зависимость изменения показателя преломления D n 1 и D n 2 материала под действием нормального напряжения s приложенного вдоль главных кристаллографических направлений.

Пьезооптические постоянные p 11, p 12 , p 44, Па -1 являются коэффициентами пропорциональности между составляющими напряжения и показателя преломления.

Использование: в частности оптические системы, обладающие улучшенным качеством изображения при теоретически предельных характеристиках. Сущность изобретения: для изготовления линз используется ортогерманат висмута, что позволяет при разработке оптических систем при одинаковых фокусных расстояниях повысить качество изображения за счет исправления астигматизма вследствие уменьшения кривизны преломляющей поверхности, а также увеличить срок эксплуатации оптических систем за счет негигроскопичности материала, его монокристалличности, а также высокой радиационной стойкости. 1 ил., 1 табл.

Изобретение относится к оптике в частности к линзам, и может использоваться в оптических системах, обладающих улучшенным качеством изображения при теоретически предельных характеристиках. Известны оптические материалы стекла с высоким показателем преломления в частности, сверхтяжелые кроны СТК16 и СТК20 с показателями преломления n e =1,790 и 1,768 и дисперсиями 45,4 и 50 соответственно По химическому составу сверхтяжелые кроны представляют собой боратные стекла, содержащие 7-39 мол. SiO 2 ; 24-52 мол. B 2 O 3 ; 34-48 мол. (CaO, ZnO, Al 2 O 3 + La 2 O 3 , TiO 2 , ZrO 2) Известна также группа тяжелых баритовых флинтов, например, ТБФ9 с n e = 1,8129 и n 42,5, а также ТБФ11 с n e =1,837 и n 42,8. По химическому составу тяжелые баритовые флинты состоят из 20-40 мол. SiO 2 ; 20 мол. B 2 O 3 ; 3-43 мол. BaO, PbO с добавками ZnO, CaO, TiO 2 , WO 3 Эти стекла довольно перспективны для улучшения качества изображения при разработке оптических систем с характеристиками, близкими к предельным. Однако, показатель преломления этих стекол ограничен величинами, указанными выше, и не может быть более 2,0, при этом они имеют высокие значения дисперсии. Достаточно сложная технология изготовления таких стекол оптического качества ограничивает их выпуск и определяет высокую стоимость. Кроме того к недостаткам этих стекол относится их взаимодействие с влагой. По показателю пятнаемости стекла, содержащие >17 мол. B 2 O 3 относятся к III группе (пятнающиеся стекла) и IV группе (нестойкие стекла) Наиболее близким к предлагаемому материалу для изготовления линз является оптический материал: к которому относится группа сверхтяжелых флинтов типа СТФ2 с n e =1,955, и n 20,2 и СТФ3 с n e =2,186 и n 16,6. По химическому составу сверхтяжелые флинты состоят из 50 мол. SiO 2 ; 48-59 мол. PbO и 0,5-1,5 мол. K 2 O (Na 2 O). Недостатком таких стекол, является желтый оттенок, что снижает прозрачность в видимой области на 10-20% а также повышенная кристаллизационная способность, что приводит к изменению оптических характеристик вследствие старения Техническим результатом изобретения является изыскание оптического преломляющего материала с высоким показателем преломления при относительно невысокой дисперсии (n 20), обеспечивающего повышение качества изображения. Согласно изобретению технический результат обеспечивается за счет того, что ортогерманат висмута Bi 4 Ge 3 O 12 , показатель преломления которого n=2,1, а дисперсия n 20. Указанное соединение описано в литературе и ранее использовалось в качестве сцинтилляционного материала для регистрации гамма-излучения, электроном и др. элементарных частиц в ядерной физике, геологии, медицине. Использование ортогерманата висмута для изготовления линз в литературе не описано. Применение ортогерманата висмута Bi 4 Ge 3 O 12 в сравнении с обычными кроновыми и флинтовыми стеклами (аналоги и прототип) при одинаковых (нормированных) фокусных расстояниях приводит к меньшей кривизне преломляющих поверхностей и вследствие этого к снижению абберций всех