Критерий Сэвиджа использует матрицу рисков || r ij ||. Элементы данной матрицы можно определить по формулам (23), (24), ко­торые перепишем в следующем виде:

Это означает, что r ij есть разность между наилучшим значени­ем в столбце i и значениями V ji при том же i. Неза­висимо от того, является ли V ji доходом (выигрышем) или потеря­ми (затратами), r ji в обоих случаях определяет величину потерь ли­ца, принимающего решение. Следовательно, можно применять к r ji только минимаксный критерий. Критерий Сэвиджа рекоменду­ет в условиях неопределенности выбирать ту стратегию Rj, при ко­торой величина риска принимает наименьшее значение в самой неблагоприятной ситуации (когда риск максимален).

Пример 6. Рассмотрим пример 4. Заданная матрица опреде­ляет потери (затраты). По формуле (31) вычислим элементы мат­рицы рисков || r ij ||:

Полученные результаты вычислений с использованием крите­рия минимального риска Сэвиджа оформим в следующей таблице:

Введение величины риска r ji , привело к выбору первой страте­гии R 1 , обеспечивающей наименьшие потери (затраты) в самой не­благоприятной ситуации (когда риск максимален).

Применение критерия Сэвиджа позволяет любыми путями из­бежать большого риска при выборе стратегии, а значит, избежать большего проигрыша (потерь).

4.Критерий Гурвица.

Критерий Гурвицаоснован на следующих двух предположе­ниях: «природа» может находиться в самом невыгодном состоянии с вероятностью (1 - α) и в самом выгодном состоянии с вероятно­стью α, где α - коэффициент доверия. Если результат V j i - прибыль, полезность, доход и т. п., то критерий Гурвица записыва­ется так:

Когда V ji представляет затраты (потери), то выбирают действие, дающее

Если α = 0, получим пессимистический критерий Вальда.

Если α = 1, то приходим к решающему правилу вида max max V ji , или к так называемой стратегии «здорового оптими­ста», т. е. критерий слишком оптимистичный.

Критерий Гурвица устанавливает баланс между случаями край­него пессимизма и крайнего оптимизма путем взвешивания обоих способов поведения соответствующими весами (1 - α) и α, где 0≤α≤1. Значение α от 0 до 1 может определяться в зависимости от склонности лица, принимающего решение, к пессимизму или к оптимизму. При отсутствии ярко выраженной склонности α = 0,5 представляется наиболее разумной.

Пример 7. Критерий Гурвица используем в примере 4. Поло­жим α = 0,5. Результаты необходимых вычислений приведены ниже:

Оптимальное решение заключается в выборе W.

Таким образом, в примере предстоит сделать выбор, какое из возможных решений предпочтительнее:

по критерию Лапласа - выбор стратегии R 2 ,

по критерию Вальда - выбор стратегии R 3 ;

по критерию Сэвиджа - выбор стратегии R 1 ;

по критерию Гурвица при α = 0,5 - выбор стратегии R 1 , а ес­ли лицо, принимающее решение, - пессимист (α = 0), то выбор стратегии R 3 .

Это определяется выбором соответствующего критерия (Лапла­са, Вальда, Сэвиджа или Гурвица).

Выбор критерия принятия решений в условиях неопределенно­сти является наиболее сложным и ответственным этапом в иссле­довании операций. При этом не существует каких-либо общих со­ветов или рекомендаций. Выбор критерия должно производить ли­цо, принимающее решение (ЛПР), с учетом конкретной специфи­ки решаемой задачи и в соответствии со своими целями, а также опираясь на прошлый опыт и собственную интуицию.

В частности, если даже минимальный риск недопустим, то сле­дует применять критерий Вальда. Если, наоборот, определенный риск вполне приемлем и ЛПР намерено вложить в некоторое пред­приятие столько средств, чтобы потом оно не сожалело, что вложе­но слишком мало, то выбирают критерий Сэвиджа.

Задание для самостоятельного решения : написать программу на языке С++ для выбора наиболее эффективного проекта легкового автомобиля для производства, используя критерии Лапласа, Вальда, Сэвиджа и Гурвица.

