Новая тенденция или реальная необходимость?

Российская Единая энергосистема сегодня является крупнейшим в мире централизованно- управляемым объединением. Долгий промежуток времени никаких альтернатив ему не было. Но современные тенденции таковы, что доля распределенной генерации в нашей энергетике растет достаточно быстро. Пока еще ее удел в общем балансе не очень значителен, но эксперты уверены, что совсем скоро большие потребители откажутся от Единой энергосистемы и будут использовать собственные генерирующие мощности.

Следует отметить, что тенденция перехода от централизованной системы энергоснабжения в пользу распределенной генерации в последнее время достаточно широко распространяется во всем мире. Более 12% крупнейших мировых производителей используют свои генерирующие источники. Абсолютный лидер в этой сфере – Дания. Здесь половина производств осуществили переход на собственные мощности. А их доля в США, по прогнозам экспертов скоро составит более 20%. В России же эта цифра сегодня не превышает 6%.

Представители ведущего производителя оборудования для источников распределенной генерации фирмы «Катерпиллер», говорят о том, что ею поставлено и установлено на сегодняшний день более 15 тысяч ГТУ и ПГУ разных мощностей по всему миру. При этом, следует учесть, что это данные только одного изготовителя.

Российские таможенные органы представили сведения о том, что в 2011-2012 годах в нашу страну импорт агрегатов малой и средней генерации составил 11% от общих объемов всех новых крупных генерирующих мощностей. В «Сколково» определили, что доля распределенной генерации за последние несколько лет в общей сложности увеличилась на 33%, в то время как потребление в Единой энергосистеме прибавило только 3%.

Сейчас попытаемся разобраться, в чем причины такой стремительно растущей популярности, и что представляет собой сама распределенная генерация.

Распределенной генерацией считаются те объекты, которые находятся в непосредственной близости от конечного потребителя. При выборе их мощности учитывается ожидаемая мощность потребителя, а также определенные существующие ограничения – технологические, правовые и т.д. В таком случае она может варьироваться от 2-3 кВт. до нескольких сотен. Важным является тот факт, что при наличии подобного источника энергии потребитель не отключается от общей сети.

Определение распределенной генерации достаточно широкое, но на данный момент все же можно выделить несколько категорий такого типа генерирующих мощностей, использующихся сегодня в России.

1. Блок – станции – это источники электричества или тепла, расположенные на территории или поблизости от промышленных предприятий и принадлежащие владельцам этих предприятий на правах собственности или других законных основаниях. Как правило, такие станции являются весьма выгодными для их хозяев, так как источником деятельности этих агрегатов могут выступать побочные продукты основного производства, например, попутный или доменный газ и многие другие.

2. Второй вид объектов, которые относятся к источникам распределенной генерации – теплоэлектроцентрали. Они работают в комбинированном производстве электричества, при этом коэффициент использования топлива повышается на 30%. При такой выгоде определенные затраты и неудобства сооружения и эксплуатации тепловых сетей становятся весьма приемлемыми.

3. К объектам распределительной генерации относятся также газотурбинные и газопоршневые станции, а также, пока еще мало распространенный в России тип электростанций на возобновляемых источниках энергии.

В нашей стране определяющими факторами, которые являются своеобразным толчком к развитию малой распределенной генерации, являются постоянный рост тарифов и проблемы подключения к сетям. Эксперты предполагают, что уход потребителей в сферу собственных проектов автономного энергетического обеспечения в скором времени приобретет массовый характер.

Статистика говорит о том, что цена электроэнергии для конечного потребителя на высоком и среднем напряжении за несколько последних лет увеличилась более чем в 5 раз, и тенденция такова, что ее стоимость будет продолжать расти.

Одна из основных причин увеличения тарифов – повсеместный износ сетей и необходимость больших инвестиций в эту сферу. Еще лет 10-15 назад ситуация в энергетике по сравнению с другими отраслями промышленности была достаточно благополучной, но где-то в 2005 году по фактору износа производственных фондов электроэнергетика заняла отстающие позиции.

В последнее время модернизация была очень медленной и недостаточной для того, чтобы привести сети в надлежащее состояние. Новые мощности вводились в основном в сибирских и дальневосточных районах. Таким образом, к сегодняшнему моменту большая часть основных фондов имеет критическую степень износа: процесс старения оборудования продолжается быстрыми темпами, и возможно, что в ближайшее время может потребоваться вывод из баланса немалых объемов генерирующих мощностей.

Аналитики, оценивая сложившуюся ситуацию, прогнозируют, что после того, как стоимость электроэнергии достигнет своей пороговой черты, потребители массово начнут уходить из сетей, что автоматически станет причиной роста тарифов для оставшихся. В этом и кроется суть повышения цен на электроэнергию для небольших потребителей на низком напряжении, у которых, по сравнению с крупными, пока нет большой потребности для собственного обеспечения электроэнергией.

