Ахроматическая линза

Ахромати́ческая ли́нза (ахрома́т) - сложная линза , состоящая из рассеивающей и собирающей линз, чаще всего склеенных между собой оптическим клеем (например канадский бальзам , бальзамин и прочие). Склеивание никак не влияет на ахроматические свойства, однако позволяет уменьшить переотражения от поверхностей линз , снизить требования к точности изготовления склеиваемых поверхностей и облегчить последующий монтаж. Линзы больших диаметров, как правило, не склеивают.

Особенности конструкции

При этом нет принципиальной разницы, в каком порядке будут стоять линзы - возможны комбинации, когда рассеивающая (флинтовая) стоит "впереди" собирающей (кроновой). Такой вариант был предложен Томасом Груббом (Thomas Grubb) в 1857 г. Возможны и трёхлинзовые комбинации. Например, ахромат Питера Доллонда (Peter Dollond), где отрицательная флинтовая линза заключена между двумя положительными кроновыми .

В общем случае линзы подбираются так, что для каких-либо двух длин волн света полностью, а для остальных значительно устранён хроматизм положения .

Для общего случая, условием ахроматизации двухлинзового объектива (или компонента) будет равенство отношений оптических сил и коэффициентов дисперсии отдельных линз:

Выбор длин волн, подлежащих ахроматизации, определяется назначением объектива. Так, для систем визуального наблюдения „соединяют“ красный C (λ=656,3nm) и голубой F (λ=486.1nm) лучи. Это так называемая „визуальная“ коррекция.

„Фотовизуальную“ же коррекцию применяют в объективах для фотографирования с визуальной фокусировкой („старые“ фото- и некоторые астрономические объективы), „соединяя“ жёлтый D (λ= 589,3nm) и синий G" (λ=434,1nm) лучи.

Современные фотообъективы, как правило, ахроматизируют от синей (G") до красной (C) области спектра .

"Новые" ("аномальные") ахроматы

Примерно к 70-м годам XIX в., благодаря работам Эрнста Аббе (Ernst Abbe) и Отто Шотта (Otto Schott), появились оптические стёкла кронового типа с высоким показателем преломления.

Это привело к созданию так называемых „новых“ (или „аномальных“) ахроматов. В таком „новом“ („аномальном“) ахромате показатель преломления кронового стекла выше, чем флинтового . В то время, как у „старого“ (или „нормального“) - наоборот, выше показатель преломления флинта, чем крона. Это позволило уменьшить крутизну радиусов поверхностей „новых“ ахроматов по сравнению со „старыми“ (при одинаковой оптической силе), что, в свою очередь, значительно облегчило коррекцию сферической аберрации .

К тому же у аномальных ахроматов ме́ньшие значения имеет сумма Пецваля, характеризующая кривизну поля изображения . А это немаловажно для оптических систем широких полей зрения (например, фотообъективов).

"Ландшафтная (пейзажная) линза"

Схема „ландшафтного“ объектива Шевалье.

В 1839 г. ахроматический мениск был предложен французским оптиком Шарлем Шевалье (Charles Chevalier) в качестве фотографического объектива.

Имея такую же компоновку, как и монокль Уолластона , этот объектив обладал достаточно исправленным астигматизмом и сравнительно плоским полем изображения. Однако, невысокая светосила (F: 15), учитывая низкую светочувствительность фотоматериалов того времени, ограничивала область применения такого объектива исключительно пейзажными съёмками. Этим и обусловлено такое его название, как „ландша́фтная ли́нза“ („Lentille à paysage“).

См. также

Литература

  • Волосов Д.С. Фотографическая оптика. М., «Искусство», 1971.
  • Слюсарёв Г.Г. Расчёт оптических систем. Л., «Машиностроение», 1975.
  • R. Kingslake. A History of Photographic Lens, Academy Press, 1989
  • Яштолд-Говорко В. А. Фотосъёмка и обработка. Съёмка, формулы, термины, рецепты. Изд. 4-е, сокр. М., «Искусство», 1977.

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.

Wikimedia Foundation . 2010 .

Смотреть что такое "Ахроматическая линза" в других словарях:

    АХРОМАТИЧЕСКАЯ ЛИНЗА, линза, предназначенная для сокращения или устранения хроматической АБЕРРАЦИИ. Хроматическая аберрация происходит в простой линзе оттого, что компоненты белого цвета, имеющие различную длину волны (цвета) не попадают в один и … Научно-технический энциклопедический словарь

    ахроматическая линза - achromatinis lęšis statusas T sritis Standartizacija ir metrologija apibrėžtis Lęšių sistema, kurios dviejų bangų ilgių, t. y. raudonos ir mėlynos spalvos, vaizdai yra tame pačiame optinės ašies taške. Sistemą sudaro iš skirtingo stiklo padaryti… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    ахроматическая линза - achromatinis lęšis statusas T sritis fizika atitikmenys: angl. achromatic lens vok. achromatische Linse, f rus. ахроматическая линза, f pranc. lentille achromatique, f … Fizikos terminų žodynas