Намечается крупномасштабное производство легковых автомобилей. Имеются четыре варианта проекта автомобиля

Определена экономическая эффективность V ji каждого проекта в зависимости от рентабельности производства. По истечению трех сроков рассматриваются как некоторые состояния среды (природы). Значения экономической эффективности для различных проектов и состояний природы приведены в следующей таблице (д.е.):

Состояния природы

Требуется выбрать лучший проект для производства, используя критерии Лапласа, Вальда, Сэвиджа и Гурвица при ɑ=0,1. Сравните решения и сделайте выводы.

Дерево решений является одним из методов науки управления.

Дерево решений – схематичное представление проблемы принятия решений. Оно используется для выбора наилучшего направления действий из имеющихся вариантов.

Таблица 1 Дерево принятия решений

Используя дерево решений, руководитель может рассчитать результат каждой альтернативы и выбрать наилучшую последовательность действий. Результат альтернативы рассчитывается путем умножения ожидаемого результата на вероятность и последующим суммированием таких же произведений, находящихся правее на дереве решений.

Как и платежная матрица, дерево решений дает руководителю возможность учесть различные направления действий, соотнести с ними финансовые результаты, скорректировать их в соответствии с приписанной им вероятностью, а затем сравнить альтернативы. Концепция ожидаемого значения является неотъемлемой частью метода дерева решений.

Методом дерева решений можно пользоваться в ситуациях, подобных описанной выше, в связи с рассмотрением платежной матрицы. В этом случае предполагается что данные о результатах, вероятности и т.п. не влияют на все последующие решения, Однако дерево решений можно построить под более сложную ситуацию, когда результаты одного решения влияют на последующие решения.

Дерево решений можно строить под сложные ситуации, когда результаты одного решения влияют на последующие решения. Таким образом, дерево решений – это полезный инструмент для принятия последовательных решений.

Критерий Вальда (максимина, минимакса)

Критерий Вальда, более известный как критерий маскимина (для максимизируемого критерия) или минимакса (для минимизируемого), ориентирован на выбор наиболее трудной ситуации, на пессимистическое развитие событий. Оправдан в условиях конкуренции, наличия активного противодействия, когда возможность возникновения той или иной ситуации определяется не только или не столько природой, сколько действиями людей. В соответствии с ним оптимальным признается вариант, у которого значение полезности является наилучшим из наихудших возможных.



Примеры

1. Таблица решений

При использовании критерия Вальда (в данном случае - минимакса) определим гарантированные значения полезности для каждого варианта:

U 1 = min = 0.56

U 2 = min = 0.42

U 3 = min = 0.56

Подученные результаты показывают, что в смысле критерия Вальда лучшими являются варианты 1 и 3. Для их дальнейшего более тонкого сравнения необходимо привлечь дополнительную информацию или использовать другой критерий.

Таблица решений

Вариант УР S 1 S 2 S 3 e ij
a 1
а 2
а 3
а 4

а – действия

S – условия

е - эффект

Выбор делаем только на множестве Парето-оптимальных вариантов.

Вариант а 2 дает лучший гарантированный результат.

1) max min е ij максимизация минимальной прибыли

Если е ij – доходы

2) max min е ij минимизация максимальных потерь

Если е ij – потери

Критерий минимального сожаления Севиджа

Севидж ввел понятие «сожаления». Критерий Сэвиджа ориентирован на минимизацию сожаления, или потерь ЛПР от принятия решения. Сожаление для i–й альтернативы в j–й ситуации рассматривается как разница между лучшим значением показателя качества среди всех альтернатив в данной ситуации и значением этого показателя для i–й альтернативы в той же ситуации. Лучшей в смысле рассматриваемого критерия признается альтернатива с минимальным сожалением. Критерий Сэвиджа, как и критерий Вальда, ориентирован на выбор в качестве лучшей альтернативы так называемого пессимистического варианта.

