Проведём экскурсию по Чебоксарской ТЭЦ-2, посмотрим, как электричество и тепло вырабатываются:

Напомню, кстати, что труба - самое высокое промышленное сооружение в Чебоксарах. Аж 250 метров!

Начнём с общих вопросов, к которым относится в первую очередь безопасность.
Разумеется, ТЭЦ, как и ГЭС, предприятие режимное, и просто так туда не пускают.
А если уж пустили, хоть даже на экскурсию, то инструктаж по технике безопасности пройти всё равно придётся:

Ну, нам это не в диковинку (как и сама ТЭЦ не в диковинку, я работал там лет 30 назад;)).
Да, ещё одно жёсткое предупреждение, не могу пройти мимо:

Технология

Главным рабочим веществом на всех тепловых электростанциях является, как ни странно, вода.
Потому что она легко превращается в пар и обратно.
Технология у всех одинакова: надо получить пар, который будет вращать турбину. На оси турбины помещается генератор.
В атомных электростанциях вода разогревается за счёт выделения тепла при распаде радиоактивного топлива.
А в тепловых - за счёт сжигания газа, мазута и даже, до недавних пор, угля.

Куда девать отработанный пар? Однако, обратно в воду и снова в котёл!
А куда девать тепло отработанного пара? Да на подогрев воды, поступающей в котёл - для повышения кпд всей установки в целом.
И на подогрев воды в теплосети и водопроводе (горячая вода)!
Так что в отопительный сезон из тепловой станции извлекается двойная польза - электричество и тепло. Соответственно, такое комбинированное производство и называется ТЭЦ (теплоэлектроцентраль).

Но летом всё тепло израсходовать с пользой не удаётся, поэтому пар, вышедший из турбины, охлаждается, превращаясь в воду, в градирнях, после чего вода возвращается в замкнутый производственный цикл. А в тёплых бассейнах градирен ещё и рыбу разводят;)

Чтобы не изнашивались теплосети и котёл, вода проходит специальную подготовку в химическом цехе:

А по всему замкнутому кругу воду гоняют циркуляционные насосы:

Наши котлы могут работать как на газе (жёлтые трубопроводы), так и на мазуте (чёрные). С 1994 работают на газе. Да, котлов у нас 5 штук!
Для горения в горелки необходима подача воздуха (синие трубопроводы).
Вода кипит, и пар (паропроводы красного цвета) проходит через специальные теплообменники - пароперегреватели, которые повышают температуру пара до 565 градусов, а давление, соответственно, до 130 атмосфер. Это вам не скороварка на кухне! Одна маленькая дырочка в паропроводе обернётся большой аварией; тонкая струя перегретого пара режет металл, как масло!

И вот такой пар уже подаётся на турбины (в больших станциях несколько котлов могут работать на общий паровой коллектор, от которого питаются несколько турбин).

В котельном цехе всегда шумно, потому что горение и кипение - весьма бурные процессы.
А сами котлы (ТГМЕ-464) представляют собой грандиозные сооружения высотой с двадцатиэтажный дом, и показать их целиком можно только на панораме из множества кадров:

Ещё один ракурс на подвал:

Пульт управления котла выглядит так:

На дальней стене располагается мнемосхема всего техпроцесса с лампочками, индицирующими состояние задвижек, классические приборы с самописцами на бумажной ленте, табло сигнализации и другие индикаторы.
А на самом пульте классические кнопки и ключи соседствуют с компьютерным дисплеем, где крутится система управления (SCADA). Здесь же есть самые ответственные выключатели, защищённые красными кожухами: "Останов котла" и "Главная паровая задвижка" (ГПЗ):

Турбины

Турбин у нас 4.
Они имеют очень сложную конструкцию, чтобы не пропустить ни малейшего кусочка кинетической энергии перегретого пара.
Но снаружи ничего не видно - всё закрыто глухим кожухом:

Серьёзный защитный кожух необходим - турбина вращается с высокой скоростью 3000 оборотов в минуту. Да ещё по ней проходит перегретый пар (выше говорил, как он опасен!). А паропроводов вокруг турбины множество:

В этих теплообменниках отработанным паром подогревается сетевая вода:

Кстати, на фото у меня самая старая турбина ТЭЦ-2, так что не удивляйтесь брутальному виду устройств, которые будут показаны ниже:

Вот это механизм управления турбиной (МУТ), который регулирует подачу пара и, соответственно, управляет нагрузкой. Его раньше крутили вручную:

А это Стопорный клапан (его надо долго вручную взводить после того, как он сработал):

Малые турбины состоят из одного так называемого цилиндра (набора лопастей), средние - из двух, большие - из трёх (цилиндры высокого, среднего и низкого давления).
С каждого цилиндра пар уходит в промежуточные отборы и направляется в теплообменники - подогреватели воды:

А в хвосте турбины должен быть вакуум - чем он лучше, тем выше кпд турбины:

Вакуум образуется за счёт конденсации остатков пара в конденсационной установке.
Вот мы и прошлись по всему пути воды на ТЭЦ. Обратите внимание также на ту часть пара, которая идёт на подогрев сетевой воды для потребителя (ПСГ):

Ещё один вид с кучей контрольных точек. Не забываем, что контролировать на турбине необходимо кучу давлений и температур не только пара, но и масла в подшипниках каждой её части:

Да, а вот и пульт. Он обычно находится в той же комнате, что и у котлов. Несмотря на то, что сами котлы и турбины стоят в разных помещениях, управление котлотурбинным цехом нельзя разделять на отдельные кусочки - слишком всё связано перегретым паром!

На пульте мы видим пару средних турбин с двумя цилиндрами, кстати.

Автоматизация

В отличие от , процессы на ТЭЦ более быстрые и ответственные (кстати, все помнят слышный во всех краях города громкий шум, похожий на самолётный? Так это изредка срабатывает паровой клапан, стравливая чрезмерное давление пара. Представьте, как это слышится вблизи!).
Поэтому автоматизация здесь пока запаздывает и в основном ограничивается сбором данных. А на пультах управления мы видим сборную солянку различных SCADA и промышленных контроллеров, занимающихся локальным регулированием. Но процесс идёт!

Электричество

Ещё раз посмотрим общий вид турбинного цеха:

Обратите внимание, слева под жёлтым кожухом - электрические генераторы.
Что происходит с электричеством дальше?
Оно отдаётся в федеральные сети через ряд распределительных устройств:

Электрический цех - очень непростое место. Достаточно взглянуть на панораму пульта управления:

Релейная защита и автоматика - наше всё!

На этом обзорную экскурсию можно завершить и всё-таки сказать пару слов про насущные проблемы.

Тепло и коммунальные технологии

Итак, мы выяснили, что ТЭЦ даёт электричество и тепло. И то, и другое, разумеется, поставляется потребителям. Теперь нас, главным образом, будет интересовать тепло.
После перестройки, приватизации и разделения всей единой советской промышленности на отдельные кусочки во многих местах получилось так, что электростанции остались в ведомстве Чубайса, а городские теплосети стали муниципальными. И на них образовался посредник, который берёт деньги за транспортировку тепла. А как эти деньги тратятся на ежегодный ремонт изношенных на 70% теплосетей, вряд ли нужно рассказывать.

Так вот, из-за многомиллионных долгов посредника "НОВЭК" в Новочебоксарске ТГК-5 уже перешла на прямые договора с потребителями.
В Чебоксарах пока этого нет. Более того, чебоксарские «Коммунальные технологии» на сегодня проект развития своих котельных и теплосетей аж на 38 миллиардов (ТГК-5 справилась бы всего за три).

Все эти миллиарды так или иначе будут включены в тарифы на тепло, которые устанавливает городская администрация "из соображений социальной справедливости". Между тем, сейчас себестоимость тепла, вырабатываемого ТЭЦ-2, в 1.5 раза меньше, чем на котельных КТ. И такое положение должно сохраниться и в будущем, потому что чем крупнее электростанция, тем она эффективнее (в частности, меньше эксплуатационных затрат + окупаемость тепла за счёт производства электроэнергии).

А что с точки зрения экологии?
Безусловно, одна большая ТЭЦ с высокой трубой лучше в экологическом плане, чем десяток мелких котельных с маленькими трубами, дым из которых практически останется в городе.
Самым же плохим в смысле экологии является ныне популярное индивидуальное отопление.
Маленькие домашние котлы не обеспечивают такой полноты сгорания топлива, как большие ТЭЦ, да и все выхлопные газы остаются не просто в городе, а буквально над окнами.
Кроме того, мало кто задумывается о повышенной опасности дополнительного газового оборудования, стоящего в каждой квартире.

Какой выход?
Во многих странах при центральном отоплении используются поквартирные регуляторы, которые позволяют экономнее потреблять тепло.
К сожалению, при нынешних аппетитах посредников и изношенности теплосетей преимущества центрального отопления сходят на нет. Но всё-таки, с глобальной точки зрения, индивидуальное отопление более уместно в коттеджах.

Другие посты о промышленности:

ТЭЦ — тепловая электростанция, которая производит не только электроэнергию, но и дает тепло в наши дома зимой. На примере Красноярской ТЭЦ посмотрим как работает почти любая теплоэлектростанция.

В Красноярске есть 3 теплоэлектроцентрали, суммарная электрическая мощность которых всего 1146 МВт (для сравнения, одна только наша Новосибирская ТЭЦ 5 имеет мощность 1200 МВт), но примечательна была для меня именно Красноярская ТЭЦ-3 тем, что станция новая - ещё не прошло и года, как первый и пока единственный энергоблок был аттестован Системным оператором и введён в промышленную эксплуатацию. Поэтому мне удалось поснимать ещё не запылившуюся, красивую станцию и узнать много нового для себя о ТЭЦ.

В этом посте, помимо технической информации о КрасТЭЦ-3, я хочу раскрыть сам принцип работы почти любой теплоэлектроцентрали.

1. Три дымовые трубы, высота самой высокой из них 275 м, вторая по высоте - 180м



Сама аббревиатура ТЭЦ подразумевает собой, что станция вырабатывает не только электричество, но и тепло (горячая вода, отопление), причем, выработка тепла возможно даже более приоритетна в нашей известной суровыми зимами стране.

2. Установленная электрическая мощность Красноярской ТЭЦ-3 208 МВт, а установленная тепловая мощность 631,5 Гкал/ч

Упрощенно принцип работы ТЭЦ можно описать следующим образом:

Всё начинается с топлива. В роли топлива на разных электростанциях могут выступать уголь, газ, торф, горючие сланцы. В нашем случае это бурый уголь марки Б2 с Бородинского разреза, расположенного в 162 км от станции. Уголь привозят по железной дороге. Часть его складируется, другая часть идёт по конвеерам в энергоблок, где сам уголь сначала измельчается до пыли и потом подаётся в камеру сгорания - паровой котёл.

Паровой котёл - это агрегат для получения пара с давлением выше атмосферного из непрерывно поступающей в него питательной воды. Происходит это засчет теплоты, выделяющейся при сгорании топлива. Сам котёл выглядит довольно внушительно. На КрасТЭЦ-3 высота котла 78 метров (26-этажный дом), а весит он более 7000 тонн.

6. Паровой котёл марки Еп-670, произведенный в Таганроге. Производительность котла 670 тонн пара в час

Я позаимствовал с сайта energoworld.ru упрощённую схему парового котла электростанции, чтобы вам было понятно его устройтсво

1 — топочная камера (топка); 2 — горизонтальный газоход; 3 — конвективная шахта; 4 — топочные экраны; 5 — потолочные экраны; 6 — спускные трубы; 7 — барабан; 8 — радиационно-конвективный пароперегреватель; 9 — конвективный пароперегреватель; 10 — водяной экономайзер; 11 — воздухоподогреватель; 12 — дутьевой вентилятор; 13 — нижние коллекторы экранов; 14 — шлаковый комод; 15 — холодная коронка; 16 — горелки. На схеме не показаны золоуловитель и дымосос.

7. Вид сверху

10. Отчётливо виден барабан котла. Барабан представляет собой цилиндрический горизонтальный сосуд, имеющий водяной и паровой объемы, которые разделяются поверхностью, называемой зеркалом испарения.

Благодаря большой паропроизводительности котёл имеет развитые поверхности нагрева, как испарительные, так и пароперегревательные. Топка у него призматическая, четырёхугольная с естественной циркуляцией.

Пара слов о принципе работы котла:

В барабан, проходя экономайзер, попадает питательная вода, по спускным трубам спускается в нижние коллекторы экранов из труб, по этим трубам вода поднимается вверх и, соответственно, нагревается, так как внутри топки горит факел. Вода превращается в паро-водяную смесь, часть её попадает в выносные циклоны и другая часть обратно барабан. И там, и там происходит разделение этой смеси на воду и пар. Пар уходит в пароперегреватели, а вода повторяет свой путь.

11. Остывшие дымовые газы (примерно 130 градусов), выходят из топки в электрофильтры. В электрофильтрах происходит очистка газов от золы, зола удаляется на золоотвал, а очищенные дымовые газы уходят в атмосферу. Эффективная степень очистки дымовых газов составляет 99,7%.
На фотографии те самые электрофильтры.

Проходя через пароперегреватели пар нагревается до температуры 545 градусов и поступает в турбину, где под его давлением вращается ротор турбогенератора и, соответственно, вырабатывается электроэнергия. Следует отметить, что в конденсационных электростанциях (ГРЭС) система обращения воды полностью замкнута. Весь пар, проходя сквозь турбину, охлаждается и конденсируется. Снова превратившись в жидкое состояние, вода используется заново. А в турбинах ТЭЦ не весь пар попадает в конденсатор. Осуществляются отборы пара - производственные (использование горячего пара на каких-либо производствах) и теплофикационные (сеть горячего водоснабжения). Это делает ТЭЦ экономически более выгодной, но у неё есть свои минусы. Недостатком теплоэлектроцентралей является то, что они должны быть построены недалеко от конечного потребителя. Прокладка теплотрасс стоит огромных денег.

12. На Красноярской ТЭЦ-3 используется прямоточная система технического водоснабжения, это позволяет отказаться от использование градирен. То есть воду для охлаждения конденсатора и использования в котле берут прямо из Енисея, но перед этим она проходит очистку и обессоливание. После использования вода возвращается по каналу обратно в Енисей, проходя систему рассеивающего выпуска (перемешивание нагретой воды с холодной, дабы снизить тепловое загрязнение реки)

14. Турбогенератор

Я надеюсь, мне удалось внятно описать принцип работы ТЭЦ. Теперь немного о самой КрасТЭЦ-3.

Строительство станции началось ещё в далёком 1981 году, но, как у нас в России бывает, из-за развалов СССР и кризисов построить ТЭЦ вовремя не получилось. С 1992 г до 2012 г станция работала как котельная - нагревала воду, но электричество вырабатывать научилась только 1-го марта прошлого года.

Красноярская ТЭЦ-3 принадлежит Енисейской ТГК-13. На ТЭЦ работает около 560 человек. В настоящее время Красноярская ТЭЦ-3 обеспечивает теплоснабжение промышленных предприятий и жилищно-коммунального сектора Советского района г. Красноярска - в частности, микрорайоны «Северный», «Взлётка», «Покровский» и «Иннокентьевский».

17.

19. ЦПУ

20. Ещё на КрасТЭЦ-3 функционируют 4 водогрейных котла

21. Глазок в топке

23. А это фото снято с крыши энергоблока. Большая труба имеет высоту 180м, та что поменьше - труба пусковой котельной.

24. Трансформаторы

25. В качестве распределительного устройства на КрасТЭЦ-3 используется закрытое распределительное устройство с элегазовой изоляцией (ЗРУЭ) на 220 кВ.

26. Внутри здания

28. Общий вид распределительного устройства

29. На этом всё. Спасибо за внимание

У этой паровой турбины хорошо видны лопатки рабочих колес.

Тепловая электростанция (ТЭЦ) использует энергию, высвобождающуюся при сжигании органического топлива - угля, нефти и природного газа - для превращения воды в пар высокого давления. Этот пар, имеющий давление около 240 килограммов на квадратный сантиметр и температуру 524°С (1000°F), приводит во вращение турбину. Турбина вращает гигантский магнит внутри генератора, который вырабатывает электроэнергию.

Современные тепловые электростанции превращают в электроэнергию около 40 процентов теплоты, выделившейся при сгорании топлива, остальная сбрасывается в окружающую среду. В Европе многие тепловые электростанции используют отработанную теплоту для отопления близлежащих домов и предприятий. Комбинированная выработка тепла и электроэнергии увеличивает энергетическую отдачу электростанции до 80 процентов.

Паротурбинная установка с электрогенератором

Типичная паровая турбина содержит две группы лопаток. Пар высокого давления, поступающий непосредственно из котла, входит в проточную часть турбины и вращает рабочие колеса с первой группой лопаток. Затем пар подогревается в пароперегревателе и снова поступает в проточную часть турбины, чтобы вращать рабочие колеса с второй группой лопаток, которые работают при более низком давлении пара.

Вид в разрезе

Типичный генератор тепловой электростанции (ТЭЦ) приводится во вращение непосредственно паровой турбиной, которая совершает 3000 оборотов в минуту. В генераторах такого типа магнит, который называют также ротором, вращается, а обмотки (статор) неподвижны. Система охлаждения предупреждает перегрев генератора.

Выработка энергии при помощи пара

На тепловой электростанции топливо сгорает в котле, с образованием высокотемпературного пламени. Вода проходит по трубкам через пламя, нагревается и превращается в пар высокого давления. Пар приводит во вращение турбину, вырабатывая механическую энергию, которую генератор превращает в электричество. Выйдя из турбины, пар поступает в конденсатор, где омывает трубки с холодной проточной водой, и в результате снова превращается в жидкость.

Мазутный, угольный или газовый котел

Внутри котла

Котел заполнен причудливо изогнутыми трубками, по которым проходит нагреваемая вода. Сложная конфигурация трубок позволяет существенно увеличить количество переданной воде теплоты и за счет этого вырабатывать намного больше пара.

Однажды, когда мы въезжали в славный город Чебоксары, с восточного направления моя супруга обратила внимание на две огромные башни, стоящие вдоль шоссе. «А что это такое?» – спросила она. Поскольку мне абсолютно не хотелось показать жене свою неосведомленность, я немного покопался в своей памяти и выдал победное: «Это ж градирни, ты что, не знаешь?». Она немного смутилась: «А для чего они нужны?» «Ну что-то там охлаждать, вроде бы». «А чего?». Потом смутился я, потому что совершенно не знал как выкручиваться дальше.

Может быть этот вопрос так и остался навсегда в памяти без ответа, но чудеса случаются. Через несколько месяцев после этого случая, вижу в своей френдленте пост о наборе блогеров, желающих посетить Чебоксарскую ТЭЦ-2, ту самую, что мы видели с дороги. Приходиться резко менять все свои планы, упустить такой шанс будет непростительно!

Так что же такое ТЭЦ?

Согласно Википедии ТЭЦ – сокращенное от теплоэлектроцентраль – это разновидность тепловой станции, которая производит не только электроэнергию, но и является источником тепла, в виде пара или горячей воды.

О том как все устроено, я расскажу ниже, а здесь можно посмотреть парочку упрощенных схем работы станции.

Итак, все начинается с воды. Поскольку вода (и пар, как её производное) на ТЭЦ является основным теплоносителем, перед тем как она попадет в котел, её необходимо предварительно подготовить. Для того, что бы в котлах не образовывалась накипь, на первом этапе, воду необходимо умягчить, а на втором, очистить её от всевозможных примесей и включений.

Происходит все это на территории химического цеха, в котором расположены все эти емкости и сосуды.

Вода перекачивается огромными насосами.

Работа цеха контролируется отсюда.