По мнению председателя наблюдательного совета НП «Сообщество потребителей энергии» Александра Старченко, «с точки зрения экономики в нашей стране государство, ежегодно поднимая тарифы на услуги по передаче, по сути, является самым эффективным «сторонником» строительства распределенной генерации. На сегодняшний день строительство собственной генерации – наиболее действенный способ для тех потребителей, для кого это технически возможно, стать независимыми от тех странных регуляторных решений, которые принимаются у нас в стране в области электроэнергетики».

Можно выделить несколько преимуществ распределенной генерации, которые способствуют ее широкому распространению и популярности:

Рост энергоэффективности по причине того, что электроэнергия производится за счет использования единого источника первичной энергии;

Отпадает необходимость реконструкции и ввода новых сетевых инфраструктур;

Источники напряжения расположены в непосредственной близости от нагрузки. Таким образом, увеличивается надежность энергоснабжения, поддерживается должный уровень сетевого напряжения и уменьшаются риски потери устойчивости;

Снижаются потери в сети и перетоки реактивной мощности;

Финансовый риск, связанный с малой и средней генерацией, существенно ниже, чем у объектов с большими мощностями;

Возможность террористических атак для таких объектов весьма низкая, потому что их защита от подобного рода инцидентов связана с системой охраны самого предприятия, где данные агрегаты установлены;

Затраты энергосбережения носят предсказуемый характер;

Надежность энергоснабжения для владельца такого объекта весьма высока, так как подавляющее количество перебоев в энергоснабжении сопряжено с внештатными ситуациями в сетевой отрасли;

Независимость расширения производства от необходимости развития сетевой инфраструктуры;

Нет необходимости оплачивать технологическое присоединение к сетям.

Препятствием к развитию распределенной генерации в нашей стране могут стать следующие факторы:

Большие таможенные пошлины на оборудование и источники, которые ввозятся из-за рубежа;

Сложности при техническом регулировании и лицензировании во время строительства энергетических объектов распределенной генерации. Так как ТЭЦ, в том числе и малые энергетические объекты, относят к разряду опасных производственных. В этом случае необходимо подтверждение того, что они соответствуют техническому регламенту о безопасности, а также подтверждение, по которому эти объекты соответствуют требованиям энергоэффективности. Помимо этого, нужна лицензия на осуществление таких видов деятельности, как эксплуатация взрывопожароопасных и химически опасных производственных объектов;

Негативное отношение сетевых компаний. Дело в том, что распределенная генерация становится причиной выпадающих расходов сетевиков, так как выступает сдерживающим фактором роста инвестиций электросетей и фактором снижения объемов продаж электричества и мощностей генерирующим компаниям;

Отношение системного оператора, которое является двойственным при строительстве объектов данного вида генерации. С одной стороны рост объектов распределенной генерации положительно сказывается на надежности энергоснабжения, что является существенным плюсом. Но с другой стороны – с увеличением объектов, требующих управления или наблюдения, добавляются хлопоты и затраты на персонал;

При распространении распределенной генерации возникают и определенные технические проблемы. Так, объекты такого вида энергообеспечения зачастую представляют собой новое оборудование, которое ввозится из-за рубежа, и обладает новыми техническими характеристиками и возможностями управления. Подключение этих объектов к распределительной сети становится причиной увеличения токов короткого замыкания, что может повлечь за собой замену коммутационных аппаратов, изменение настроек защит и т.д. Многие из подобного рода сложностей ложатся на плечи распределительных сетей, а у них может не быть персонала, который способен справится с данными ситуациями.

Можно сделать вывод, что большинство проблем, которые образовываются при строительстве собственных энергетических объектов, возникает в области взаимодействия с Единой энергетической системой, потому что пока нет достаточной необходимой технической и нормативной базы для качественной интеграции. Зачастую потребитель сам ищет документационные и юридические схемы для реализации таких проектов. Но в существующих условиях даже эти трудности вряд ли способны сдержать рост сферы распределенной генерации, потому как ее плюсы в сложившейся ситуации для многих потребителей являются очевидными и весомыми.

А самое разумное решение в развитии энергетической отрасли на сегодняшний день эксперты видят в интеграции и сочетании централизованного производства электричества и тепла и локальных источников.

Distributed power generation ) - концепция распределенных энергетических ресурсов подразумевает наличие множества потребителей, которые производят тепловую и электрическую энергию для собственных нужд, направляя их излишки в общую сеть.

