Решить задачу нахождения максимального потока в транспортной сети с помощью алгоритма Форда-Фалкерсона, и построить разрез сети S.
Исходные данные:
Дана сеть S(X,U)
- исток сети; - сток сети, где ∈X; ∈X.
Значения пропускных способностей дуг заданы по направлению ориентации дуг: от индекса i к индексу j.

r = 39; r = 44; r = 33; r = 53; r = 10;
r = 18; r = 95; r = 16; r = 23; r = 61;
r = 81; r = 71; r = 25; r = 15; r = 20

1. Зададим на сети нулевой поток (на всех дугах величина потока равна 0). Нулевой поток - это начальный допустимый поток на сети. Значение потока на каждой дуге будем указывать за скобками пропускной способности дуги.). Значение потока, равное «0», не указываем.
2. Выбираем на сети (произвольно) путь, ведущий из вершины x0 в вершину x7:
X0-X1-X4-X6-X7
3. