ЗАКАЛКА СТАЛИ В РАЗЛИЧНЫХ СРЕДАХ

Цель работы: оценить действие различных охлаждающих сред на превращение аустенита при закалке путем контроля твердости.

Приборы, материалы, инструменты:

1) электрическая муфельная печь МП-2У;

2) образцы из стали 50;

3) твердомер Роквелла;

4) охлаждающие баки с закалочными средами.

Охлаждение при закалке должно обеспечить получение структуры мартенсита в пределах заданного сечения изделия и не должно вызывать закалочных дефектов – трещин, короблений, остаточных напряжений в поверхностных слоях и т.д. При закалке для переохлаждения аустенита до температуры мартенситного превращения требуется быстрое охлаждение, но не на всем интервале температур, в котором аустенит менее всего устойчив. Выше 650ºС скорость превращения аустенита мала, и поэтому сталь при закалке можно охлаждать в данном интервале медленно, но не настолько, чтобы началось образование Ф+П. Интервал 650 ºС-400 ºС должен быть пройден очень быстро.

В момент погружения изделия в закалочную среду вокруг него образуется пленка перегретого пара; охлаждение происходит через слой этой паровой рубашки, т.е. медленно (пленочное кипение). При определенной температуре паровая рубашка разрывается, жидкость начинает кипеть на поверхности детали, охлаждение происходит быстро (пузырьковое кипение). Третий этап (конвективный теплообмен) начинается, когда жидкость кипеть уже не может. Закалочная среда тем эффективнее, чем шире интервал второго этапа.

Если интенсивность охлаждения воды в середине второго этапа принять за единицу, то для минерального масла она будет равна 0,3; для 10 % раствора NaCl в воде – 3; для 10 %- раствора NaОН в воде – 2,5.

При закалке углеродистой и некоторых низколегированных сталей в качестве охлаждающей среды применяют воду и водные растворы (8-12%-е) NaCl и NaОН. Вода, как охлаждающая среда, имеет недостаток. Высокая скорость охлаждения в области температур мартенситного превращения приводит к образованию закалочных дефектов. Растворы NaCl и NaОН обладают наиболее равномерной охлаждающей способностью; кроме того, щелочная среда не вызывает последующей коррозии остальных деталей. Масло, как закалочная среда, имеет преимущество: небольшую скорость охлаждения в интервале мартенситного превращения, что уменьшает возникновение закалочных дефектов. Недостатком является повышенная воспламеняемость.

Структура закаленной стали – мартенсит – получается при резком охлаждении аустенита при закалке. Рассматривая диаграммы изотермического превращения углеродистой и легированной стали (рис. 21), нетрудно убедиться, что линия начала превращения у легированной стали смещена вправо от оси ординат по сравнению с углеродистой сталью. Следовательно, устойчивость аустенита легированной стали, характеризующаяся расстоянием от оси ординат до точки К перегиба линии начала перлитного и промежуточного превращения, значительно выше, чем у углеродистой стали.

Если на диаграмме изотермического превращения изобразить скорость охлаждения при закалке в различных средах, они будут иметь вид кривых , , . Чем выше скорость охлаждения, тем круче кривая. По диаграмме, имеющей кривые скоростей охлаждения, можно судить о структурных превращениях, протекающих в детали из данной стали при закалке в определенной охлаждающей среде.

Пусть – скорость охлаждения в воде, – в масле, – на спокойном воздухе.

Рассмотрим превращение в стали при закалке. Углеродистая сталь имеет малую устойчивость аустенита. При охлаждении ее в воде кривая скорости охлаждения не пересекает линию начала мартенситного превращения. Аустенитная структура сохраняется полностью до начала мартенситного превращения и структура после окончания охлаждения – мартенсит закалки. При охлаждении ее в масле оказывается, что кривая скорости охлаждения пересекает линию начала превращения в области трооститного превращения, но не уходит за линию конца превращения, а в дальнейшем пересекает линии начала и конца мартенситного превращения. Следовательно, часть переохлажденного аустенита переходит в троостит закалки, а часть сохраняется до области мартенситного превращения, и структура стали после окончания охлаждения состоит из троостита закалки и мартенсита закалки. Это приводит к понижению твердости, и деталь идет в брак.

Если же мы будем охлаждать деталь из этой стали на воздухе, то окажется, что кривая скорости охлаждения пересекает линии начала и конца превращения в области перлитного и сорбитного превращения; структура стали после охлаждения состоит из перлита и сорбита закалки.

Таким образом, для получения структуры мартенсита закалки мы должны так подобрать охлаждающую среду, чтобы кривая скорости охлаждения не пересекла линии перлитного превращения.

Рис. 21. Диаграмма изотермического превращения аустенита
для стали с содержанием 0,8 % углерода.

Предельно низкая скорость охлаждения, кривая которой не пересекает линии перлитного превращения, а касается ее в точке К , называется критической скоростью закалки. Для каждой стали критическая скорость закалки есть величина постоянная, но отличная от критической скорости закалки другой стали. Зависит она от наименьшей устойчивости, т.е. от расстояния от оси ординат до точки К в месте изгиба кривой начала превращения. Критическая скорость закалки – наименьшая скорость охлаждения, достаточная для переохлаждения аустенита до начала мартенситного превращения, и, следовательно, для получения структуры мартенсита закалки. При выборе охлаждающей среды для закалки определенной марки стали подбирают среду, дающую скорость охлаждения несколько выше критической при осуществления закалки стали на полную глубину, определяемую прокаливаемостью стали. Излишне высокая скорость охлаждения нежелательна, так как она сопровождается образованием высоких остаточных напряжений и приводит к короблению детали и даже к образованию трещин.

Если выбранная скорость ниже критической, то это вызывает понижение твердости из-за образования троосто-мартенситной структуры, что нежелательно.