Примеры

1. Таблица решений

Из таблицы видно, что предпочтительным является вариант 2.

2. Таблица сожалений

S 1 S 2 S 3
a 1
а 2
а 3

а – действия

S – условия

Выбираем min из max-ма сожалений (а 2).

Критерий Бернулли-Лапласа (недостаточной определенности)

Критерий Бернулли-Лапласа, или критерий недостаточного обоснования, исходит из предположения о равной вероятности ситуаций S j . В соответствии с этим критерием лучшим является вариант a i , для которого среднее значение полезности åU ij /m максимально на множестве рассматриваемых вариантов.

Метод недостаточного обоснования заключается в том, что нет достойного обоснования для оценки каждого сценария.

u(a i)=1/m*∑ e ij

m- минимум ущерба

Пример

Таблица решений

Применяя критерий Бернулли-Лапласа, вычислим значения полезностей исходов каждого варианта в предположении равной вероятности ситуаций. Для первого варианта получим значение 0,603, для второго – 0,687, для третьего – 0,66. Следовательно, лучшим следует признать вариант 2.

Критерий Сэвиджа был предложен Леонард Джимми Сэвиджем в 1954 году.

Суть этого критерия заключается в нахождении минимального риска. При выборе решения по этому критерию сначала матрице функции полезности (эффективности) сопоставляется матрица сожалений

элементы которой отражают убытки от ошибочного действия, т.е. выгоду, упущенную в результате принятия i-го решения в j-м состоянии. Затем по матрице D выбирается решение по пессимистическому критерию Вальда, дающее наименьшее значение максимального сожаления.

Условиями неопределённости считается ситуация, когда последствия принимаемых решений неизвестны, и можно лишь приблизительно их оценить. Для принятия решения используются различные критерии, задача которых - найти наилучшее решение максимизирующее возможную прибыль и минимизирующее возможный убыток.

Критерий заключается в следующем:

  1. Строится матрица стратегий (платёжная матрица). Столбцы соответствуют возможным исходам. Строки соответствуют выбираемым стратегиям. В ячейки записывается ожидаемый результат при данном исходе и при данной выбранной стратегии.
  2. Строится матрица сожаления (матрица рисков). В ячейках матрицы величина сожаления - разница между максимальным результатом при данном исходе (максимальном числе в данном столбце) и результатом при выбранной стратегии. Сожаление показывает величину, теряемую при принятии неверного решения.
  3. Минимаксное решение соответствует стратегии, при которой максимальное сожаление минимально. Для этого для каждой стратегии (в каждой строке) ищут максимальную величину сожаления. И выбирают то решение (строку), максимальное сожаление которого минимально.

Для нашего примера отыскиваем матрицу D, вычитая (-121) из первого столбца матрицы полезности, 62 из второго и т.д.

Наибольшее значение среди минимальных элементов строк здесь равно max [-405.75, -270.5, -135.25, -143.25] = -135.25 млн.руб. и, покупая 40 станков, мы уверены, что в худшем случае убытки не превысят 135.25 млн.руб.

Таким образом, различные критерии приводят к различным выводам:

1) по критерию Лапласа приобретать 40 станков,

2) по критерию Вальда - 20 станков,

3) по критерию Гурвица - 20 при пессимистическом настроении и 50 в состоянии полного оптимизма,

4) по критерию Сэвиджа - 40 станков.

Возможность выбора критерия дает свободу лицам, принимающим экономические решения, при условии, что они располагают достаточными средствами для постановки подобной задачи. Всякий критерий должен согласовываться с намерениями решающего задачу и соответствовать его характеру, знаниям и убеждениям.

Существует обширная литература по теории игр и статистических решений.



37. Методы принятия инвестиционно-финансовых решений в условиях определенно­сти.