В настоящее время промышленно развитые страны производят основную часть электроэнергии централизованно, на больших энергостанциях, таких как угольные электростанции, атомные электростанции, гидроэлектростанции или электростанции на природном газе. Такие электростанции имеют превосходные экономические показатели, но обычно передают электроэнергию на большие расстояния. Строительство большинства из них было обусловлено множеством экономических, экологических, географических и геологических факторов, а также требованиями безопасности и охраны окружающей среды. Например, угольные станции строятся вдали от городов для предотвращения сильного загрязнения воздуха, влияющего на жителей. Некоторые из них строятся вблизи угольных месторождений для минимизации стоимости транспортировки угля. Гидроэлектростанции должны находится в местах с достаточным энергосодержанием (перепад уровней на расход воды). Большинство энергостанций слишком далеко расположены, чтобы использовать их побочное тепло для обогрева зданий.

Низкое загрязнение окружающей среды - критическое преимущество комбинированных энергостанций, работающих на природном газе. Это позволяет им находиться достаточно близко к городу для централизованного теплоснабжения и охлаждения.

См. также

Ссылки

  • Распределенная энергетика - успешные, реализованные проекты автономного энергоснабжения
  • Decentralized Power as Part of Local and Regional Plans Quote: «…The plan estimates that even with the higher cost of renewable energy, Chicago will save more than $260 million by 2010…»
  • Can distributed energy systems really replace the current electricity grid? The new energy revoloution is here, but will it develop fast enough?

Распределенные источники энергии

Инверторы - 230V/115V

  • Future Energies , topics
  • Online or by mail subscription magazine: Distributed Energy

Wikimedia Foundation . 2010 .

  • Театр Балета на Брайтоне
  • Новотны

Смотреть что такое "Распределенная энергетика" в других словарях:

    распределенная генерация

    распределенная генерация - Малые, модульные, децентрализованные, подсоединенные к энергосистеме или автономные энергетические системы, расположенные на территории или вблизи потребления энергии. [Англо русский глосcарий энергетических терминов ERRA] распределенная… … Справочник технического переводчика

    малая энергетика - Малая распределенная энергетика (далее МРЭ) - совокупность организационных и технических структур и мероприятий в области производства и потребления электроэнергии и других видов энергии, связанная с самостоятельной реализацией органами… … Справочник технического переводчика

    Солнечная энергетика - Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей … Википедия - (англ. Distributed power generation) концепция распределенных энергетических ресурсов подразумевает наличие множества потребителей, которые производят тепловую и электрическую энергию для собственных нужд, направляя их излишки в общую сеть. В… … Википедия

    Распределённое производство энергии - Распределенное производство энергии (англ. Distributed power generation) концепция распределенных энергетических ресурсов подразумевает наличие множества потребителей, которые производят тепловую и электрическую энергию для собственных нужд,… … Википедия

    система - 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… … Словарь-справочник терминов нормативно-технической документации

Энергетика сегодня

Поэтому в традиционной энергетике по функциональному назначению и территориальному расположению можно четко выделить три сегмента:

  1. Центры производства электроэнергии
  2. Линии электропередачи большой мощности
  3. Зоны потребления электроэнергии и местные распределительные сети

Федеральный закон N 190-ФЗ от 27.07.2010 "О теплоснабжении" - выделены объекты малой когенерации и правила ее работы

Постановление Правительства РФ от 22.10.2012 N 1075 "О ценообразовании в сфере теплоснабжения" - определены правила назначения тарифов на тепловую энергию с объектов малой генерации.

Постановление Правительства РФ N 1221 от 31.12.2009 "Об утверждении Правил установления требований энергетической эффективности товаров, работ, услуг при осуществлении закупок для обеспечения государственных и муниципальных нужд" - введено требование создания или модернизации источников тепловой энергии мощностью более 5 Гкал только в режиме когенерации.

Предпосылки

Трудности

  • Стоимость

На 2011 год большинство из предлагаемых решений в малой энергетике недоступны её главным потребителям - малым удаленным предприятиям и малым населенным пунктам России , по цене, по эффективности отношения производимой мощности к массе оборудования. К тому же, предлагаемое, как элементы малой энергетики, серийно поставляемое импортное оборудование, как правило, не нацелено на использование источников энергии , имеющихся на местах.

Варианты реализации

  • Контейнерные энергоблоки
  • Мобильные энергоблоки
  • Сборные энергоблоки

Схожие понятия

При наличии соответствующих средств автоматического удаленного управления объединение распределённых генераторов энергии может выступать в качестве виртуальной электростанции.

В качестве синонима может использоваться термин «децентрализованное производство энергии», который не отражает специфической особенности - наличие общей сети обмена электро- и тепловой энергии. В рамках концепции децентрализованного производства электроэнергии возможно наличие общей сети электроэнергии и системы местных котельных , производящих исключительно тепловую энергию для нужд населённого пункта/предприятия/квартала.