Порядок выполнения работы:

1. Произвести закалку образцов с температуры 820 0 Св воду, масло, 10 % раствор в воде NaCl и на воздухе.

2. Определить твердость образцов после каждого вида обработки.

3. Объяснить полученные результаты, заполнить табл. 5.

4. Составить отчет.

Таблица 5

Таблица зависимости свойств стали от охлаждающей среды



Вопросы для самопроверки:

1. Какие среды применяют для закалки углеродистых, легированных сталей?

2. Как влияет охлаждающая среда на твердость стали?

3. Какая структура получается в результате закалки углеродистой стали в воде, масле, расплавах солей, на воздухе?

Закалкой стали называют такую операцию термической обработки, при которой стальные детали нагревают до температуры, несколько выше критической, выдерживают при этой температуре и затем быстро охлаждают в воде или масле.

Основное назначение закалки - получение стали с высокими твердостью, прочностью, износостойкостью и другими свойствами. Качество закалки зависит от температуры и скорости нагрева, времени выдержки и скорости охлаждения.

Температуру нагрева под закалку для большинства сталей, в том числе и легированных, определяют по положению критических точек А с1 и А с3 . Для углеродистых сталей температуру закалки можно легко установить по диаграмме железо - углерод .

Быстрорежущие, нержавеющие и другие специальные стали закаливают при более высоких температурах нагрева, чем углеродистые и низколегированные конструкционные и инструментальные. Например, для нержавеющей стали марки 4Х13 температура под закалку берется равной 1050 - 1100°С.

Скорость нагрева

Закалочные среды.

Скорость охлаждения стали в зависимости от закалочных сред

Из таблицы видно, что в 10-процентном водном растворе едкого натра или поваренной соли скорость охлаждения стали в области трооститных превращений (600-600°С) в два раза больше скорости охлаждения в пресной воде. В области мартенситных превращений (300-200°С) соленая и пресная вода охлаждают сталь почти одинаково. Это преимущество водных растворов солей используется в практике термической обработки. Однако термисты чаще всего применяют 5-10-процентный раствор поваренной соли, так как он не разъедает сталь и не действует на руки рабочих, как обезжиривающий едкий натр (каустик).

Для закалки инструмента из сталей У10, У12 водные растворы, чтобы уменьшить коробление стальных деталей, обычно подогревают до 30°С.

В отличие от воды закаливающая способность масла мало зависит от температуры, а скорость охлаждения в масле во много раз меньше, чем в воде. Поэтому, чтобы уменьшить напряжение и избежать образования закалочных трещин, для закалки легированных сталей с более низкой теплопроводностью, чем у углеродистых сталей, используют минеральное масло - веретенное № 2 и 3. При отсутствии масла рекомендуется применять горячую воду (80°С).

Для получения стабильных результатов при закалке необходимо пользоваться одним сортом масла, периодически меняя его или освежая.

Следует отметить, что в процессе охлаждения при закалке в воде вокруг деталей образуется проводником тепла, то скорость охлаждения стали резко уменьшается. Кроме того, паровая рубашка ухудшает прокаливаемость стали, приводит к появлению мягких пятен на поверхности закаливаемых деталей, а иногда и трещин. Поэтому опытные термисты обычно закаливают детали в циркулирующей воде, непрерывно перемещая их в вертикальном или горизонтальном направлениях.

Внутренние напряжения.

В процессе термической обработки, вследствие неодновременности превращений и теплового расширения и сжатия, в разных точках обрабатываемой детали возникают внутренние напряжения. Напряжения могут превосходить не только предел упругости или предел текучести, но и сопротивление разрушению. В последнем случае внутренние напряжения образуют трещины или даже разрушают деталь.

Внутренние напряжения могут быть двух видов - термические и структурные. Термические внутренние напряжения возникают вследствие неравномерности, охлаждения поверхности детали и ее внутренних слоев.

Если деталь имеет сплошное сечение, то при любом охлаждении поверхность охлаждается быстрее, а сердцевина - медленнее. В результате во время охлаждения деталь будет иметь разные температуры и разный удельный объем в разных точках по сечению. Эта разность температур будет тем больше, чем больше отличаются скорость охлаждения на поверхности от скорости охлаждения в центре детали.

Стали, легированные хромом, молибденом, вольфрамом, обладают меньшей теплопроводностью, чем углеродистые, и при закалке скорость их охлаждения на поверхности детали и в центре будет весьма большая.

Для уменьшения скорости охлаждения при закалке и снижения напряжений в них такие детали из легированной стали подвергаются медленному охлаждению только в масле или струе воздуха.

Структурные внутренние напряжения, как и термические Напряжения, возникают вследствие неодновременности превращений во время охлаждения металла и вследствие различных структурныхпревращений в разных точках сечения детали.

Так, при охлаждении высокоуглеродистой стали, нагретой выше критической точки, аустенит превращается в мартенсит и эти превращения сопровождаются изменением объема (образование мартенсита всегда увеличивает объем). Поверхностные слои, где превращения заканчиваются рано, охлаждаясь, испытывают растягивающие напряжения от промежуточной зоны, в которой превращения продолжаются. С течением времени превращения охватывают все более глубокие слои в детали и доходят до сердцевины. Но этим превращениям в сердцевине препятствуют наружные остывшие слои. Следовательно, в сердцевине нарастают сжимающие напряжения, а с поверхности растягивающий момент наибольшей разности напряжений всегда опасен, так как часто вызывает появление в металле трещин. Установлено, что трещины вызывают не сжимающие напряжения, а растягивающие.

На величину остаточных напряжений влияет ряд факторов. Наиболее существенными из них являются: свойства стали (прокаливаемость, температура мартенситного превращения, коэффициент линейного расширения), среда и условия охлаждения, а также форма и размер детали.

Способы закалки.