    35mm / DOF (Depth of field) адаптер используется для достижения малой глубины резкости при съемке на видеокамеры, возможности которых не позволяют достичь этого из за размера матрицы видеокамеры. DOF адаптер также позволяет устанавливать на… … Википедия

    - (от греч. achromatos бесцветный), ахроматическая линза, ландшафтная линза, линзовая оптич. система с исправленной хроматнч, аберрацией (см. Аберрации оптических систем) для двух цветов (см. рис.). Ахромат. Тонкими линиями показан ход лучей: 1 в… … Большой энциклопедический политехнический словарь

    - Для термина «Аберрация» см. другие значения. Аберрация оптической системы ошибка или погрешность изображения в оптической системе, вызываемая отклонением луча от того направления, по которому он должен был бы идти в идеальной оптической… … Википедия

    Джон Доллонд (1706 1761) английский оптик. Дол … Википедия

Одна из которых положительная, а другая - отрицательная. В таких случаях используют линзы, изготовленные из оптических стёкол с различной дисперсией . Для склеивания линз применяют оптический клей (например, канадский бальзам , пихтовый бальзам или бальзамин). Склеивание линз само по себе никак не влияет на ахроматические свойства, однако позволяет уменьшить отражение света от поверхностей линз, снизить требования к точности изготовления склеиваемых поверхностей и облегчить последующий монтаж. Линзы относительно больших размеров (с диаметром более 10 см), как правило, не склеивают, так как из-за различия температурных коэффициентов расширения положительной и отрицательной линз, при увеличении их размеров возрастает вероятность нарушения целостности склейки, происходящего при изменении температуры окружающей среды.

Появление ахроматических объективов

Исправить хроматическую аберрацию пытался ещё Исаак Ньютон , установивший её природу. Однако в результате ошибки при проведении опытов, в частности, из-за использования свинцового сахара (ацетата свинца) :25 , Ньютон пришёл к выводу о невозможности удаления этого нежелательного эффекта в системе линз. Мнение Ньютона было авторитетным, и долгое время его не пытались оспорить. Лишь в 1733 году Честер Холл предложил способ исправления хроматической аберрации с помощью стекла двух типов. Большие работы по созданию ахроматических объективов начались после того, как мысль о возможности исправления хроматической аберрации высказал Леонард Эйлер в 1747 году. Одними из первых множество ахроматических конструкций для телескопов изготовили Джон Доллонд и Питер Доллонд (англ. Peter Dollond ) в 1758-1761 гг.

Особенности конструкции

Линзы ахромата выполняются из неодинаковых по дисперсии света сортов оптического стекла. Положительная изготавливается из стекла с бо́льшим (как правило, крона), а отрицательная - из стекла с меньшим коэффициентом средней дисперсии (как правило, флинта).

При этом нет принципиальной разницы, в каком порядке будут стоять линзы - возможны комбинации, когда рассеивающая (флинтовая) стоит «впереди» собирающей (кроновой). Такой вариант был предложен Томасом Груббом в 1857 г. Возможны и трёхлинзовые комбинации. Например, ахромат Питера Доллонда, где отрицательная флинтовая линза заключена между двумя положительными кроновыми.

В общем случае линзы подбираются так, что для каких-либо двух длин волн видимого света полностью, а для остальных значительно устранён хроматизм положения .

Для общего случая, условием ахроматизации двухлинзового объектива (или компонента) будет равенство отношений оптических сил и коэффициентов дисперсии отдельных линз:

\frac{\Phi"}{\Phi}= \frac{\nu_\lambda"}{\nu_\lambda },

  • \Phi - оптическая сила в диоптриях,
  • \nu_\lambda - коэффициент дисперсии (число Аббе).

Выбор длин волн, подлежащих ахроматизации, определяется назначением объектива. Так, для систем визуального наблюдения «соединяют» красный C (λ=656,3 нм) и голубой F (λ=486,1 нм) лучи. Это так называемая «визуальная» коррекция.

«Фотовизуальную» же коррекцию применяют в объективах для фотографирования с визуальной фокусировкой («старые» фото- и некоторые астрономические объективы), «соединяя» жёлтый D (λ= 589,3 нм) и синий G" (λ=434,1 нм) лучи.

Современные фотообъективы, как правило, ахроматизируют от синей (G") до красной (C) области спектра .

«Новые» («аномальные») ахроматы

Примерно к 70-м годам XIX в., благодаря работам Эрнста Аббе и Отто Шотта, появились оптические стёкла кронового типа с высоким показателем преломления.

Это привело к созданию так называемых «новых» (или «аномальных») ахроматов. В таком «новом» («аномальном») ахромате показатель преломления кронового стекла выше, чем флинтового. В то время, как у «старого» (или «нормального») - наоборот, выше показатель преломления флинта, чем крона. Это позволило уменьшить крутизну радиусов поверхностей «новых» ахроматов по сравнению со «старыми» (при одинаковой оптической силе), что, в свою очередь, значительно облегчило коррекцию сферической аберрации.