Международная научно- практическая конференция « Малая энергетика-2005»

Воропай Н.И. (Институт систем энергетики им. Л.А. Мелентьева СО РАН, Иркутск, Россия)

Предпосылки и тенденции.

Электроэнергетика экономически развитых стран мира, в том числе, бывшего СССР, интенсивно развивалась в течение ХХ века главным образом путем повышения уровня централизации электроснабжения при создании все более мощных электроэнергетических объектов (электростанций, ЛЭП). Следствием этого явилось формирование территориально распределенных протяженных электроэнергетических систем (ЭЭС). Это позволило достичь существенного экономического эффекта, повысить надежность электроснабжения и качество электроэнергии .

С начала XX века технологии традиционных паротурбинных агрегатов тепловых и атомных электростанций развивались по пути использования все более высоких параметров пара, это требовало применения более совершенных материалов котлов и турбин, при этом имела место тенденция увеличения единичной мощности установок. Все отмеченное позволяло улучшать технико-экономические параметры установок - удельные капиталовложения и постоянные текущие издержки на единицу мощности и удельные расходы топлива на единицу вырабатываемой электроэнергии. Указанная тенденция укрупнения агрегатов наблюдалась и в гидроэнергетике, хотя и в меньшей мере.

В 1980-е годы эта тенденция принципиально изменилась вследствие появления высокоэффективных (до 55-60 % КПД) газотурбинных и парогазовых установок (ГТУ и ПГУ) широкого диапазона мощностей, в том числе малых - от единиц до одного-двух десятков МВт. Отличительной особенностью таких установок, особенно малых, является их высокая заводская готовность, что позволяет вводить их в эксплуатацию за период в пределах года . Одновременно появился большой ассортимент мини- и микро- ГТУ (от долей кВт до нескольких десятков кВт). На основе малых ГТУ начали сооружаться малые ГТУ-ТЭЦ для комбинированной выработки электроэнергии и тепла.

К малой энергетике относятся и многие типы энергетических установок на возобновляемых источниках энергии (ВИЭ), прежде всего ветроэнергетические установки (ВЭУ) . Малые ГТУ, ПГУ и ВЭУ устанавливаются непосредственно у потребителей и подключаются к распределительной электрической сети на напряжениях 6-35 кВ. Эти установки получили название "распределенная генерация" .

Главными факторами, стимулирующими развитие распределенной генерации, являются:

· адаптация потребителей к рыночной неопределенности в развитии электроэнергетики и в ценах на электроэнергию; это способствует снижению рисков дефицита мощности и повышению энергетической безопасности;

· повышение адаптационных возможностей самих ЭЭС к неопределенности рыночных условий развития экономики и снижение тем самым инвестиционных рисков;

· появление новых высокоэффективных энергетических технологий (ГТУ и ПГУ);

· рост доли газа в топливоснабжении электростанций;

· ужесточение экологических требований, стимулирующее использование ВИЭ (гидроэнергии, ветра, биомассы и др.) при протекционистской политике государств.

Масштабы развития.

Развитие малых ГТУ-ТЭЦ происходит достаточно интенсивно. В частности, в странах ЕС прогнозируется рост суммарной мощности ГТУ-ТЭЦ (прежде всего небольшой мощности) с 74 ГВт в 2000 г. до 91-135 ГВт в 2010 г. и 124-195 ГВт в 2020 г. (в зависимости от энергетической политики ЕС), что составляет 12% от суммарной генерирующей мощности стран ЕС в 2000 г., 13-18% - в 2010 г., 15-22% - в 2020 г. .

В российских условиях уже в настоящее время малые ГТУ-ТЭЦ оказываются эффективными. Расширение сферы газификации на средние и малые города и поселки городского типа, создание рынка высокоэкономичных, с коротким сроком сооружения, быстроремонтируемых установок малых ГТУ-ТЭЦ обеспечивают их активное вовлечение в структуру генерирующих мощностей регионов страны. Так, в Астраханской области при нынешнем уровне генерации в 1060 МВт из 550 МВт электрической мощности, планируемой к вводу до 2020 г., 65,5 МВт должны составить малые ГТУ-ТЭЦ, а в более удаленной перспективе их потенциал может достигнуть 185-200 МВт. В Томской области при существующем уровне генерации в 1804 МВт к 2020 г. предполагается ввести 246 МВт, в том числе 130 МВт (53%) за счет малых ГТУ-ТЭЦ. При этом используется отечественное оборудование .

Оценки показывают, что в перспективе потенциальные возможности сооружения малых ГТУ-ТЭЦ вместо неэкономичных устаревших котельных в городах и поселках могут составить суммарную электрическую мощность в 100 ГВт, количеством 12900 штук, средней единичной мощностью 7-8 МВт, а в максимальном варианте -соответственно 175 ГВт, 84000 штук, средней единичной мощностью 2-3 МВт . Реалистичные прогнозы дают в целом по стране 25-35 ГВт к 2020 г. и 35-50 ГВт к 2050 г. малых ГТУ-ТЭЦ, т.е. до 10-15% от суммарной установленной мощности генерации .

В последние годы использование ВИЭ для производства электроэнергии получило во многих странах значительное развитие. Западно-европейские страны планируют увеличить производство электроэнергии на базе ВИЭ к 2010 г. в среднем более, чем на

10 %, особенно за счет использования энергии ветра (рис. 1) . В настоящее время суммарная установленная мощность работающих в мире ВЭУ составляет более 31 ГВт , наибольшая по мощности единичная ВЭУ - 4,5 МВт - введена в Германии . Основные вводы ВЭУ приходятся на европейские страны - Германию, Данию, Великобританию, Нидерланды, Испанию, Швецию, Италию. Потенциал ветроэнергии имеется и в России .

Следует отметить, что в 2000 г. в России работали 12 ВЭУ (суммарная мощность 7,2 МВт), 2 геотермальные установки (23 МВт), 59 малых ГЭС в диапазоне мощностей 0,5-30 МВт (513 МВт), около 100 мини-ГЭС мощностью менее 0,5 МВт (40 МВт), 11 установок на биомассе (523 МВт). Все это составляет всего 0,5 % установленной мощности электростанций России. Согласно энергетической стратегии России на период до 2020 года потенциал возобновляемых энергоресурсов в стране достаточно велик (табл. 1), однако при этом установленная мощность ВИЭ прогнозируется лишь в следующих объемах: ВЭУ - 1-1,2 ГВт; малые и мини-ГЭС - 2,5-3 ГВт, геотермальные установки - 0,25-0,3 ГВт, что составляет весьма незначительную долю от суммарной генерации на этот период.

Между тем, в мире накоплен достаточно богатый опыт экономического стимулирования ВИЭ . Основными формами такой поддержки являются:

субсидии и кредиты по низким процентным ставкам; гарантии по банковским ссудам;

установление фиксированных закупочных цен на энергию, вырабатываемую на основе ВИЭ;

освобождение от уплаты налога на часть прибыли, инвестированной в нетрадиционную энергетику; - предоставление режима ускоренной амортизации; финансирование НИОКР в области нетрадиционной энергетики.

Опосредованно стимулирующее воздействие на использование ВИЭ оказывают такие инструменты экологической политики как плата за загрязнение окружающей среды, за выброс парниковых газов, другие "зеленые" налоги.

Возобновляемые источники энергии наиболее широко используются в странах с активным экологическим регулированием, которое включает систему законодательных, административных и экономических инструментов. Эти инструменты применяются на государственном и муниципальном уровнях для стимулирования сокращения выбросов (не только энергетическими установками). Такой подход типичен для стран Скандинавии, Дании, Австрии, Нидерландов, Германии, США.

Специфические подходы к экологической политике у развивающихся стран (Китай, Индия и др.), которые сочетают прямое административное регулирование и косвенные экономические стимулы. Тем не менее, экономическое стимулирование инвестиций в ВИЭ и в этих странах становится все более важным.

Стимулирующая политика в отношении ВИЭ начинает разрабатываться и в России. Так, группа американских и российских компаний разработала пилотный проект промышленной ветроэлектростанции мощностью 75 МВт, которая войдет в ЭЭС Санкт-Петербурга и Ленинградской области. ВЭС будет состоять из 50 ветроустановок мощностью по 1,5 МВт каждая производства компании GE Wind Energy . Завершена разработка ТЭО, строительство станции начнется во 2-м полугодии 2005 г.

Строительство ВЭС поддерживает правительство Ленинградской области, которое готово предоставить участникам проекта налоговые льготы, в том числе на недвижимость и прибыль. Кроме этого, были внесены поправки в проект регионального закона "О поддержке использования нетрадиционных возобновляемых энергетических ресурсов в Ленинградской области", а также предусмотрены налоговые льготы для промышленных потребителей электроэнергии, вырабатываемой с помощью ветра (и иных возобновляемых источников), которые способны покрыть разницу между тарифами на электроэнергию из традиционных и нетрадиционных источников. Реализация проекта позволит также разработать нормативные документы и методики проектирования аналогичных ВЭС и создать механизм гарантированного возврата заемного капитала, привлекаемого для финансирования сооружения ВЭС.