Под способами закалки подразумевают способы охлаждения деталей в закалочном баке и выбор закалочного охлаждения для получения заданной структуры металла. Чем сложнее по форме деталь, тем серьезнее следует подходить к выбору ее охлаждения. Резкие переходы в сечениях деталей, способствуют различных способов закалки, концентрации внутренних напряжений. Поэтому нужно выбирать такой способ закалки, чтобы детали получались с хорошей твердостью, необходимой структурой и без трещин.

Основными способами закалки стали являются: закалка в одном охладителе, в двух средах, струйчатая, с самоотпуском, ступенчатая и изотермическая закалки.

Закалка в одном охладителе -наиболее простой и распространенный способ. Деталь, нагретую до температуры закалки, погружают в закалочную жидкость, где она находится до полного охлаждения. Этот способ используют при закалке несложных деталей, изготовленных из углеродистых и легированных сталей. Детали из углеродистых сталей охлаждаются в воде (за исключением деталей диаметром не более 3-5 мм); а детали из легированных сталей - в масле. Можно использовать такой способ и при механизированной закалке, когда детали автоматически поступают из агрегата в закалочную жидкость.

Для высокоуглеродистых сталей такой способ закалки неприемлем, так как в процессе закалки создаются большие внутренние напряжения. Высокоуглеродистые стали закаливают с подстуживанием, т. е. нагретую деталь перед охлаждением некоторое время выдерживают на воздухе. Это уменьшает внутренние напряжения в деталях и гарантирует их от образования трещин.

Закалка в двух средах, или прерывистая закалка , - это способ, при котором деталь сначала охлаждают в одной закалочной быстроохлаждающей среде - воде, а затем переносят ее в медленноохлаждающую среду - масло. Он применяется при закалке инструмента, изготовленного из высокоуглеродистой стали.

Недостаток прерывистой закалки заключается в том, что трудно установить время пребывания детали в первой охлаждающей жидкости, так как оно очень незначительно (1 сек. на каждые 5-6 мм диаметра или толщины детали). Излишняя выдержка в воде ведет к увеличению коробления и появлению трещин.

Применение прерывистой закалки требует от термиста высокой квалификации и опыта.

Струйчатая закалка осуществляется охлаждением деталей, нагретых до температуры закалки, струей воды. Такой способ применяют для закалки внутренних поверхностей, высадочных штампов, матриц и другого штампового инструмента, у которого рабочая поверхность должна иметь структуру мартенсита.

При струйчатой закалке паровая рубашка не образуется, что обеспечивает более глубокую прокаливаемость, чем при простой закалке в воде. Скорость охлаждения при этом зависит от температуры, напора воды, диаметра и количества отверстий в брызгале и от угла, образованного струей воды с охлаждаемой поверхностью детали.

Закалка с самоотпуском - это способ, заключающийся в том, что детали выдерживают в охлаждающей среде не до полного охлаждения, т. е. в определенный момент охлаждение прекращают, чтобы сохранить в сердцевине детали тепло, необходимое для самоотпуска. Этот момент устанавливается опытным путем, поэтому качество термической обработки будет во многом зависеть от мастерства термиста.

Контроль за температурой отпуска при этом способе закалки осуществляется по цветам побежалости, возникающим на светлой поверхности детали. Появление цветов побежалости при температуре 200-300°С объясняется образованием на поверхности стали тонкой пленки окисла, цвет которого зависит от его толщины. Например, за небольшой промежуток времени при 220°С сталь покрывается слоем окисла, толщиной 400-450 ангстрем, который придает поверхности светло-желтый цвет.

Закалку с самоотпуском применяют только для закалки ударного инструмента - зубил, бородков, кернов и т.. д., так как у такого инструмента твердость должна равномерно и постепенно понижаться (от рабочей части к хвостовой).

Ступенчатая закалка - это такой способ, при котором нагретые детали охлаждают в медленно охлаждающей закалочной среде (например, расплавленная соль, горячее масло), имеющей температуру для данной стали выше мартенситной точки М н. За время короткой выдержки в горячей среде (масле) температура выравнивается, причем это происходит раньше, чем начинается мартенситное превращение. После этого осуществляется окончательное, обычно медленное охлаждение, во время которого деталь закаливается.

Ступенчатая закалка способствует уменьшению внутренних напряжений, происходящих благодаря незначительной скорости охлаждения. В результате уменьшается деформация деталей и почти полностью исключается возможность появления закалочных трещин.

Ступенчатую закалку широко применяют в массовом производстве, особенно при изготовлении инструмента. Она позволяет править и рихтовать детали в горячем состоянии, так как в момент превращения сталь обладает большой пластичностью.

Для ступенчатой закалки целесообразнее всего использовать глубоко прокаливающиеся углеродистые и легированные стали марок 9ХС, ХГ, ХВГ и др.

Изотермическая закалка - это способ, состоящий в нагреве деталей до заданной температуры и охлаждении в изотермической среде до 220-350°С, что несколько превышает температуру начала мартенситного превращения.

Выдержка деталей в закалочной среде при такой закалке должна быть достаточной для полного превращения аустенита в игольчатый троостит. После этого производится охлаждение на воздухе. При изотермической закалке выдержка при температуре ступеньки значительно больше, чем при ступенчатой закалке.

Закалочные среды для изотермической закалки те же, что и для ступенчатой. После изотермической закалки сталь приобретает высокую твердость и более высокую вязкость.

При изотермической закалке необходима достаточно высокая и равномерная скорость охлаждения, что достигается применением ванн с интенсивно перемешивающейся закалочной средой.

Изотермическую закалку используют при термической обработке, когда нужно получить детали с максимальной прочностью, достаточной пластичностью и вязкостью. Наиболее целесообразно применять изотермическую закалку для тех сталей, которые имеют небольшую устойчивость аустенита в области изотермической выдержки.