порядков, а это в свою очередь, приводит к возможности увеличения относительного отверстия оптической системы без ее усложнения. При этом, помимо возможности создания новых систем, возникает возможность упрощения серийно выпускаемых оптических систем, в частности, фотообъективов за счет замены в них сложных коррекционно-силовых компонентов более простыми, содержащими ортогерманат висмута. Таким образом, применение Bi 4 Ge 3 O 12 в качестве оптического материала при изготовлении линз оптических систем приводит к возможности повышения качества изображения без их усложнения за счет уменьшения кривизны преломляющей поверхности и за счет исправления астигматизма. Получение монокристаллов ортогерманата висмута. Исходную смесь оксидов висмута (III) марки ОСФ 13-3 (для монокристаллов) и оксида германия (IV) (ТУ 48-21-72), взятую в соотношении Bi 2 O 3:GeO 2 2:3, в количестве 1,0 кг перемешивают в агатовой ступке и затем проводят твердофазный синтез шихты Bi 4 Ge 3 O 12 в платиновой чашке на воздухе при 750-950 o C. Полученную шихту загружают в платиновый тигель диаметром 200 мм, высотой 300 мм в количестве 40 кг, расплавляют и проводят процесс выращивания монокристаллов методом Чохральского на ориентированную затравку. Получают бесцветные монокристаллы диаметром до 150 мм и длиной до 250 мм. На чертеже представлен окуляр. В качестве примера конкретного использования можно привести разработку окуляра для телескопических систем. Окуляр имеет следующие конструктивные параметры (см.таблицу). Расчет хода действительных лучей свидетельствует, что по сравнению с известным трехлинзовым окулятором, в котором одна линза (N 1) с высоким показателем преломления (n=2,0667), выполненная из сверхтяжелого флинта заменяется на линзу из ортогерманата висмута, данный окуляр обладает улучшенным качеством изображения за счет уменьшения кривизны поверхности линзы, и исправления астигматизма (астигматическая разности в пределах поля 30 o не превышает 2 мм, что более чем в три раза лучше, чем в известном окуляре). Применение линз, выполненных из ортогерманата висмута Bi 4 Ge 3 O 12 при разработке оптических систем при одинаковых (нормированных) характеристиках позволяет повысить качество изображения без усложнения оптической системы, а также существенно расширить спектральный диапазон применения оптических приборов. Кроме того, использование Bi 4 Ge 3 O 12 выгодно экономически, т.к. позволяет снизить стоимость изделий за счет несложной технологии изготовления предлагаемого оптического материала. Использование линз, выполненных из ортогерманата висмута позволяет также увеличить срок эксплуатации оптических систем за счет негигроскопичности применяемого материала (отсутствие пятнаемости), высокой радиационной стойкости. Поскольку в качестве оптического материала используется монокристалл (а не стекло как в прототипе), то устраняется один из основных недостатков высокопреломляющих стекол, а именно повышенная кристаллизационная способность, что также позволяет увеличить срок эксплуатации этого материала. Источники информации: 1. Бесцветное оптическое стекло СССР. Каталог. М. Госстандарт, 1990, с. 52. 2. Физико-химические основы производства оптического стекла /под ред. Л. И.Демкиной. Л. Химия, 1976, с. 62-77. 3. Бесцветное оптическое стекло СССР. Каталог. М. Госстандарт, 1990, с. 62. 4. Физико-химические основы производства оптического стекла /под ред. Л. И.Демкиной. Л. Химия, 1976, с. 185-186, с. 209-220. 5. Бесцветное оптическое стекло СССР. Каталог. М. Госстандарт, 1990, с. 74. 6. Каргин Ю.Ф. Каргин В.Ф. Скориков В.М. Шадеев Н.И. Пехова Т.И. Синтез и излучение сцинтилляционных свойств монокристаллов Bi 4 Ge 3 O 12 . Изв. АН СССР, Неорганические материалы, 1984, т. 20, N 5, с. 815-817. 7. Русинов М.М. Композиция оптических систем. Л. Машиностроение, 1989, с. 202-203.

Оптические материалы

оптическим излучением

Самыми распространенными в настоящее время являются кристаллы группы KDP .