Электроэнергетические системы будущего символически можно представить как на рис.2, где 1 - промышленные потребители, 2 - социально-бытовые потребители, 3 -традиционные крупные электростанции, 4 - малые ГТУ-ТЭЦ, 5 - мини- и микро-ГЭС, 6 - ВЭУ, 7 - солнечные электростанции, 8 - топливные элементы, 9 - поршневые двигатель-генераторы, 10 - накопители энергии, 11 - биогаз. Как видно из этого рисунка, ЭЭС будущего должны сочетать крупные источники электроэнергии, без которых проблематично электроснабжение крупных потребителей и обеспечение целесообразных темпов роста электропотребления, а также распределенную генерацию. Крупные электростанции имеют трансформацию на напряжения 110 кВ и выше и выход в основную сеть высших напряжений, осуществляющую транспорт электроэнергии до крупных центров потребления.

В то же время, как следует из вышеизложенного, должны получить существенное развитие установки распределенной генерации, в том числе на ВИЭ, которые устанавливаются в распределительной сети 6-35 кВ. Третий уровень составят мини- и микро-установки (мини- и микро-ГЭС, ВЭУ, солнечные электростанции, топливные элементы и т.п.), которые подключаются на напряжение 0,4 кВ и устанавливаются у небольших потребителей, например, в отдельных домах или даже в квартирах.

Технические особенности и проблемы.

Подобная трансформация ЭЭС будущего придает им положительные качества, однако создает и определенные проблемы. Основные изменения в ЭЭС в связи с появлением распределенной генерации сводятся к следующим:

  • Развитие распределенной генерации разгружает как основную, так и распределительную сеть, что способствует снижению потерь электрической энергии повышению надежности и устойчивости ЭЭС и вносит дополнительные возможности в реализацию рынков электроэнергии,освобождая пропускные способности связей .
  • В то же время, распределенная генерация - это новые элементы ЭЭС, во многом с новыми динамическими характеристиками и возможностями управления. Так, ВЭУ имеют переменный режим работы, который при больших суммарных мощностях ВЭУ может создавать проблемы при управлении режимами ЭЭС, регулировании частоты, требуется резервирование по мощности до 50% от мощности ВЭУ и др. . При очень сильном ветре ВЭУ останавливаются, что при больших их суммарных мощностях может оказаться экстраординарным возмущением в ЭЭС, могущим привести к нарушению устойчивости системы и каскадному развитию аварии . Малые ГТУ имеют уменьшенную, по сравнению с традиционными агрегатами тепловых и гидравлических электростанций, постоянную инерции, отличные от больших агрегатов характеристики систем регулирования . К настоящему времени имеются некоторые исследования влияния распределенной генерации на свойства ЭЭС в установившихся и переходных режимах, однако эта проблема находится еще в начальной стадии изучения и более-менее уверенные выводы и рекомендации делать пока преждевременно.
  • Неоднозначно и влияние распределенной генерации на качество электроэнергии по уровням напряжений. С одной стороны, наличие распределенной генерации в распределительной сети позволяет более стабильно поддерживать уровни напряжений в узлах за счет возможностей этих генераторов по генерированию реактивной мощности, в отличие от традиционных распределительных сетей, в которых потери напряжения тем больше, чем дальше от питающей подстанции высокого напряжения. С другой стороны, обнаружены явления, получившие название фликкера в англоязычной литературе и связанные с быстрыми колебаниями напряжения. Характерно, что фликкер развивается при резком снижении напряжения в узле присоединения малого генератора, особенно если генератор асинхронный .
  • Неоднозначно также влияние распределенной генерации на генерацию высших гармоник в системе. С одной стороны, наличие распределенных генераторов снижает их уровень. Но, с другой стороны, многие малые установки, например, ВЭУ, высокочастотные ГТУ, подключаются к распределительной сети через преобразователи переменного тока в постоянный и обратно, которые генерируют в сеть высшие гармоники .
  • Подключение источников распределенной генерации к распределительной сети увеличивает токи короткого замыкания, что может потребовать замены коммутационных аппаратов, изменения настроек защит и др. .
  • Появление распределенной генерации усложняет диспетчерское управление ЭЭС, смещая его функции на распределительную сеть. Проблема при этом заключается в высокой неопределенности режимов работы распределенной генерации вследствие неравномерности загрузки агрегатов, отсутствия текущей информации об их работе и др. В последнее время появился ряд разработок, в которых предпринимаются попытки решения этой проблемы на основе распределенной системы диспетчерского управления с использованием Интернет-технологий . В связи с этим появилось понятие "виртуальная электростанция", которая условно объединяет распределенную генерацию посредством распределенной Интернет-системы управления.
  • Распределенная генерация усложняет также систему релейной защиты и автоматики, противоаварийного управления ЭЭС . Распределительная сеть с появлением в ней установок распределенной генерации приобретает черты основной сети, т.е. в ней возникают проблемы устойчивости и др., что требует разработки устройств автоматики, аналогичных основной сети. При потере электроснабжения от питающей подстанции основной сети имеется возможность выделить установку распределенной генерации на близкую по мощности нагрузку, что обеспечит электроснабжение ответственных потребителей. Эта проблема в англоязычной литературе получила название "Islanding", она достаточно активно изучается и имеет ряд составляющих, в частности: определение состава потребителей, подключаемых к малому генератору при выделении; разработка принципов и конкретных устройств соответствующей автоматики; учет конкретных условий работы распределенных генераторов и др.
  • Следует отметить и такой негативный фактор ВЭУ, как генерирование инфразвука при вращении лопастей. Эта проблема во многом решается за счет специальной конструкции лопастей .
  • Все перечисленные особенности распределенной генерации требуют тщательного изучения свойств и характеристик различных установок, разработки их математических моделей работы в различных режимах. Требуется разработка новых методов анализа режимов работы систем электроснабжения, включающих распределенную генерацию, их надежности, устойчивости и т.п. Необходима также разработка математических моделей и методов планирования развития систем электроснабжения и ЭЭС с учетом распределенной генерации .