Дефекты, возникающие при закалке. В процессе закалки при охлаждении стали в результате структурных превращений и изменения объема металла появляются внутренние напряжения. Эти напряжения приводят к следующим дефектам: образованию трещин, деформации и короблению, изменению объема стали, обезуглероживанию и окислению, появлению мягких пятен, низкой твердости и перегреву.

Закалочные трещины - это неисправимый брак, образующийся в процессе термической обработки. В крупных деталях, например в матрицах и ковочных штампах, закалочные трещины могут появляться даже при закалке в масле. Поэтому такие детали целесообразно охлаждать до 150-200°С с быстрым последующим отпуском.

Трещины возникают при неправильном нагреве (перегреве), большой скорости охлаждения и при несоответствии химического состава стали.

Закалочные трещины возникают также при неправильной конструкции деталей, резких переходах, грубых рисках, оставшихся после механической обработки, острых углах, тонких стенках и т. д.

Закалочные трещины образуются чаще всего при слишком резком охлаждении или нагреве в результате возникающих в деталях внутренних напряжений. Это часто наблюдается при закалке легированных сталей. Поэтому детали из этих сталей нагревают медленнее, чем из углеродистых, и более равномерно.

Закалочные трещины обычно располагаются в углах деталей и имеют дугообразный или извилистый вид.

В заводской практике часто встречаются поверхностные трещины, которые обычно располагаются в виде сплошной или разорванной сетки. Такие трещины возникают в процессе поверхностной закалки при нагреве токами высокой частоты или газопламенной закалки, когда охлаждение ведется слишком холодной водой, а также при перегреве металла.

Поверхностные трещины могут возникать не только в процессе термообработки, но и при шлифовании закаленных деталей, если они были неправильно отпущены.

Равномерный отпуск после закалки и правильные режимы шлифования полностью устраняют возникновение трещин.

Во избежание бравсе участки (части) деталей, на которыхобычно появляются трещины, обматывают асбестовым шнуром и замазывают огнеупорной глиной. Строгое выполнение технологических режимов закалки может сократить количество бракованных деталей до минимума.

Деформация и коробление деталей происходят в результате неравномерных структурных и связанных с ними объемных превращений и возникновения внутренних напряжений при охлаждении.

При закалке стали, коробление во многих случаях происходит и без значительных объемных изменений, в результате неравномерного нагрева и охлаждения деталей. Если, например, деталь небольшого сечения и большой длины нагревать только с одной стороны, то она изгибается, нагретая сторона при этом удлиняется благодаря тепловому расширению и становится выпуклой, а противоположная - вогнутой. При одностороннем охлаждении в процессе закалки (особенно в воде) быстро охлажденная сторона детали за счет теплового сжатия станет вогнутой, а обратная сторона - выпуклой. Следовательно, нагревать и охлаждать детали при закалке следует равномерно.

На деформацию особенно большое влияние оказывает способ охлаждения. Поэтому при погружении деталей и инструмента в закалочную среду надо учитывать их форму и размеры. Например, детали, имеющие толстые и тонкие части, погружают в закалочную среду сначала толстой частью, длинные осевые детали (ходовые винты, штоки, протяжки, сверла, метчики и т. д.) - в строго вертикальном положении, а тонкие плоские детали (диски, отрезные фрезы, пластинки и др.) - ребром.

Очень большое значение для уменьшения деформаций и коробления деталей имеют правильно выбранные и изготовленные приспособления.

При газовой цементации и нитроцементации зубчатых колес, шлицевых и шестеренных валиков, поршневых пальцев, крестовин и других деталей простой и сложной конфигурации применяются специальные и универсальные приспособления.

Для цементации рессорных пальцев используются приспособления с отверстиями.

Шестеренные валики обычно подвергаются химико-термической обработке в универсальных приспособлениях.

При массовом производстве для каждой детали изготовляются специальные приспособления. Стоимость их изготовления быстро окупается. При серийном производстве, когда обрабатываются большие партии разнообразных деталей, более экономично иметь универсальные приспособления.

Приспособления изготовляются литые и сварные из жароупорного сплава Х18Н25С2.

Многие детали - зубчатые колеса, диски, плиты во избежание коробления закаливаются в специальных прессах в штампах.

Обезуглероживание происходит в основном при нагреве в электрических печах и жидких средах (соляных ваннах). Обезуглероживание инструмента - самый серьезный дефект при закалке, так как он в несколько раз снижает стойкость инструмента. Однако заметить такой дефект на готовом инструменте трудно.

На деталях из конструкционных сталей окисление и обезуглероживание легко обнаружить при изготовлении микрошлифа.

Мягкие пятна - это участки на поверхности детали или инструмента с пониженной твердостью. Причинами такого дефекта могут быть наличие на поверхности деталей окалины и загрязнений, вызванных соприкосновением деталей друг с другом в процессе охлаждения в закалочной среде, участки с обезуглероженной поверхностью или недостаточно быстрое движение деталей в закалочной среде (паровая рубашка). Мягкие пятна полностью устраняются при струйчатой закалке и в подсоленной воде.

Низкая твердость чаще всего наблюдается при закалке инструмента. Причинами низкой твердости являются недостаточно быстрое охлаждение в закалочной среде, низкая температура закалки, а также малая выдержка при нагреве под закалку. Чтобы исправить этот дефект, детали или инструмент сначала подвергают высокому отпуску при температуре 600-625°С, а затем - нормальной закалке.

Перегрев при закалке вызывает крупнозернистую структуру с блестящим изломом и, следовательно, ухудшает механические свойства стали. Для измельчения зерна и подготовки структуры для повторной закалки перегретую сталь необходимо подвергать отжигу.

Недогрев получается в том случае, если температура закалки была ниже критической точки А С3 -для доэвтектоидных сталей и А с - заэвтектоидных сталей.

При недогреве структура закаленной стали состоит из мартенсита и зерен феррита, который, как известно, имеет низкую твердость.