К тому же у аномальных ахроматов меньшие значения имеет сумма Петцваля, характеризующая кривизну поля изображения . Такая особенность «новых ахроматов» оказалось столь полезна для расчёта оптических систем широких полей зрения (например, фотообъективов), что практически определила область их применения (только для коррекции астигматизма и/или кривизны поля изображения). Вследствие чего большинство «новых ахроматов» полностью утратили ахроматические свойства, хотя и продолжают именоваться «ахроматами» (в частности, в англоязычной специальной литературе). Например, таким «ахроматом», не имеющим ахроматических свойств, является задняя линза объективов Тессар .

«Ландшафтный» («пейзажный») объектив

В 1839 г. ахроматический мениск был предложен французским оптиком Шарлем Шевалье в качестве фотографического объектива.

Имея такую же компоновку, как и монокль Волластона , этот объектив обладал достаточно исправленным астигматизмом и сравнительно плоским полем изображения. Однако, невысокая светосила (F: 15), учитывая низкую светочувствительность фотоматериалов того времени, ограничивала область применения такого объектива исключительно пейзажными съёмками. Этим и обусловлено такое его название, как «ландшафтный объектив» (lentille à paysage ).

См. также

Напишите отзыв о статье "Ахроматический объектив"

Примечания

Литература

  • Д. С. Волосов. Фотографическая оптика. - 2-е изд. - М.,: «Искусство», 1978. - С. 154-159. - 543 с.
  • Слюсарёв Г. Г. Расчёт оптических систем. Л., «Машиностроение», 1975.
  • R. Kingslake. A History of Photographic Lens, Academy Press, 1989
  • Яштолд-Говорко В. А. Фотосъёмка и обработка. Съёмка, формулы, термины, рецепты. Изд. 4-е, сокр. М., «Искусство», 1977.

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). - СПб. , 1890-1907.