Это самый простой случай: известно количество возможных ситуаций (вариантов) и их исходы. Нужно выбрать один из возможных вариантов. Степень сложности процедуры выбора в данном случае определяется лишь количеством альтернативных вариантов. Рассмотрим две возможные ситуации:

а) Имеется два возможных варианта. В данном случае аналитик должен выбрать (или рекомендовать к выбору) один из двух возможных вариантов. Последовательность действий следующая:

Определяется критерий, по которому будет делаться выбор;

Методом «прямого счета» исчисляются значения критерия для сравниваемых вариантов;

Возможны различные методы решения этой задачи. Как правило, они подразделяются на две группы:

Методы, основанные на дисконтированных оценках;

Методы, основанные на учетных оценках.

Первая группа методов основывается на следующей идее. Денежные доходы, поступающие на предприятие в различные моменты времени, не должны суммироваться непосредственно; можно суммировать лишь элементы приведенного потока. Если обозначить F1,F2,....,Fn коэффициент дисконтирования прогнозируемый денежный поток по годам, то i-й элемент приведенного денежного потока Рi рассчитывается по формуле:

P i = F i / (1+ r) i

где r- коэфициент дисконтирования.

Назначение коэффициента дисконтирования состоит во временной упорядоченности будущих денежных поступлений (доходов) и приведении их к текущему моменту времени. Экономический смысл этого представления в следующем: значимость прогнозируемой величины денежных поступлений через i лет (Fi) с позиции текущего момента будет меньше или равна Pi. Это означает так же, что для инвестора сумма Pi в данный момент времени и сумма Fi через i лет одинаковы по своей ценности. Используя эту формулу, можно приводить в сопоставимый вид оценку будущих доходов, ожидаемых к поступлению в течении ряда лет. В этом случае коэффициент дисконтирования численно равен процентной ставке, устанавливаемой инвестором, т.е. тому относительному размеру дохода, который инвестор хочет или может получить на инвестируемый им капитал.



Итак последовательность действий аналитика такова (расчеты выполняются для каждого альтернативного варианта):

Рассчитывается величина требуемых инвестиций (экспертная оценка), IC;

Устанавливается значение коэффициента дисконтирования, r;

Определяются элементы приведенного потока, Pi;

Рассчитывается чистый приведенный эффект (NPV) по формуле: NPV=E*Pi-IC

Сравниваются значения NPV;

Предпочтение отдается тому варианту, который имеет больший NPV (отрицательное значение NPV свидетельствует об экономической нецелесообразности данного варианта).

Вторая группа методов продолжает использование в расчетах прогнозных значений F. Один из самых простых методов этой группы - расчет срока окупаемости инвестиции.Последовательность действий аналитика в этом случае такова:

Расчитывается величина требуемых инвестиций, IC;

Оценивается прибыль (денежные поступления) по годам, Fi;

Выбирается тот вариант, кумулятивная прибыль по которому за меньшее число лет окупит сделанные инвестиции.

б) Число альтернативных вариантов больше двух. Процедурная сторона анализа существенно усложняется из-за множественности вариантов, техника «прямого счета» в этом случае практически не применима. Наиболее удобный вычислительный аппарат - методы оптимального программирования (в данном случае этот термин означает «планирование»). Этих методов много (линейное, нелинейное, динамическое и пр.), но на практике в экономических исследованиях относительную известность получило лишь линейное программирование. В частности рассмотрим транспортную задачу как пример выбора оптимального варианта из набора альтернативных. Суть задачи состоит в следующем.

Имеется n пунктов производства некоторой продукции (а1,а2,...,аn) и k пунктов ее потребления (b1,b2,....,bk), где ai - объем выпуска продукции i - го пункта производства, bj - объем потребления j - го пункта потребления. Рассматривается наиболее простая, так называемая “закрытая задача ”, когда суммарные объемы производства и потребления равны. Пусть cij - затраты на перевозку единицы продукции. Требуется найти наиболее рациональную схему прикрепления поставщиков к потребителям, минимизирующую суммарные затраты по транспортировке продукции. Очевидно, что число альтернативных вариантов здесь может быть очень большим, что исключает применение метода “ прямого счета ”. Итак необходимо решить следующую задачу:

ΣΣCg Xg→ min

Σ Xg = bj Σ Xg = bj Xg→ 0

Известны различные способы решения этой задачи -распределительный метод потенциалов и др. Как правило для расчетов применяется ЭВМ.