Заключение

1. Тенденции развития электроэнергетики в мире связаны не только с ростом масштабов производства электроэнергии на традиционных крупных электростанциях, но и с увеличением доли распределенной генерации. Эти тенденции определяются необходимостью адаптации потребителей и развития ЭЭС к рыночной неопределенности, появлением новых высокоэффективных энергетических технологий, ростом доли высококачественных видов топлива, ужесточением экологических требований, стимулирующем использованием ВИЭ при протекционистской политике государств.

2. Мировые тенденции органичного сочетания централизованной и распределенной генерации характерны и для России. При этом, если экономические условия ля развития малых ГТУ-ТЭЦ достаточно приемлемы и в настоящее время, то для развития распределенной генерации на ВИЭ пока не созданы необходимые экономические, законодательные и организационные условия. Для России создание таких условий является одной из важнейших задач.

3. Рост доли распределенной генерации в ЭЭС не только имеет положительные стороны, но и создает определенные технические проблемы, которые связаны с изменением свойств систем, возможностей управления ими в нормальных и аварийных условиях. Эти проблемы решаемы, однако при этом усложняется диспетчерское и автоматическое управление ЭЭС, требуется разработка новых математических моделей по обоснованию развития ЭЭС и систем электроснабжения, анализу их режимов и управлению ими.

Литература

1. Комплексные проблемы развития энергетики СССР / Л.С.Беляев, Ю.Д.Кононов, А.А. Кошелев и др.; Отв. ред. А.А.Макаров и А.А.Папин. Новосибирск: Наука, 1988, 288 с.

2. Энергетика XXI века: Условия развития, технологии, прогнозы / Л.С.Беляев, А.В. Лагерев, В.В. Посекалин; Отв. ред. Н.И.Воропай. Новосибирск: Наука, 2004, 386 с.

3. Воропай Н.И. Малая энергетика в рыночной среде: анализ требований и условий развития// ТЭК, 2003, № 2, с. 97-98.

4. Усачев И.Н., Историк Б.Л., Школянский Ю.Б., Лунаци М.А. Малая и нетрадиционная энергетика России // Новости электротехники, 2003, № 3, с. 54-57; № 4, с. 77-79.

5. Фаворский О.Н., Леонтьев А.И., Федоров В.А., Мильман О.О. Эффективные технологии производства электрической и тепловой энергии с использованием органического топлива // Теплоэнергетика, 2003, № 9, с. 19-21.

6. Bayegan M.A. Vision of the Future Grid // IEEE Power Engineering Review, 2001, Vol.21, №12, p. 10-12.

7. Безруких П.П. Нетрадиционные возобновляемые источники энергии // Энергетическая бе-зопасность и малая энергетика. XXI век. Сб. докл. Всерос. н.-т. конф. Санкт-Петербург, 3-5 декабря 2002 г., с. 30-45.

8. Ackermann Th., Andersson G., Soder L. Distributed Generation: A Definition // Electric Power System Rescarch, 2001, Vol.57, № 4, p. 135-204.

9. Dugan R.C., McDermont Th.E. Distributed Generation // IEEE Industry Application Magazine, 2002, Vol.33, № 2, p. 19-25.

10. Development of dispersed generation and consequences for power systems / CIGRE Working Group C6/01 // Electra, 2004, № 215, p. 39-49.

11. The European Cogeneration Study. EU-Project "Future COGEN", № 4. 10301/P/99- 169/Final Publishable Report, Brussels, 2001, 88 p.