Вокруг много кнопочек…

Датчиков…

А также совсем непонятных элементов…

Качество воды проверяется в лаборатории. Здесь все по-серьезному…

Полученную здесь воду, в дальнейшем мы будем называть «Чистой водой».

Итак, с водой разобрались, теперь нам нужно топливо. Обычно это газ, мазут или уголь. На Чебоксарской ТЭЦ-2 основным видом топлива является газ, поступающий по магистральному газопроводу Уренгой – Помары – Ужгород. На многих станциях существует пункт подготовки топлива. Здесь природный газ, так же как и вода очищается от механических примесей, сероводорода и углекислого газа.

ТЭЦ – объект стратегический, работающий 24 часа в сутки и 365 дней в году. Поэтому здесь везде, и на всё, есть резерв. Топливо не является исключением. В случае отсутствия природного газа, наша станция может работать на мазуте, который хранится в огромных емкостях, расположенных через дорогу.

Теперь мы получили Чистую воду и подготовленное топливо. Следующий пункт нашего путешествия – котлотурбинный цех.

Состоит он из двух отделений. В первом находятся котлы. Нет, не так. В первом находятся КОТЛЫ. По другому написать, рука не поднимается, каждый, с двенадцатиэтажный дом. Всего на ТЭЦ-2 их пять штук.

Это сердце ТЭЦ, и здесь происходит основное действие. Газ, поступающий в котел, сгорает, выделяя сумасшедшее количество энергии. Сюда же подается «Чистая вода». После нагрева она превращается в пар, точнее в перегретый пар, имеющий температуру на выходе 560 градусов, а давление 140 атмосфер. Мы тоже назовем его «Чистый пар», потому что он образован из подготовленной воды.

Кроме пара, на выходе мы еще имеем выхлоп. На максимальной мощности, все пять котлов потребляют почти 60 кубометров природного газа в секунду! Чтобы вывести продукты сгорания, нужна недетская «дымовая» труба. И такая тоже имеется.

Трубу видно практически из любого района города, учитывая высоту 250 метров. Подозреваю, что это самое высокое строение в Чебоксарах.

Рядом находится труба чуть поменьше. Снова резерв.

Если ТЭЦ работает на угле, необходима дополнительная очистка выхлопа. Но в нашем случае этого не требуется, так как в качестве топлива используется природный газ.

В втором отделении котлотурбинного цеха находятся установки, вырабатывающие электроэнергию.

В машинном зале Чебоксарской ТЭЦ-2 их установлено четыре штуки, общей мощностью 460 МВт (мегаватт). Именно сюда подается перегретый пар из котельного отделения. Он, под огромным давлением направляется на лопатки турбины, заставляя вращаться тридцатитонный ротор, со скоростью 3000 оборотов в минуту.

Установка состоит из двух частей: собственно сама турбина, и генератор, вырабатывающий электроэнергию.

А вот как выглядит ротор турбины.

Повсюду датчики и манометры.

И турбины, и котлы, в случае аварийной ситуации можно остановить мгновенно. Для этого существуют специальные клапаны, способные перекрыть подачу пара или топлива за какие-то доли секунды.

Интересно, а есть такое понятие как промышленный пейзаж, или промышленный портрет? Здесь есть своя красота.

В помещении стоит страшный шум, и чтобы расслышать соседа приходиться сильно напрягать слух. К тому же очень жарко. Хочется снять каску и раздеться до футболки, но делать этого нельзя. По технике безопасности, одежда с коротким рукавом на ТЭЦ запрещена, слишком много горячих труб.

Основную часть времени цех пустой, люди здесь появляются один раз в два часа, во время обхода. А управление работой оборудования ведется с ГрЩУ (Групповые щиты управления котлами и турбинами).

Вот так выглядит рабочее место дежурного.

Вокруг сотни кнопок.

И десятки датчиков.

Есть механические, есть электронные.

Это у нас экскурсия, а люди работают.