KDP (дигидрофосфат калия,KH 2 PO 4 ),

DKDP (дидейтерофосфат калия,KD 2 PO 4 ),

ADP (дигидрофосфат аммония NH4 H2 O4 ),

DADP (дейтерированный дигидрофосфат аммония ND4 D2 O4 ), CDA (дигидроарсенат цезия CsH2 AsO4 ),

DCDA (детероарсенат цезия CsD2 AsO4 ), KDA (дигидроарсенат калия KH2 AsO4 ), RDA (дигидроарсенат рубидия RbH2 AsO4 ), RDP (дигидрофосфат рудибия RbH2 PO4 ).

В основном используются кристаллы KDP иDKDP .

Нелинейные кристаллы и кристаллы для управления

оптическим излучением

Дигидрофосфат калия (KDP) (KH 2 PO 4 ) –

синтетический бесцветный кристалл, выращиваемый из водных растворов методом медленного снижения температуры.

Кристалл KDP был использован в качестве нелинейной среды одним из первых, так что величина его нелинейных характеристик до сих пор является эталоном, и часто нелинейные коэффициенты других кристаллов даются в единицах, относительно KDP.

Диапазон прозрачности 0,1767 1,5 мкм. Коэффициент линейного поглощения 0,03 0,05 см-1 вблизи = 1,06 мкм. Обладает высоким линейным электрооптическим эффектом при наложении электрического поля вдоль осиz , т.е. вдоль направления (001). Электрооптическая постояннаяr 63 = 10,5 10-10 см/В (при = 0,9893 мкм,Т = 295 К). В настоящее время является одним из основных материалов для изготовления умножителей частоты, генераторов гармоник, модуляторов света. Температура эксплуатации не должна превышать 393 К. Особенно эффективно применение при пониженных температурах и при частотах до 10 Гц (при СВЧ сильно возрастают диэлектрические потери). Показатели преломления

n о = 1,4936,n е = 1,4598 (для = 1,06 мкм). Полуволновое напряжение для = 0,547 мкм приT = 293 К 7,5 кВ. Плотность 2,338 г/см3 .

Нелинейные кристаллы и кристаллы для управления

оптическим излучением

KDP имеет высокую оптическую прочность (около 2 ТВт/см2 при воздействии пикосекундных импульсов = 30 пс, = 1,06 мкм, поверхностная прочность примерно на порядок меньше и сильно зависит от состояния рабочих поверхностей). Кристаллы хорошо растворяются в этиловом спирте, бензине, но особенно хорошо растворяются в воде (33 г на 100 г воды) и высоко гигроскопичны.

К основным недостаткам относятся малая механическая прочность, высокая гигроскопичность и невозможность использования для модуляции излучения при длинах волн больше

Нелинейные кристаллы и кристаллы для управления

оптическим излучением

Дидейтерофосфат калия (DKDP) (KD 2 PO 4 ) – является дейтерированным аналогом KDP и имеет более высокие технические и эксплуатационные характеристики. DKDP выращивается из водных растворов с использованием тяжелой воды.

Прозрачен от 0,2 до 2 мкм, коэффициент поглощения при

1,06 мкм на порядок ниже, чем у KDP. В связи с более высоким значением электрооптического коэффициента (более чем в 2 раза) получил более широкое распространение в модуляторах, чемKDP (электрооптическая постояннаяr 63 = 25,7 10-10 см/В при = 0,69 мкм,Т = 293 К). При уменьшении температуры электрооптическая постоянная резко возрастает (379 10-10 см/В при 217 К).

Ниобат лития (LiNbO 3 )

Нелинейные кристаллы и кристаллы для управления

оптическим излучением

) – одноосный отрицательный кристалл тригональной сингонии. Нерастворим в воде и слабых кислотах. Весьма технологичен при механической обработке и склеивании. Производится методом вытягивания из расплава.

Диапазон прозрачности 0,33 5,5 мкм.

Нелинейные кристаллы и кристаллы для управления

оптическим излучением

Кристалл широко используется в системах генерации второй гармоники лазерного излучения и в электрооптических модуляторах света (т.к. обладает малыми полуволновыми напряжениями – всего сотни вольт).