Отрывок, характеризующий Ахроматический объектив

Николай, с несходящей улыбкой на лице, несколько изогнувшись на кресле, сидел, близко наклоняясь над блондинкой и говоря ей мифологические комплименты.
Переменяя бойко положение ног в натянутых рейтузах, распространяя от себя запах духов и любуясь и своей дамой, и собою, и красивыми формами своих ног под натянутыми кичкирами, Николай говорил блондинке, что он хочет здесь, в Воронеже, похитить одну даму.
– Какую же?
– Прелестную, божественную. Глаза у ней (Николай посмотрел на собеседницу) голубые, рот – кораллы, белизна… – он глядел на плечи, – стан – Дианы…
Муж подошел к ним и мрачно спросил у жены, о чем она говорит.
– А! Никита Иваныч, – сказал Николай, учтиво вставая. И, как бы желая, чтобы Никита Иваныч принял участие в его шутках, он начал и ему сообщать свое намерение похитить одну блондинку.
Муж улыбался угрюмо, жена весело. Добрая губернаторша с неодобрительным видом подошла к ним.
– Анна Игнатьевна хочет тебя видеть, Nicolas, – сказала она, таким голосом выговаривая слова: Анна Игнатьевна, что Ростову сейчас стало понятно, что Анна Игнатьевна очень важная дама. – Пойдем, Nicolas. Ведь ты позволил мне так называть тебя?
– О да, ma tante. Кто же это?
– Анна Игнатьевна Мальвинцева. Она слышала о тебе от своей племянницы, как ты спас ее… Угадаешь?..
– Мало ли я их там спасал! – сказал Николай.
– Ее племянницу, княжну Болконскую. Она здесь, в Воронеже, с теткой. Ого! как покраснел! Что, или?..
– И не думал, полноте, ma tante.
– Ну хорошо, хорошо. О! какой ты!
Губернаторша подводила его к высокой и очень толстой старухе в голубом токе, только что кончившей свою карточную партию с самыми важными лицами в городе. Это была Мальвинцева, тетка княжны Марьи по матери, богатая бездетная вдова, жившая всегда в Воронеже. Она стояла, рассчитываясь за карты, когда Ростов подошел к ней. Она строго и важно прищурилась, взглянула на него и продолжала бранить генерала, выигравшего у нее.
– Очень рада, мой милый, – сказала она, протянув ему руку. – Милости прошу ко мне.
Поговорив о княжне Марье и покойнике ее отце, которого, видимо, не любила Мальвинцева, и расспросив о том, что Николай знал о князе Андрее, который тоже, видимо, не пользовался ее милостями, важная старуха отпустила его, повторив приглашение быть у нее.
Николай обещал и опять покраснел, когда откланивался Мальвинцевой. При упоминании о княжне Марье Ростов испытывал непонятное для него самого чувство застенчивости, даже страха.
Отходя от Мальвинцевой, Ростов хотел вернуться к танцам, но маленькая губернаторша положила свою пухленькую ручку на рукав Николая и, сказав, что ей нужно поговорить с ним, повела его в диванную, из которой бывшие в ней вышли тотчас же, чтобы не мешать губернаторше.
– Знаешь, mon cher, – сказала губернаторша с серьезным выражением маленького доброго лица, – вот это тебе точно партия; хочешь, я тебя сосватаю?
– Кого, ma tante? – спросил Николай.
– Княжну сосватаю. Катерина Петровна говорит, что Лили, а по моему, нет, – княжна. Хочешь? Я уверена, твоя maman благодарить будет. Право, какая девушка, прелесть! И она совсем не так дурна.
– Совсем нет, – как бы обидевшись, сказал Николай. – Я, ma tante, как следует солдату, никуда не напрашиваюсь и ни от чего не отказываюсь, – сказал Ростов прежде, чем он успел подумать о том, что он говорит.
– Так помни же: это не шутка.
– Какая шутка!
– Да, да, – как бы сама с собою говоря, сказала губернаторша. – А вот что еще, mon cher, entre autres. Vous etes trop assidu aupres de l"autre, la blonde. [мой друг. Ты слишком ухаживаешь за той, за белокурой.] Муж уж жалок, право…
– Ах нет, мы с ним друзья, – в простоте душевной сказал Николай: ему и в голову не приходило, чтобы такое веселое для него препровождение времени могло бы быть для кого нибудь не весело.
«Что я за глупость сказал, однако, губернаторше! – вдруг за ужином вспомнилось Николаю. – Она точно сватать начнет, а Соня?..» И, прощаясь с губернаторшей, когда она, улыбаясь, еще раз сказала ему: «Ну, так помни же», – он отвел ее в сторону:
– Но вот что, по правде вам сказать, ma tante…
– Что, что, мой друг; пойдем вот тут сядем.
Николай вдруг почувствовал желание и необходимость рассказать все свои задушевные мысли (такие, которые и не рассказал бы матери, сестре, другу) этой почти чужой женщине. Николаю потом, когда он вспоминал об этом порыве ничем не вызванной, необъяснимой откровенности, которая имела, однако, для него очень важные последствия, казалось (как это и кажется всегда людям), что так, глупый стих нашел; а между тем этот порыв откровенности, вместе с другими мелкими событиями, имел для него и для всей семьи огромные последствия.
– Вот что, ma tante. Maman меня давно женить хочет на богатой, но мне мысль одна эта противна, жениться из за денег.
– О да, понимаю, – сказала губернаторша.
– Но княжна Болконская, это другое дело; во первых, я вам правду скажу, она мне очень нравится, она по сердцу мне, и потом, после того как я ее встретил в таком положении, так странно, мне часто в голову приходило что это судьба. Особенно подумайте: maman давно об этом думала, но прежде мне ее не случалось встречать, как то все так случалось: не встречались. И во время, когда Наташа была невестой ее брата, ведь тогда мне бы нельзя было думать жениться на ней. Надо же, чтобы я ее встретил именно тогда, когда Наташина свадьба расстроилась, ну и потом всё… Да, вот что. Я никому не говорил этого и не скажу. А вам только.
Губернаторша пожала его благодарно за локоть.
– Вы знаете Софи, кузину? Я люблю ее, я обещал жениться и женюсь на ней… Поэтому вы видите, что про это не может быть и речи, – нескладно и краснея говорил Николай.
– Mon cher, mon cher, как же ты судишь? Да ведь у Софи ничего нет, а ты сам говорил, что дела твоего папа очень плохи. А твоя maman? Это убьет ее, раз. Потом Софи, ежели она девушка с сердцем, какая жизнь для нее будет? Мать в отчаянии, дела расстроены… Нет, mon cher, ты и Софи должны понять это.
Николай молчал. Ему приятно было слышать эти выводы.
– Все таки, ma tante, этого не может быть, – со вздохом сказал он, помолчав немного. – Да пойдет ли еще за меня княжна? и опять, она теперь в трауре. Разве можно об этом думать?
– Да разве ты думаешь, что я тебя сейчас и женю. Il y a maniere et maniere, [На все есть манера.] – сказала губернаторша.
– Какая вы сваха, ma tante… – сказал Nicolas, целуя ее пухлую ручку.

Приехав в Москву после своей встречи с Ростовым, княжна Марья нашла там своего племянника с гувернером и письмо от князя Андрея, который предписывал им их маршрут в Воронеж, к тетушке Мальвинцевой. Заботы о переезде, беспокойство о брате, устройство жизни в новом доме, новые лица, воспитание племянника – все это заглушило в душе княжны Марьи то чувство как будто искушения, которое мучило ее во время болезни и после кончины ее отца и в особенности после встречи с Ростовым. Она была печальна. Впечатление потери отца, соединявшееся в ее душе с погибелью России, теперь, после месяца, прошедшего с тех пор в условиях покойной жизни, все сильнее и сильнее чувствовалось ей. Она была тревожна: мысль об опасностях, которым подвергался ее брат – единственный близкий человек, оставшийся у нее, мучила ее беспрестанно. Она была озабочена воспитанием племянника, для которого она чувствовала себя постоянно неспособной; но в глубине души ее было согласие с самой собою, вытекавшее из сознания того, что она задавила в себе поднявшиеся было, связанные с появлением Ростова, личные мечтания и надежды.