Недогрев можно исправить отжигом с последующей нормальной закалкой.

Быстрорежущие, нержавеющие и другие специальные стали закаливают при более высоких температурах нагрева, чем углеродистые и малолегированные конструкционные и инструментальные. Например, для нержавеющей стали марки 4Х13 температура под закалку берется равной 1050 - 1100°С.

Быстрорежущую сталь Р18 закаливают при температуре 1260 - 1280°С (для инструмента диаметром 10 - 15 мм - сверл, разверток и т. д.) и 1280 - 1300°С (для инструмента простой формы - резцов). Такая высокая температура нагрева под закалку быстрорежущей стали необходима для того, чтобы полнее растворить избыточные карбиды и больше перевести их в твердый раствор хрома, вольфрама, ванадия и других легирующих элементов, входящих в состав стали.

Скорость нагрева . Нагрев стали определяется не только допустимой, но и возможно скоростью нагрева. Допустимая скорость должна быть такой, чтобы нагрев не вызывал больших напряжений, приводящих к образованию трещин в деталях.

Скорость нагрева зависит от формы детелей, типа нагревательных печей и нагревательной среды. Напрмер, шар нагревается в три раза, а цилиндр - в два раза медленнее, чем пластинка. С увеличением скорости нагрева производительность нагревательных печей и агрегатов тоже повышается.

Скорость нагрева зависит также от расположения деталей в печи. Если детали плотно распологаютя одна к другой и мешают необходимому доступу тепла, то потребуется больше времени для их прогрева.

Для расчета времени нагрева деталей термисты обычно пользуются технологическими картами.

В технологическую карту входит перечень всех операций обработки детали или группы деталей с указанием подробных данных по этим операциям (температура, время выдержки, среда и температура охлаждения и применяемые приспособления).

Среднее время нагрева деталей из углеродистых сталей под закалку в различных средах.

Время нагрева деталей под закалку в различных средах

Для проведения любого теплового процесса термической обработки нужно не только нагревать металл до заданной температуры, но и выдерживать при этой температуре до полных структурных превращений (растворения карбидов, гомогенизации аустенита) и полного прогрева деталей. Таким образом, общее время пребывания деталей в нагревательной среде состоит из времени нагрева и времени выдержки.

Закалочные среды. Для охлаждения стальных деталей при закалке обычно применяют различные закалочные среды: воду, водные растворы солей, расплавленные соли, минеральные масла и т. д. Закалочные среды резко отличаются друг от друга по своим физическим свойствам, т. е. они с разной интенсивностью отнимают тепло от нагретых под закалку деталей.

Наилучшей закалочной средой считается та, которая быстро охлаждает сталь в интервале температур 650-500°С (область наименьшей устойчивости аустенита) и медленно - ниже 300-200°С (область мартенситного превращения). Однако единой, универсальной закалочной среды пока еще нет, поэтому на практике пользуются различными средами.

Охлаждение – заключительный этап термической обработки-закалки и поэтому наиболее важный. От скорости охлаждения зависит образование структуры, а значит, и свойства образца.

Если раньше переменным фактором была температура нагрева под закалку, то теперь скорость охлаждения будет разная (в воде, в соленой воде, на воздухе, в масле и с печью).

С увеличением скорости охлаждения растет и степень переохлаждения аустенита, понижается температура распада аустенита, число зародышей увеличивается, но вместе с тем замедляется диффузия углерода. Поэтому феррито-цементитная смесь становится более дисперсной, а твердость и прочность повышаются. При медленном охлаждении (с печью) получается грубая смесь Ф+Ц, т.е. перлит, это отжиг второго рода, с фазовой перекристаллизацией. При ускоренном охлаждении (на воздухе) – более тонкая смесь Ф+Ц – сорбит. Такая обработка называется нормализацией.

Закалка в масле дает тростит – высокодисперсную смесь Ф+Ц.

Твердость этих структур растет с дисперсностью смеси (НВ=2000÷4000 МПа). Эти структуры можно получить и способом изотермической закалки.

Рассматривая термокинетическую диаграмму, т.е. диаграмму изотермического распада аустенита вместе с векторами скоростей охлаждения, видим, что увеличивая скорость охлаждения, можно получить тростит вместе с мартенситом закалки. Если скорость охлаждения больше критической, получим мартенсит закалки и остаточный аустенит, избавиться от которого можно, если охладить сталь до температуры ниже линии окончания мартенситного превращения (М к).

У мартенсита объем больше, чем у аустенита, поэтому при закалке на мартенсит появляются не только термические, но и структурные напряжения. Форма детали может исказиться, в ней могут появиться микро- и макротрещины. Коробление и трещины неисправимый брак, поэтому сразу же после закалки на мартенсит следует производить нагрев детали для снятия напряжений и стабилизации структуры, такая операция термической обработки называется отпуском.

После закалки образцов, изучения микроструктур и определения твердости строятся графики зависимости твердости от содержания углерода. Чем больше углерода в аустените стали перед закалкой, тем более искаженной получается решетка мартенсита (с большей степенью тетрагональности) и поэтому выше твердость

Сталь с содержанием 0,2%С не принимает закалку, так как кривые изотермического распада аустенита вплотную приближаются к оси ординат. Даже очень большая скорость охлаждения не дает мартенсита, так как аустенит начнет раньше распадаться на смесь Ф+Ц. Поэтому сталь закаливают, если углерода более 0,3%С, поскольку углерод сдвигает вправо кривые изотермического распада аустенита, уменьшая тем самым критическую скорость закалки.