12. Карасевич А.М., Сеннова Е.В., Федяев А.В., Федяева О.Н. Эффективность развития малых ТЭЦ на базе газотурбинных и дизельных энергоустановок при газификации регионов // Теплоэнергетика, 2000, № 12, с.35-39.

13. Беляев Л.С., Воропай Н.И., Кощеев Л.А. и др. Долгосрочные тенденции развития электроэнергетики мира и России //Изв. РАН. Энергетика, 2004, № 1, с. 3-13.

14. Fairley P. Steady as the Blows // IEEE Spectrum, 2003, № 8, p. 35-39.

15. Slootweg J.G., Kling W.L. Is the Answer Blowing in the Wind. // IEEE Power and Energy Magazine, 2003, Vol. 1, № 6, p. 26-33/

16. Энергетическая стратегия России на период до 2020 года / Приложение к общ.-дел. журналу "Энергетическая политика". М.:ГУ ИЭС, 2003, 136 с.

17. Клавдиенко В.П. Экономические стимулы использования возобновляемых источников энергии // Энергия: экономика, техника, экология, 2004, № 6, с. 14-19.

18. Запад финансирует российскую ветроэнергетику // Мировая энергетика, 2005, № 3, с.92.

19. Еремин Л.М. О роли локальных генерирующих источников небольшой мощности на рынке электроэнергии // Энергетик, 2003. № 3, с.22-25.

20. Chiradeja P., Ramakumar R. An Approach to Quantify the Technical Benefits of Distributed Generation // IEEE Trans. Energy Conversion, 2004, Vol. 19, № 4, p.764-773.

21. Donelly M.R., Dagle J.E., Trudnowski D.J., Riders G.J. Impact of the Distributed Utility on Transmission System Stability // IEEE Trans. Power Systems, 1996, Vol.11, № 2, p.741-746.

22. Jenkins N., Allan R., Grossley P., Kirschen D., Strbac G. Embedded Generation. London; IEE, 2000, 273 p.

23. Воропай Н.И., Ефимов Д.Н. Требования к противоаварийному управлению ЭЭС с учетом изменения условия их развития и функционирования // Надежность либерализованных систем энергетики. Новосибирск: Наука, 2004, с.74-84.

24. Batrinu F., Chicco G., Pomrub R., Postolache P., Toader C. Current Issues on Operation and Management of Distributed Resources // 5th Int. World Energy System Conf., Oradea, Pomania, May 17-19, 2004, p.31-36.

25. Дмитриева Г.А., Макаревский С.Н., Хвощинская З.Г. Результаты моделирования работы неуправляемой ветроэлектрической установки в энергосистеме большой мощности // Электричество, 1998, № 8 , с. 19-24.

26. Barker Ph. P., De Mello R.W. Determining the Impact of Distributed Generation on Power Systems: Part 1 - Radial Distribution Systems // 2000 IEEE PES Summer Meeting, Seattle, WA, USA, July 11-15, 2000, p.222-233.

27. Dany G. Impact of Inercasing Wind Generation on the Electricity Supply System // IAEW-FGE-Annual Report 2003, Aachen, Germany, 2003, p. 101-103.

28. Гуревич Ю.Е., Мамиконянц Л.Г., Шакарян Ю.Г. Проблемы обеспечения надежного электроснабжения потребителей от газотурбинных электростанций небольшой мощности // Электричество, 2002. № 2, с.2-9.

29. Papathanassiou S.A., Hatziargyriou N.D. Technical Requirements for the Connection of Dispersed Generation to the Grid // 2001 IEEE PES Summer Meeting, Vancouver, Canada, July 15-19, 2001, p.134-138.

30. Jimeno J., Laresgoiti I., Oyarzabal J., Stene B., Bacher R. Architectural Framework for the Integration of Distributed Resources // 2003 IEEE Bologna Power Tech Conference, Bologna, Italy, June 23-26, 2003, p.91-96.

31. Фишман В. П. Построение систем РЗиА при наличии собственных источников электроэнергии у потребителей // Новости электротехники, 2002, № 6(18), с.34-37.

32. Funabashi T. Study on Protection and Control of Dispersed Generation // 2001 IEEE PES Summer Meeting, Vancouver, Canada, July 15-19, 2001, p. 131-133.

33. Meliopoulos A.P.S. Distributed Energy Sources: Neesds for Analysis and Design Tools // 2001 IEEE PES Summer Meeting, Vancouver, Canada, July 15-19, 2001, p.143-147.

34. Hatziargyriou N.D., Donnelly M., Papathanassiou S.A., Pecas Lopes J.A. e.a. Modeling New Forms of Generation and Storage // Electra, 2001, № 195, p.55-63.