Объектив из трех несклеенных линз.| Ахроматический объектив Петцваля с плоским зеркалом и полевой линзой.  

Ахроматический объектив из двух положительных компонентов (типа Петцваля) для видимой области спектра хорошо известен. Каждый компонент обычно состоит из двух линз, склеенных или несклеенных. У этого объектива могут быть исправлены сферическая аберрация, кома, астигматизм, а при наличии воздушного промежутка между линзами первого компонента - и сферохроматическая аберрация.  

Ахроматические объективы - наиболее простые системы, у которых исправлена сферическая аберрация, кома и хроматическая аберрация положения для двух длин волн. У них заметен небольшой остаточный хроматизм положения, из-за чего контуры объектов имеют цветную кайму. Объективы с апертурой до 0 1 состоят из одной ахроматической линзы. Для объективов с апертурой до 0 2 применяют систему из двух склеенных компонент. Это позволяет избавиться от крутых поверхностей. При переходе к апертурам до 0 65 двух компонент оказывается недостаточно и впереди добавляют обычно одну фронтальную линзу.  


Ахроматические объективы частично устраняют нежелательный эффект - хроматическую аберрацию (неодинаковое преломление линзой лучей различного цвета, в результате чего эти лучи после преломления в линзе не имеют общего фокуса, поэтому ухудшается четкость изображения); в ахроматических объективах сохранена аберрация для трех монохроматических лучей. Ахроматы имеют собственное увеличение до 50 раз.  

Ахроматические объективы - наиболее простые по устройству системы, у которых хроматическая аберрация исправлена для двух длин волн и имеется небольшая остаточная окраска изображения.  

Ахроматические объективы дают изображение объектов, в котором совпадают изображения средних красок спектра как по месту, так и по увеличению. Ахроматы (табл. 14) перекорригированы в части сферической аберрации для слабых голубых лучей и недокорригированы для красных лучей. Изображения, даваемые этими лучами, не совпадают с изображениями, даваемыми средними участками спектра, что следует иметь в виду при выборе источника освещения и при установке на резкость. Они являются наиболее простыми и дешевыми объективами. Слабые и средние ахроматы используются с окулярами Гюйгенса.  

Даже ахроматические объективы обладают остаточным хроматизмом положения - вторичным спектром: положения фокальных плоскостей для разных длин волн несколько различны. Это приводит к дефокусировке монохроматических изображений входной щели на выходной щели.  

У ахроматических объективов исправлена сферическая аберрация, кома и хроматическая абберация для двух цветов, наиболее важных для визуального наблюдения; кривизна изображения не исправлена. Апохроматические объективы отличаются более высокой степенью исправления сферической аберрации и комы, а также обспечивают более правильную цветопередачу. В сочетании с компенсационными окулярами эти объективы дают высокое качество изображения и особенно подходят для больших увеличений и микрофотографирования. Планахроматы и планапохроматы скорректированы соответственно так же, как ахроматические и апохроматиче-ские объективы, и, кроме того, у них исправлена кривизна изображения.  

Труднее изготовить ахроматические объективы для ультрафиолетовой области спектра, где оптическое стекло непрозрачно.  

Схема призменного спектрального аппарата. горизонтальное сечение, вертикальное сечение и общая схема.| Проекция дифракционной решетки или грани призмы на объектив.  

Вместо таких сложных ахроматических объективов часто применяют вогнутые зеркала, у которых полностью отсутствует хроматическая аберрация, так как угол отражения света не зависит от длины волны.  

Качество изображения у ахроматических объективов вполне удовлетворительно для проведения рядовых повседневных работ, тогда как дорогостоящие апохроматические объективы применяют для исследовательских работ.  

Из пластмасс трудно изготовить ахроматические объективы, что в первую очередь связано с ограниченной областью значений показателей преломления и ограниченной дисперсионной способностью имеющихся пластмасс. Ахроматические объективы, выполненные из пластмасс, чувствительны к колебаниям температуры, так как изменения температуры вызывают изменения показателя преломления и дисперсии.  

Оптические системы с коррекцией по трём и более цветам (длинам волн) называются апохроматами . С более полной геометрической коррекцией - апланаты .

В простейшем случае состоит из двух склеенных линз , одна из которых положительная, а другая - отрицательная. В таких случаях используют линзы, изготовленные из оптических стёкол с различной дисперсией . Для склеивания линз применяют оптический клей (например, канадский бальзам , пихтовый бальзам или бальзамин). Склеивание линз само по себе никак не влияет на ахроматические свойства, однако позволяет уменьшить отражение света от поверхностей линз, снизить требования к точности изготовления склеиваемых поверхностей и облегчить последующий монтаж. Линзы относительно больших размеров (с диаметром более 10 см), как правило, не склеивают, так как из-за различия температурных коэффициентов расширения положительной и отрицательной линз, при увеличении их размеров возрастает вероятность нарушения целостности склейки, происходящего при изменении температуры окружающей среды.