Определение свойств и структуры стали после отпуска

Полученный после закалки мартенсит обладает большой твердостью и прочностью, но низкой пластичностью и вязкостью. Это объясняется большими внутренними напряжениями, которые бывают термическими (перепад температуры, резкое охлаждение) и структурными (объем мартенсита больше, чем аустенита, сорбита, тростита и перлита). После закалки необходимо сразу производить отпуск, т.е. нагрев до определенных температур, выдержку и охлаждение. При этом снижаются напряжения, меняется структура и свойства стали. Температура отпуска выбирается ниже А с 1 ,чтобы сохранить эффект упрочнения при закалке. Различаются низкий отпуск (150-200 0 С), средний (350-450 0 С) и высокий (500-650 0 С).

Если при низком отпуске снижаются напряжения, уменьшается искаженность (тетрагональность) решетки мартенсита и она снова становится кубической, остаточной аустенит переходит в мартенсит кубический, то при среднем и высоком отпуске происходит распад мартенсита на смесь Ф+Ц.

После низкого отпуска твердость и прочность остаются на высоком уровне (НRC 58-63). Режущий и измерительный инструмент, детали после химико-термической обработки (цементации) подвергают низкому отпуску.

1. Определение наилучшей температуры закалки для стали с содержанием 0,4% углерода – доэвтектоидная сталь – и с содержанием 1,0% углерода – заэвтектоидная сталь.

Таблица 2.1

Протокол испытаний на твердость после закалки в воду

Рис. 2.1 График зависимости твердости стали от Т о закалки и % сод. углерода

2.Определение наилучшей скорости охлаждения стали с содержанием углерода 0,4%.

Скорости охлаждения в разных средах (перевод в lg координаты)

V печь =1 0 С/с; lg1=0;

V воздух =15 0 С/с; lg15=1,2;

V масло =150 0 С/с; lg150=2,2;

V вода =600 0 C/c; lg600=2,8;

V солен..вода =1000 0 С; lg1000=3.

Таблица 2.2

Протокол испытаний твердости после охлаждения

в различных средах. Схема микроструктур


НВ

Рис. 2.2 График зависимости твердости

от скорости охлаждения в разных средах

3.Определение структуры и твердости стали с содержанием углерода 0,4% от темп. отпуска, после закалки в воде с температуры 840 0 С.

Таблица 2.3

Схемы структур и твердость


НВ

t 0 C отпуска

Рис. 2.3 График зависимости твердости

от температуры отпуска стали

Лабораторная работа №3

Изучение конструкции и определение геометрических параметров токарных резцов.

Развитие техники привело к необходимости изготовления более точных поверхностей сопряженных деталей с минимальной шероховатостью. Эти требования могут быть выполнены только обработкой резанием, несмотря на прогресс в литейном производстве, обработке давлением, сварке и наплавке, получении все более точных заготовок. Чаще всего заключительной операцией технологического процесса изготовления или ремонта детали является резание с помощью металлорежущих инструментов. Общим для всех инструментов является клин - заостренная рабочая часть - непосредственно отделяющий слой металла. Другая часть инструмента - это державка, хвостовик, связка, с помощью которых инструмент закрепляется в резцедержателе, патроне, на валу и Т.П.

Токарный резец наиболее показателен как в отношении конструкции, так и по своей геометрии. К геометрическим параметрам токарного проходного резца относятся поверхности - передняя, главная и вспомогательная задние, главная и вспомогательная режущие кромки, вершина резца. Резец затачивают под определенными углами, расположенными в прямоугольной системе координат, где различают плоскости - основную, резания, а также секущие - главную и вспомогательную. На заготовке различают поверхности - обработанную, обрабатываемую и резания.

Углы определяют, когда ось резца перпендикулярна линии центров станка, а вершина резца расположена на этой линии. Геометрия токарного проходного резца соответствует геометрическим параметрам любого другого режущего инструмента и играет роль в достижении необходимого качества обработки. Помимо этого, углы резца влияют на процесс резания и долговечность инструмента.

Резец работает при одновременном воздействии статических и динамических нагрузок, высокой температуры, трения и изнашивания. Поэтому к нему предъявляют требования по прочности при изгибе, растяжении, сжатии, кручении, ударной вязкости, тепло - и износостойкости. Твердость рабочей части резца должна значительно превосходить твердость заготовки. В зависимости от условий работы применяют разные инструментальные материалы - углеродистые и легиpoванныe стали, твердые сплавы на основе карбидов вольфрама, титана и тантала, композиционные на основе нитрида бора, керамические на основе оксида алюминия, а также абразивные - естественные (наждак, алмаз, корунд, кварц) и искусственные (химические соединения - электрокорунд, карбиды бора, кремния, оксид хрома, синтетический алмаз). При конструировании инструментов стали применять механическое крепление цельных двухслойных круглых и многогранных режущих пластин. Поликристаллы алмаза впаивают во вставки и закрепляют их механическим способом в инструментах.

Для закалки доэвтектоидную сталь нагревают на 20-30° выше Ас 3 , а эвтектоидную и заэвтектоидную на 20-30° выше Ас 1 и после выдержки быстро охлаждают. Охлаждение ведут в воде, масле или на воздухе, в зависимости от состава стали. После закалки сталь становится очень твёрдой и хрупкой. Структура закалённой стали состоит из мартенсита и остаточного аустенита. Заэвтектоидную сталь не следует нагревать для закалки выше Ас т, так как такая температура приведёт к перегреву и снизит качество изделия.

При нагреве в печах поверхностный слой изделия покрывается окалиной и обезуглероживается. Этот брак увеличивается с повышением температуры и увеличением продолжительности выдержки в печи.

Для деталей, не подвергающихся шлифованию или имеющих малый припуск для последующей обработки, этот брак неисправим. Мерами предохранения изделия от окалины и обезуглероживания являются: введение в печь специального газа, избегать также закалки в проточной воде и частой смены воды в баке.

В практике заводов, при закалке инструментов из углеродистой стали весьма сложной конфигурации, в качестве закалочной среды успешно применяют 50-процентный раствор каустической соды. Закалочная ванна с таким раствором должна быть оборудована вытяжной вентиляцией, так как пары раствора, образующиеся во время закалки, вредны для организма.