Имеет существенные недостатки: ярко выраженный фоторефрактивный эффект (обратимое оптическое разрушение типа optical damage); малая оптическая прочность (излучение неодимового лазера разрушает кристаллы ниобата лития при интенсивности 6 МВт/см2 ); необходимость хорошей термостабилизации. Эти недостатки позволяют использовать ниобат лития в модуляторах только низкоинтенсивных лазеров (типа гелий-неонового). Ниобат лития с примесями элементов группы железа широко применяется в оптических запоминающих устройствах. Находит свое использование и в поляризационных призмах в условиях повышенной влажности.

Оптическая керамика (иртран )– это стеклокристаллический материал, получаемый из поликристаллической массы методом горячего (при температурах около 2/3 температуры плавления вещества) прессования под большим давлением в вакууме. Размер зерен микрокристаллов порядка десятков микрометров.

Данные керамики механически изотропны, по термомеханическим свойствам значительно превосходят аналоги соответствующих монокристаллов. Хорошо обрабатываются и обладают высокой устойчивостью к тепловым ударам. По плотности и прозрачности эти материалы близки к соответствующим монокристаллам.

Преимущество керамик заключается в их высокой однородности, которая дает возможность изготавливать из них крупные оптические детали.

Помимо этого керамика применяется для изготовления светорассеивающих экранов, подложек интерференционных светофильтров, окон приборов, работающих в ИК области спектра, а также в условиях высоких механических и термических нагрузок.

Оптические поликристаллы (оптическая керамика)

Наиболее распространена оптическая керамика КО1 (MgF 2 ). Ее рабочий спектральный интервал 1…7 мкм.

Керамика КО2 (ZnS ) работает в интервале 1…14 мкм. Показатель преломления для 10,6 мкм равен 2,2. Температура плавления 1850 С, но гораздо ранее она начинает окисляться.

Керамика КО3 (CaF 2 ) может работать в спектральном интервале 0,4…10 мкм, но рабочая область сильно зависит от качества сырья, в видимой области прозрачность несколько ниже, чем у монокристалла. Химически устойчива. Отсутствие плоскостей спайности в поликристаллическом фтористом кальции увеличивает его устойчивость к механическим и тепловым ударам. Является перспективным материалом для прозрачных в ИК области элементов, работающих при больших перепадах давления и температуры.

Оптические поликристаллы (оптическая керамика)

Керамика КО4 (ZnSe )

диапазон 0,5…21 мкм (реально до 15 мкм),

но рабочая область зависит от качества сырья, в видимой области прозрачность несколько ниже, чем у монокристалла.

Показатель преломления n=2,402 при λ=10,6мкм (сильно зависит от температуры).

Показатель поглощения α=0,13 см-1 при λ=10,6мкм.

Температура плавления 1520 С, но сильное окисление начинается от

В воде не растворяется, слабо растворяется в кислотах. Является перспективным материалом для прозрачных в ИК отласти элементов, работающих при больших перепадах давления и температуры.

Керамика КО5 (MgO ), диапазон 0,4…8 мкм. Температура плавления 2800 С.

n=1,723 при =2 мкм.

Высокая теплопроводность позволяет использовать КО5 в изделиях, подвергающихся температурным ударам. В воде не растворяется, но при длительном хранении в атмосферных условиях взаимодействует с влагой и углекислотой с поверхностным образованием тонкого налета карбоната магния. Поэтому при длительном хранении поверхность лучше подвергать химической защите.


Оптические материалы , кристаллич. или аморфные материалы, предназначенные для передачи или преобразования света в разл. участках спектрального диапазона. Различаются по строению, свойствам, функцией, назначению, а также по технологии изготовления.

Структура и свойства. По строению оптические материалы подразделяют на моно- и поликристаллические, стекла, аморфные, стекло-кристаллические и жидкокристаллические. Прир. монокристаллы, например, CaF 2 , SiO 2 , кальцита СаСО 3 , . каменной и др., давно используют в качестве оптических материалов. Кроме того, используют большое кол-во синтетич. монокристаллов, обладающих прозрачностью в разл. участках оптич. диапазона (рис. 1) и имеющих высокую однородность и определенные габариты.