Появление ахроматических объективов [ | ]

Исправить хроматическую аберрацию пытался ещё Исаак Ньютон , установивший её природу. Однако в результате ошибки при проведении опытов, в частности, из-за использования свинцового сахара (ацетата свинца) :25 , Ньютон пришёл к выводу о невозможности удаления этого нежелательного эффекта в системе линз. Мнение Ньютона было авторитетным, и долгое время его не пытались оспорить. Лишь в 1733 году Честер Холл предложил способ исправления хроматической аберрации с помощью стекла двух типов. Большие работы по созданию ахроматических объективов начались после того, как мысль о возможности исправления хроматической аберрации высказал Леонард Эйлер в 1747 году. Одними из первых множество ахроматических конструкций для телескопов изготовили Джон Доллонд и (англ. Peter Dollond ) в 1758-1761 гг.

Особенности конструкции [ | ]

Линзы ахромата выполняются из неодинаковых по дисперсии света сортов оптического стекла. Положительная изготавливается из стекла с бо́льшим (как правило, крона), а отрицательная - из стекла с меньшим коэффициентом средней дисперсии (как правило, флинта). В истории были эксперименты и с более тяжёлыми стёклами, содержащими до 30% массы тория. Такие линзы производились с 1940 по 1970-е.

При этом нет принципиальной разницы, в каком порядке будут стоять линзы - возможны комбинации, когда рассеивающая (флинтовая) стоит «впереди» собирающей (кроновой). Такой вариант был предложен Томасом Груббом в 1857 г. Возможны и трёхлинзовые комбинации. Например, ахромат Питера Доллонда, где отрицательная флинтовая линза заключена между двумя положительными кроновыми.

В общем случае линзы подбираются так, что для каких-либо двух длин волн видимого света полностью, а для остальных значительно устранён хроматизм положения .

Для общего случая, условием ахроматизации двухлинзового объектива (или компонента) будет равенство отношений оптических сил и коэффициентов дисперсии отдельных линз:

Φ ′ Φ ″ = ν λ ′ ν λ ″ {\displaystyle {\frac {\Phi "}{\Phi ""}}={\frac {\nu _{\lambda }"}{\nu _{\lambda }""}}} ,

Выбор длин волн, подлежащих ахроматизации, определяется назначением объектива. Так, для систем визуального наблюдения «соединяют» красный C (λ=656,3 нм) и голубой F (λ=486,1 нм) лучи. Это так называемая «визуальная» коррекция.

«Фотовизуальную» же коррекцию применяют в объективах для фотографирования с визуальной фокусировкой («старые» фото- и некоторые астрономические объективы), «соединяя» жёлтый D (λ= 589,3 нм) и синий G" (λ=434,1 нм) лучи.

Современные фотообъективы, как правило, ахроматизируют от синей (G") до красной (C) области спектра .

«Новые» («аномальные») ахроматы [ | ]

Примерно к 70-м годам XIX в., благодаря работам Эрнста Аббе и Отто Шотта, появились оптические стёкла кронового типа с высоким показателем преломления.

Это привело к созданию так называемых «новых» (или «аномальных») ахроматов. В таком «новом» («аномальном») ахромате показатель преломления кронового стекла выше, чем флинтового. В то время, как у «старого» (или «нормального») - наоборот, выше показатель преломления флинта, чем крона. Это позволило уменьшить крутизну радиусов поверхностей «новых» ахроматов по сравнению со «старыми» (при одинаковой оптической силе), что, в свою очередь, значительно облегчило коррекцию сферической аберрации.

К тому же у аномальных ахроматов меньшие значения имеет сумма Петцваля, характеризующая кривизну поля изображения . Такая особенность «новых ахроматов» оказалось столь полезна для расчёта оптических систем широких полей зрения (например, фотообъективов), что практически определила область их применения (только для коррекции астигматизма и/или кривизны поля изображения). Вследствие чего большинство «новых ахроматов» полностью утратили ахроматические свойства, хотя и продолжают именоваться «ахроматами» (в частности, в англоязычной специальной литературе). Например, таким «ахроматом», не имеющим ахроматических свойств, является задняя линза объективов

Перейдем к рассмотрению объективов, содержащих несколько линз. Все рассуждения будут относиться к параксиальной области и к объективу, содержащему бесконечно тонкие соприкасающиеся линзы. Оптическая сила такого объектива есть сумма оптических сил отдельных линз, входящих в него,

В частности, для двухлинзового объектива

Здесь и далее величины, отмеченные одним штрихом, относятся к первой линзе объектива, а двумя - ко второй. В двухлинзовом объективе можно исправить хроматизм параксиальных лучей двух заданных длин волн или лучей, проходящих через некоторую за данную зону

объектива. Для совмещения положения фокусов лучей двух длин волн надо выполнять условие или