Для закалки легированной стали в основном применяют минеральные масла. Инструмент из углеродистой стали диаметром до 6-7 мм также охлаждают в масле. Как видно из табл. 6, скорость охлаждения в масле в интервале мартен-ситного превращения сравнительно небольшая (20-50° в минуту), что значительно уменьшает склонность к образованию трещин и деформаций. Большим достоинством охлаждения в масле является то, что масло охлаждает с одинаковой скоростью как при температуре 20°, так и при температуре 100-150°. Следует остерегаться попадания воды в масляную ванну, так как наличие воды может вызвать растрескивание инструмента. Закалка в масле, имеющем температуру свыше 100°, гарантирует от появления трещин по этой причине. Недостатком масла как закалочной среды является: выделение при закалке газов, вредных для здоровья, образование налёта на инструменте, способность масла воспламеняться, ухудшение со временем закаливаемой способности масла и др.

В табл. 7 приведены данные о. применяемых маслах для закалки и отпуска стали.

Хорошей средой для охлаждения малолегированной стали и высокоуглеродистой стали небольших сечений является керосин, обладающий большей скоростью охлаждения, чем масло. Однако недостатком керосина является его горючесть. Поэтому необходимо следить, чтобы керосин не нагревался выше 35-38°. Детали, во избежание воспламенения керосина, необходимо опускать в него быстро. Ванна для закалки должна иметь крышку, обеспечивающую полное прекращение доступа воздуха в случае загорания.

Плоские шаблоны, дисковые фрезы и другие плоские изделия толщиной до 1 мм из углеродистой стали и до 3-4 мм из легированной стали можно закаливать между специально оборудованными полыми закалочными плитами, в которых циркулирует вода.

При пользовании сплошными плитами хороший результат даёт смазывание маслом соприкасающихся с закаливаемой деталью поверхностей и передвижение одной плиты относительно другой. Закалочные плиты надо помещать у самой дверки печи, чтобы изделие не успело остыть при переносе его из печи.

Для сталей с устойчивым аустенитом охлаждающей средой может служить воздух, подаваемый компрессором или вентилятором, а также спокойный воздух. При охлаждении воздухом, подаваемым компрессором или вентилятором, особенно в зимнее время, необходимо перед закалкой проверять, чтобы в воздухопроводе не было воды, так как попадание её на изделие может быть причиной появления трещин.

При применении изотермической или ступенчатой закалки в качестве охлаждающей среды пользуются горячим маслом или легкоплавкими солями. Ввиду того, что температура охлаждающей среды должна быть выше 200°, чаще всего применяют расплавленные легкоплавкие соли. В табл. 8 приведены составы солей, применяемых для соляных ванн.

При большом количестве закаливаемого инструмента закалочная ванна должна быть достаточной ёмкости для того, чтобы охлаждающая среда имела незначительные колебания температуры. В случае необходимости расплавленную соль можно охлаждать продувкой сухого воздуха.

Выбор способа закалки зависит от состава стали, сложности изделия и требуемых свойств.

Закалка в одном охладителе, в особенности углеродистых сталей, сопровождается наибольшим процентом брака из-за образования трещин и коробления. Поэтому этим способом закаливают изделия только несложной формы и цементованные.

Закалка более сложных изделий, изготовленных из углеродистых сталей, производится в двух охладителях: вначале в воде, примерно до температуры 150-180°, а затем в масле.

Продолжительность выдержки в воде до переноса в масло определяется калильщиком и для инструмента средних размеров равна примерно 2-5 сек., например, деталь из стали У8А размером 5 х 25 X 180 мм охлаждается в воде 2 сек., после чего переносится в масло. Твёрдость после закалки R c = 61 - 63. Охлаждение этой детали в воде в течение 5-6 сек. давало 50 -70% брака из-за образования трещин.

Для закалки изделий со сквозными и глухими отверстиями в основном применяется струйчатая закалка. Охлаждение производится в струе воды или водяным душем. После потемнения изделие во избежание самоотпуска охлаждается в масле.

При изотермической закалке нагретое изделие охлаждают в масле или расплавленной соли при температуре немного выше точки мартенситного превращения. После полного окончания превращения аустенита, изделия охлаждают на воздухе. В результате изотермической закалки в стали образуется

структура игольчатого тростита и изделие проиобретает твёрдость R 0 = 40-50 в сочетании с высокой вязкостью. При этом способе закалки резко снижаются случаи растрескивания и коробления. В инструментальном деле изотермическая закалка применяется редко из-за низкой твёрдости. В табл. 9 приведено время охлаждения цилиндров в солях с разной температурой.

Для закалки изделий небольших размеров (до 10-12 мм) применяется ступенчатая закалка, отличающаяся от изотермической закалки временем пребывания изделия в охлаждающей среде. При этой закалке изделие находится в охладителе с температурой 220-250° только до выравнивания температуры по всему сечению, после чего охлаждается на воздухе. Во время охлаждения на воздухе происходит превращение аустенита в мартенсит. Изделие после выгрузки из охладителя можно первое время править, что является большим достоинством этого процесса. При размерах изделий свыше 10-12 мм горячая охлаждающая среда не сможет обеспечить быстрого охлаждения и они не закалятся до требуемой твёрдости.

На практике полностью себя оправдал следующий вид ступенчатой закалки:

Нагретое изделие охлаждают в масле или легкоплавкой соли с температурой 150-180 o до выравнивания температуры, а затем на воздухе. Хотя при этом способе править изделие невозможно из-за быстрого образования мартенсита, но по сравнению с обычной закалкой этот способ резко снижает брак из-за образования трещин и коробления. Наблюдениями (проведёнными на заводе «Фрезер») за партией свёрл из стали 9ХС, обработанных по этому способу, установлено, что из 80000 шт. закалённых свёрл 52000 не имели коробления, превышающего припуск на шлифование, а в остальных коробление было незначительное, легко исправимое.