Поликристаллические оптические материалы характеризуются прозрачностью, по величине сходной с прозрачностью монокристаллов, и лучшими по сравнению с ними конструкц. свойствами. Наиб. применение находит оптич. (иртраны) на основе Аl 2 О 3 (напр., поликор, или лукалокс), Y 2 O 3 (иттралокс), MgAl 2 O 4 , SiO 2 (кварцевая оптич. керамика), цирконато-титанатов Pb, La (электрооптич. керамика), а также бескислородные поликристаллические оптические материалы для ИК области спектра- LiF, MgF 2 , ZnS, ZnSe и др.

Оптические стекла характеризуются высокой прозрачностью в разл. спектральных диапазонах, высокой однородностью структуры, позволяющей сохранять неизменность фронта световой волны при ее распространении в толще стекла, коррозионностойкостью, хорошими конструкц. свойствами, относительно простой технологией изготовления крупногабаритных изделий и изделий со сложной конфигурацией. Применяются с 18 в. В качестве оптических материалов используют бесцветные или цветные оксидные и бескислородные стекла (см. также Стекло неорганическое). Большинство оксидных оптич. стекол-силикатные (более 30-40% SiO 2 по массе), свинцово- или боросиликатные, а также многокомпонентные оксидные системы из 10-12 разл. . например алюмосиликафосфатные стекла, содержащие Аl 2 О 3 , SiO 2 , P 2 O 5 . Несиликатные оксидные стекла содержат Р 2 О 5 , В 2 О 3 , GeO 2 или ТеО 2 . При изменении состава стекол изменяются и их оптич. константы, главным образом показатель преломления n D и коэф. дисперсии света v D . В зависимости от величин этих характеристик на диаграмме n D - v D (т. наз. диаграмма Аббе) оптические материалы делят на типы – кроны и флинты (рис. 2). Флинты характеризуются малым коэф. дисперсии (v D кроны -большим (v D > 50). Стекла обоих типов наз. легкими или тяжелыми в зависимости от величины показателя преломления. Обе разновидности стекол имеют общие компоненты - SiO 2 , Na 2 O, К 2 О. Кроме того, для увеличения v D в состав кронов добавляют В 2 О 3 , А1 2 О 3 , ВаО, СаО, в состав флинтов-PbO, TiO 2 , ZnO, MgO, Sb 2 O 3 . Осветлители стекол-As 2 O 3 и Sb 2 O 3 . Наиб. высокими значениями v D обладают фосфатные флинты на основе Р 2 О 5 (особенно при введении металлов).


Неорг. аморфные оптические материалы используют главным образом в виде разл. пленок, иногда в виде массивных образцов (напр., аморфный Si); орг. аморфные оптические материалы - в виде пленок, оптич. волокон, массивных образцов (напр., ..

О стеклокристаллических оптические материалы см. . о жидкокристаллических-Жидкие кристаллы.

К особому классу относятся оптические материалы с непрерывно изменяющимся составом и оптич. свойствами. Основа таких материалов - градиентные оптич. волокна или самофокусирующие градиентные оптич. элементы (напр., селфок, или градан) в виде цилиндрич. образцов (диаметр 1-10 мм), обеспечивающих фокусировку света. Изготовляют их из таллиево-силикатных или силикогерманатных стекол, кристаллич. материалов (напр., на основе твердых растворов галогенидов Т1), (напр., полиметилметакрилата). Градиентные слои и пленки на монокристаллах Li и др. кристаллич. или стеклянных материалах - основа интегрально-оптич. устройств.

По спектральному диапазону различают оптические материалы, пропускающие в УФ, видимой и ИК областях спектра. Некоторые оптические материалы характеризуются широким плато спектрального пропускания, иногда разбиваемого на отдельные окна прозрачности селективными полосами поглощения примесей. Для работы в УФ (> 0,2 мкм), видимой и ближней ИК областях спектра применяют главным образом кварц, фториды Li и Na; для работы в средней и дальней областях ИК спектра-преим. бескислородные оптические материалы. Такие оптические материалы, как Si, Ge, GaAs, InSb, пропускают только ИК излучение; щелочных металлов, BaF 2 , ZnSe прозрачны в видимой, ближней и средней ИК областях спектра; КСl, GaAs, TlBr-TlI и др. пропускают интенсивное лазерное ИК излучение.