Такой объектив называется ахроматическим. Ахроматизировать объектив можно для лучей лежащих приблизительно по краям доступного глазу спектрального интервала или для лучей лежащих по краям области чувствительности несенсибилизированной фотопластинки. Первый случай соответствует визуальной ахроматизации, второй - фотографической. Из (5.2) следует, что в ахроматическом объективе кривизны обеих линз должны удовлетворять условию

Если положить и подставить сюда из (4.66) значения то учтя (4.80), получим

где есть оптические силы положительной и отрицательной линз для средней длины волны, например для луча числа Аббе каждой из линз. Последнее уравнение можно записать в виде

Можно показать, что вообще условие ахроматичности системы, содержащей к компонент, есть к

Решая (5.1) и (5.4) относительно получим

где оптическая сила объектива. Выражения (5.5) называются условием ахроматичности. Важно, что они определяют только силу каждой из линз, но не их форму. Из условия ахроматичности следует, что оптические силы каждой из линз обратно пропорциональны разности дисперсии стекол. Чтобы не были чрезмерными, следует выбирать стекла с сильно различающимися значениями дисперсий Положительная линза

обязательно должна быть изготовлена из стекла с большим значением дисперсии, чем отрицательная линза, т.е. положительная линза должна быть из стекла типа крон, а отрицательная из стекла типа флинт. Подставляя полученные значения в (4.66), получим

Отсюда следует, что для получения ахроматического объектива заданной оптической силы разность кривизн каждой из линз однозначно определяется выбранными сортами стекол. Индексами 1 и 2 мы будем обозначать первую и вторую поверхности каждой из линз; при этом сами кривизны каждой поверхности каждой из линз могут быть любыми; их величины будут влиять лишь на монохроматические аберрации. Надлежащей кривизной линз можно исправить сферическую аберрацию и кому (см. § 5.9 и 5.10). Для исправления сферической аберрации третьего порядка воспользуемся тем обстоятельством, что при выполнении условия ахроматизации (5.5) кривизны каждой из поверхностей линз, а значит, и продольная аберрация каждой из линз, произвольны. В § 4.8 мы показали, что положительная линза обладает всегда отрицательной сферической аберрацией, а отрицательная линза наоборот - всегда положительной аберрацией (исключения представляют мениски). Это позволяет дать такие формы каждой из линз, чтобы их аберрации были равны по абсолютной величине, но имели противоположные знаки. Для определенности предположим, что положительная линза предшествует (считая по ходу лучей) отрицательной. Тогда для положительной линзы ее сферическая аберрация выразится формулой (4.67), которую мы перепишем здесь в виде

Штрихи означают здесь первую (в данном случае положительную) линзу. Аберрацию отрицательной линзы определим в обратном ходе лучей, что будем обозначать стрелкой - над соответствующими величинами. Для этого предположим, что светящаяся точка расположена в главном фокусе объектива (рис. 5.1), повернутого на при этом перед надо поменять знаки на обратные. Так как обе линзы приняты бесконечно тонкими и соприкасающимися, то зоны у у них будут одни и те же. Продольная сферическая аберрация

Рис. 5.1. К определению сферической аберрации отрицательной флинтовой линзы. Объектив рассматривается условно повернутым на 180°, т.е. в обратном ходе лучей

отрицательной линзы для зоны у определится при этом из (4.63), которую мы запишем в виде, аналогичном формулам (4.64) и (5.7):

Здесь два штриха обозначают вторую (в данном случае отрицательную) линзу. Компенсация аберраций наступит при выполнении условия

В соответствии с (4.64) коэффициенты зависят только от показателей преломления выбранных сортов стекол и разностей кривизн положительной и отрицательной линз, определенных условием ахроматизации. Так как пучок света для второй линзы рассматривается идущим с конечного расстояния (из фокуса F объектива), то коэффициенты и зависят кроме того и от оптической силы всего объектива:

Если мы задали фокусное расстояние объектива обратную ему величину - оптическую силу разность кривизн положительной линзы и выбрали сорта стекол, т.е. определили показатели преломления обеих линз, то из (5.1) находим разность кривизн а значит, и оптическую силу отрицательной линзы. Подставляя значения (5.5) и (5.6) в (5.10), получим численные знвчения величин Если мы, кроме того, задались величиной , то из (5.7) находим При этом флинтовая линза рассматривается повернутой на поэтому при определении истинного значения аберрации вносимой ею в сходящийся к фокусу пучок лучей, следует заменить величину величиной Условие (5.9) будет выполнено лишь при вполне определенном значении которое получается в результате решения квадратного уравнения

Воспользуемся рисунком 4.21, чтобы показать это более наглядно. Для этого перенесем с него на рис. 5.2 абсолютные величины аберраций положительной и отрицательной линз. По оси абсцисс будем откладывать кривизну первой поверхности первой (кроновой) линзы. Кроме того на отдельных шкалах нанесем соответствующие значения остальных кривизн При этом шкалы совместим. По оси ординат будем откладывать абсолютные значения

Рис. 5.2. Форма линз в тонких двухлинзовых объективах разных типов

величин аберраций каждой из линз. Если квадратное уравнение (5.11) не имеет действительных корней, то следует выбрать другую пару марок стекол. Возможность произвольного выбора значений и равных им значений позволяет осуществить множество типов ахроматических объективов с исправленной сферической аберрацией третьего порядка. Задание продольной сферической аберрации каждой из линз определяет на рис. 5.2 некоторый вполне определенный уровень - например, прямую Ей соответствуют четыре возможные комбинации форм линз ахроматического объектива: или т.е. каждой форме одной линзы отвечают вообще две возможные формы другой линзы. Указанные комбинации схематически изображены на рис. 5.3.