В практике термической обработки инструментов иногда закалку совмещают с отпуском. Такая закалка применяется в основном для ударного инструмента, изготовленного из углеродистой стали, в котором твёрдость должна уменьшаться от рабочей части к хвостовику.

Процесс закалки с самоотпуском следует производить в таком порядке: нагреть инструмент до температуры закалки; опустить рабочую часть в воду до потемнения; вынуть и быстро зачистить рабочую часть наждачной бумагой, напильником и т. п. и при появлении требуемого цвета побежалости охладить инструмент в масле.

Закалка при температуре ниже нуля. Структура легированных и высокоуглеродистых сталей после закалки состоит в основном из мартенсита и некоторого количества неразложившегося остаточного аустенита. Превращение остаточного аустенита в мартенсит происходит при последующем отпуске или в результате естественного старения. В некоторых высоколегированных марках сталей (Х12, Х12М и т. п.) аустенит весьма устойчив и полностью превратить его в мартенсит, даже путём многократных отпусков, не удаётся. Хорошим средством для окончательного разложения аустенита является дополнительное охлаждение закалённых изделий до температур -70-80°. В результате этого процесса повышается твёрдость и стабилизируются размеры. Обработка при температурах ниже нуля впервые была исследована и предложена для внедрения в промышленность советским учёным-металловедом Л. П. Гуляевым.

Технологический процесс этого способа закалки следующий: 1) нагрев изделия до требуемой температуры; 2) закалка в обычном для данной стали охладителе; 3) дополнительное охлаждение до температуры -70-80°; 4) отпуск.

При охлаждении до низких температур возникают дополнительные внутренние напряжения, могущие вызвать появление трещин. Мерами, предупреждающими появление трещин, являются ступенчатая закалка и замедленное охлаждение при температурах ниже нуля. Во избежание появления трещин не следует погружать изделия непосредственно в охладитель, а необходимо предварительно завёртывать их в асбест или пользоваться холодильником с двойными стенками. В качестве охладителя применяют жидкий азот, жидкий кислород и т. п.

Основная масса металла, прокатываемого в горячем со­стоянии, охлаждается на холодильниках или на воздухе в штабелях. Однако некоторые средне- и высокоуглеродистые, низко- и высоколегированные стали и сплавы требу­ют после горячей прокатки регулируемого охлаждения, главным образом замедленного. Это вызвано необходимо­стью предохранить прокат от образования поверхностных и внутренних трещин, а также для того, чтобы снять оста­точные напряжения и получить необходимую структуру и механические свойства металла. В зависимости от состава, предъявляемых требований, склонности к образованию по­роков, связанных с охлаждением, сталь после прокатки охлаждают по различным режимам.

Обычное охлаждение металла производится на воздухе, на стеллажах, на холодильниках. Основное требование при обычном охлаждении - как можно быстрее достичь охлаж­дения стали. Для этой цели прокатанные полосы уклады­вают в один ряд, часто с промежутками между ними.

Некоторые марки стали, например рессорную, которая должна поставляться с определенной твердостью, охлажда­ют на стеллажах таким образом, что полосы, поставлен­ные на ребро и прижатые одна к другой, передвигаются по холодильнику в один ряд по высоте. При охлаждении про­ката с образованием сплошной массы обычно удается получитъ требуемую твердость. При охлаждении полос при поштучной укладке твердость получается более высокой, чем это требуется. Охлаждение сортовой стали проводят на воздухе и на холодильниках.

Конструкция и размеры холодильников должны обеспе­чивать охлаждение прокатываемого металла до 50°С и ниже.

Продолжительность охлаждения полос определяют по формулеМ. Я. Бровмана

T охл = 0,537θ п С т /(F т G п). (84)

где Т охл - время охлаждения, ч; θ п - масса одной поло­сы, кг; С т - теплопроводность металла, Дж/(кг-град); G п - постоянная лучеиспускания ; F т - теплоотводящая поверхность, м 2 .

Заготовки и блюмы легированных сталей охлаждают в штабелях и пакетах на воздухе. В связи с уменьшением скорости охлаждения снижаются напряжения в металле, что исключает возможность появления трещин и, кроме то­го, приводит к уменьшению твердости стали. Последнее об­легчает удаление поверхностных пороков при их вырубке и устраняет опасность возникновения дефектов при огневой закалке.

Замедленный режим охлаждения применяют для креп­ких и легированных флокеночувствительных сталей. Охлаж­дение осуществляют в проходных отапливаемых печах, отапливаемых и неотапливаемых ямах и коробах. Медлен­ное охлаждение начиная с 800-900 °С обеспечивает вы­равнивание температуры по сечению профиля и устраняет внутренние напряжения после прокатки. Для замедленно охлаждаемой стали обычно применяют изотермический ре­жим: выдержка при 600-750 °С, а затем охлаждение на воздухе.

Ускоренный режим охлаждения используют для катан­ки и листа перед сматыванием в бунты и рулоны с целью получения определенной структуры и уменьшения окалинообразовання. Применяют также водяное охлаждение в трубках или на рольгангах. Регулируемое ускоренное охлаждение водой и на воздухе листа и ленты из различ­ных сталей до 700-500 °С перед сматыванием в рулоны осуществляют с целью получения наиболее благоприятной и равномерной структуры. Охлаждение водой высокоуглеродистых и легированных сталей (УД, У12, ШХ15 и др.) производят для превращения образования карбидной сетки.

Быстрый (термоупрочняющий) режим охлаждения обеспечивает закалку с последующим режимом самоотпуска с прокатного нагрева. С этой целью применяют регули­руемые системы быстрого охлаждения водой.