Итого, после котлотурбинного цеха, на выходе мы имеем электроэнергию и частично остывший и потерявший часть давления пар. С электричеством вроде бы попроще. На выходе с разных генераторов напряжение может быть от 10 до 18 кВ (киловольт). С помощью блочных трансформаторов оно повышается до 110 кВ, а дальше электроэнергию можно передавать на большие расстояния с помощью ЛЭП (линий электропередач).

Оставшийся «Чистый пар» отпускать на сторону невыгодно. Так как он образован из «Чистой воды», производство которой довольно сложный и затратный процесс, его целесообразней охладить и вернуть обратно в котел. И так по замкнутому кругу. Зато с его помощью и с помощью теплообменников можно нагреть воду или произвести вторичный пар, которые спокойно продавать сторонним потребителям.

В общем-то именно таким образом мы с вами получаем тепло и электричество в свои дома, имея привычный комфорт и уют.

Ах, да. А для чего же все-таки нужны градирни?

Теплоэлектроцентраль (ТЭЦ)

Наибольшее распространение ТЭЦ получили в СССР. Первые теплопроводы были проложены от электростанций Ленинграда и Москвы (1924, 1928). С 30-х гг. началось проектирование и строительство ТЭЦ мощностью 100-200 Мвт. К концу 1940 мощность всех действующих ТЭЦ достигла 2 Гвт, годовой отпуск тепла - 10 8 Гдж, а протяжённость тепловых сетей (См. Тепловая сеть) - 650 км. В середине 70-х гг. суммарная электрическая мощность ТЭЦ составляет около 60 Гвт (при общей мощности электростанций Теплоэлектроцентраль 220 и тепловых электростанций Теплоэлектроцентраль 180 Гвт ). Годовая выработка электроэнергии на ТЭЦ достигает 330 млрд. квт․ч, отпуск тепла - 4․10 9 Гдж; мощность отдельных новых ТЭЦ - 1,5-1,6 Гвт при часовом отпуске тепла до (1,6-2,0)․10 4 Гдж; удельная выработка электроэнергии при отпуске 1 Гдж тепла - 150-160 квт․ч. Удельный расход условного топлива на производство 1 квт․ч электроэнергии составляет в среднем 290 г (тогда как на ГРЭС - 370 г ); наименьший среднегодовой удельный расход условного топлива на ТЭЦ около 200 г/квт․ч (на лучших ГРЭС - около 300 г/квт․ч ). Такой пониженный (по сравнению с ГРЭС) удельный расход топлива объясняется комбинированным производством энергии двух видов с использованием тепла отработавшего пара. В СССР ТЭЦ дают экономию до 25 млн. т условного топлива в год (Теплоэлектроцентраль 11% всего топлива, идущего на производство электроэнергии).

ТЭЦ - основное производственное звено в системе централизованного теплоснабжения. Строительство ТЭЦ - одно из основных направлений развития энергетического хозяйства в СССР и др. социалистических странах. В капиталистических странах ТЭЦ имеют ограниченное распространение (в основном промышленные ТЭЦ).

Лит.: Соколов Е. Я., Теплофикация и тепловые сети, М., 1975; Рыжкин В. Я., Тепловые электрические станции, М., 1976.

В. Я. Рыжкин.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Теплоэлектроцентраль" в других словарях:

    - (ТЭЦ), паротурбинная тепловая электростанция, вырабатывающая и отпускающая потребителям одновременно 2 вида энергии: электрическую и тепловую (в виде горячей воды, пара). В России мощность отдельных ТЭЦ достигает 1,5 1,6 ГВт при часовом отпуске… … Современная энциклопедия

    - (ТЭЦ теплофикационная электростанция), тепловая электростанция, вырабатывающая не только электрическую энергию, но и тепло, отпускаемое потребителям в виде пара и горячей воды … Большой Энциклопедический словарь

    ТЕПЛОЭЛЕКТРОЦЕНТРАЛЬ, и, жен. Тепловая электростанция, вырабатывающая электроэнергию и тепло (горячую воду, пар) (ТЭЦ). Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова Большая политехническая энциклопедия

    ТЭЦ 26 (Южная ТЭЦ) в Москве … Википедия