Материалы оптических устройств (линзы, светофильтры и т.п.) имеют определенный показатель преломления, высокую прозрачность в определенном спектральном диапазоне, хорошо поддаются оптико-мех. обработке (шлифованию, полировке) поверхности. Наиб. важное свойство-оптич. однородность, т.к. ослабление (потери) света, наряду с поглощением, определяется рассеянием на разл. структуры-микровключениях посторонних фаз, пузырях и свилях (областях стекол с измененным показателем преломления), микропорах (для керамики) и т.п.

Просветляющие покрытия служат для уменьшения коэф. отражения оптич. устройств, отражающие-для изготовления зеркал, поглощающие-для чернения поверхности. Разновидность просветляющих покрытий - интерференц. покрытия толщиной 10-150 мкм; они м. б. многослойными и характеризоваться постепенным изменением показателя преломления от низкого (1,3-1,55; NaAlF 4 , MgF 2 или SiO 2) до среднего (2,0-2,6; ZrO 2 , GeO 2 , ZnS, TiO 2 или A1 2 S 3) и высокого (более 3,0; Si, Ge). Отражающие покрытия изготовляют главным образом из Ag, Au, Al, поглощающие - из . . и .

Электрооптические, магнитооптические, акустооптические и пьезооптические оптические материалы характеризуются способностью менять свои оптич. свойства под действием разл. полей (электрич., магн., звуковых). Наиб. распространенные электрооптич. материалы-КН 2 РО 4 , KH 2 AsO 4 и их дейтериевые аналоги, др. и аммония, типа сфалерита и эвлитина, разл. сегнето- и антисегнетоэлектрики, в т.ч. LiNbO 3 , LiTaO 3 , BaTiO 3 , бариевостронциевые бронзы и др. К маг-нитооптич. материалам относят железоиттриевые и железо-гадолиниевые гранаты, ферриты, содержащие РЗЭ, и др. (см. Магнитные материалы). Осн. акустооптич. и пьезооптич. материалы - кварц, мн. титанаты, ниобаты, танталаты и др. (см. Акустические материалы).

Многие оптические материалы способны поляризовать световой поток, например вращать плоскость поляризации света. При облучении некоторых оптических материалов видимыми и УФ лучами наблюдается вторичное свечение-фотолюминесценция (см. Люминесценция).

Методы получения. В зависимости от состава и назначения оптических материалов для их получения применяют разл. методы. Общим является то, что все оптические материалы получают из сырья, максимально очищенного от примесей (напр., для оптических материалов, работающих в видимой и ближней ИК областях, осн. красящие примеси-Fе, Mn, Cu, Cr, Ni, Co). Содержание примесей в сырье не должно превышать 10 -2 % по массе, что обеспечивает коэф. поглощения менее 10 -2 см -1 , а в случае волоконно-оптич. материалов -10 -5 -10 -7 % по массе.

Для выращивания синтетич. используют методы монокристаллов выращивания, для оксидной керамики - спекание (см. Керамика), для получения поликристаллических оптических материалов из .горячее прессование. Бескислородные поликристаллические оптические материалы для ИК области спектра с размерами зерен ~ 50 мкм и коэф. поглощения ~ 10 -3 см -1 получают с использованием метода хим. осаждения из газовой фазы или конденсацией из паровой фазы. Оптические стекла получают методом варки стекла. Для кварцевых оптич. волокон наиб. распространено хим. осаждение из газовой фазы по реакциям SiCl 4 + O 2 SiO 2 + 2 Сl 2 или SiCl 4 + О 2 + 2Н 2 SiO 2 + 4 НСl. Образующиеся при высокой температуре частицы SiO 2 осаждают (в виде слоев) на внутр. поверхность кварцевой трубки (т. наз. CVD-метод; англ, chemical vapor deposition), внеш. поверхность цилиндрич. подложки (OVD-метод; англ. outer vapor deposition) или на торец затравочного кварцевого стержня (VAD-метод; англ, vapor axial deposition); затем при нагревании заготовка оплавляется и вытягивается в тонкое оптич. волокно. Для изменения состава и n D кварц легируют Ge, F и др. Для получения поликомпонентных и ИК оптич. волокон используют филь-ерный метод или перетяжку пары "согласованных" стекол по методу "штабик-трубка".