При проведении анализа в условиях определенности могут успешно применяться методы машинной имитации, предполагающие множественные расчеты на ЭВМ. В этом случае строится имитационная модель объекта или процесса (компьютерная программа), содержащая b-е число факторов и переменных, значения которых в разных комбинациях подвергается варьированию. Таким образом машинная имитация - это эксперимент, но не в реальных, а в искусственных условиях. По результатам этого эксперимента отбирается один или несколько вариантов, являющихся базовыми для принятия окончательного решения на основе дополнительных формальных и неформальных критериев.

Глава 2. Принятие решений в условиях неопределенности

2.10.Критерий Сэвиджа

Критерий Сэвиджа несколько отличается от всех остальных, рассматриваемых в данной книге. Оценка альтернатив производится не по исходной матрице, а по так называемой "матрице сожалений" или, как ее еще называют в некоторых источниках, "матрице рисков" .

Для произвольной альтернативы и конкретного состояния природы величина "сожаления" равна разнице между тем, что обеспечивает данная альтернатива, и тем, сколько максимально можно выиграть при данном состоянии. С экономической точки зрения величину "сожаления" можно трактовать как недополученный выигрыш (или упущенную выгоду) по сравнению с максимально возможным при данном состоянии природы.

Рассмотрим, каким образом следует выбирать наилучшую альтернативу, руководствуясь критерием Сэвиджа.

Порядок применения критерия Сэвиджа

1. Для каждого состояния природы j (столбца матрицы) определим максимальное значение выигрыша y j :

y j = max (x ij )

2. Для каждой клетки исходной матрицы X найдем разность между максимальным выигрышем r j для данного состояния природы и исходом в рассматриваемой ячейке x ij :

r ij = y j - x ij

Из полученных значений составим новую матрицу R - "матрицу сожалений" или, как ее еще можно назвать, матрицу недополученных выигрышей.

3. Для каждой альтернативы в новой матрице R найдем наибольший возможный недополученный выигрыш ("максимальное сожаление"). Это и будет являться оценкой данной альтернативы по критерию Сэвиджа S i :

S i = max (r ij ) , j=1..M

4. Оптимальной может быть признана альтернатива с минимальным (!) наибольшим недополученным выигрышем:

Х* = Х k , S k = min (S i ) , i=1..N

Пример применения критерия Сэвиджа

Применим изложенный выше алгоритм действий для принятия решения в условиях задачи из п.2.7 (табл.2.2).

1. Найдем наибольшую возможную величину прибыли для каждого сценария развития региона:

y 1 = max (x 11 , x 21) = max (45, 20) = 45

y 2 = max (x 12 , x 22) = max (25, 60) = 60

y 3 = max (x 13 , x 23) = max (50, 25) = 50

2. Рассчитаем значения "сожалений" для каждого проекта при каждом сценарии (т.е. найдем недополученную прибыль по сравнению с максимально возможной при данном сценарии развития). Составим из полученных значений "матрицу сожалений" (см. табл.2.3).

для проекта Х 1 :

r 11 = y 1 - x 11 = 45 - 45 = 0

r 12 = y 2 - x 12 = 60 - 25 = 35

r 13 = y 3 - x 13 = 50 - 50 = 0

для проекта Х 2 :

r 21 = y 1 - x 21 = 45 - 20 = 25

r 22 = y 2 - x 22 = 60 - 60 = 0

r 23 = y 3 - x 23 = 50 - 25 = 25

Табл.2.3. Матрица сожалений R (для примера).
Альтер-нативы (X i ) Состояния природы (j ) Макс. "сожаление" S i
1 2 3
X 1 0 35 0 35
X 2 20 0 25 25
y j 45 60 50

4. В полученной матрице по каждой строке найдем наибольшую величину "сожаления" для каждого проекта (последний столбец в табл.2.3). Это значение соответствует оценке данной альтернативы по критерию Сэвиджа.