Рис. 5.3. Четыре варианта ахроматических объективов с кроновой линзой впереди

Уровню соответствуют только две возможные комбинации: или Из четырех типов объективов наиболее выгодная схема так как в ней кривизны линз меньше, чем в любой другой комбинации. С ростом же кривизны линз возрастают сферохроматическая аберрация и аберрации высших порядков. Кроме того, предъявляются более жесткие требования к центрировке линз.

Кривизна первой поверхности может быть выбрана любой, лишь бы соблюдались условия ахроматизации (5.5) и компенсации сферической аберрации (5.9). Эта свобода может быть использована для удовлетворения других требований, например конструктивных или, чаще, оптических.

Условия (5.7) и (5.8) выражают аберрации кроновой и флинтовой линзы через радиусы кривизн наружных поверхностей объектива Можно задаться условием, чтобы вторая поверхность кроновой линзы имела кривизну, равную кривизне поверхности флинтовой линзы, т.е. чтобы было удовлетворено условие равенства кривизн внутренних поверхностей объектива:

Выполнение этого требования позволяет склеить обе линзы в один блок. Для удовлетворения условий (5.12) удобно выразить кроновой линзы и флинтовой линзы соответственно черезр и Для такого перехода воспользуемся формулой (4.61), из которой следует,

что После несложных преобразований получим

Черточки над коэффициентами обозначают, что эти величины относятся к склеенному объективу. Условие (5.12) при исправлении сферической аберрации эквивалентно выполнению равенства

которое может быть справедливым лищь если дикриминант этого квадратного уравнения неотрицателен.

При имеются два решения квадратного уравнения (5.14), которые соответствуют склеенным объективам, называемым объективами Клеро типов

Широкое распространение получили объективы А. Кларка. В них кроновая и флинтовая линзы разделены значительным воздушным промежутком, составляющим, как, правило около Промежуток введен исключительно только для удобства чистки внутренних поверхностей линз. Наличие такого воздушного промежутка неизбежно приводит к появлению хроматизма увеличения (см. рис. 2.12) и дисторсии. Тем не менее все крупнейшие рефракторы мира снабжены объективами Кларка. Рис. 2.12 делает ясным тот механизм, который приводит к хроматизму увеличения. По выходе из кроновой линзы синий луч отклоняется значительно сильне, чем красный луч С. В результате лучи встречают флинтовую линзу ближе к оптической оси, чем красные лучи С. Так как поперечная сферическая аберрация пропорциональна кубу зоны у, то переисправление сферической аберрации для фиолетовых лучей несколько уменьшилось. Поэтому объективы Кларка дают несколько менее заметный фиолетовый ореол вокруг звезд.

Коэффициент отражения при нормальном или близком к нормальному падению лучей на непросветленную поверхность, разделяющую среды с показателями преломления составляет

В несклеенном объективе любого типа третья поверхность его отражает около 1/18 падающей энергии, давая пучку дополнительную сходимость, равную единицах оптической силы всего объектива). Вторая поверхность объектива отразит 1/23 долю этого пучка в направлении к фокусу телескопа и уменьшит сходимость пучка на Так как расстояние между линзами ничтожно, то дважды отраженный пучок образует свой фокус на расстоянии от главного фокуса. Если разность кривизн мала, как это обычно бывает в объективах, близких к типу Клеро, то каждая яркая звезда даст на фотопластинке заметный весьма вредный блик. В результате изображение каждой яркой звезды сопровождается слабым спутником, который будет слабее самой звезды на 6,6 звездной величины. Взаимное склеивание линз в объективе уменьшает потери света на отражениях от их поверхностей. Принимая показатели преломления крона 1,52, флинта 1,62, а воздуха 1,0, находим, что в несклеенном объективе, в котором линзы разделены даже тонким воздушным промежутком, суммарные потери на отражение составляют Склеивание линз снижает их до 9,7 %. Кроме того, уменьшаются вредные блики и слабый рассеянный фон неба по полю. Склейка фактически исключает влияние погрешностей формы склеиваемой поверхности кроновой линзы и на 1/7 уменьшает влияние таковых на склеиваемой поверхности флинтовой линзы, а также влияние царапин на них и обеспечивает неизменность центрировки линз. Склеенные объективы используются только в небольших рефракторах и астрометрических интрументах, в которых недопустимо смещение линз.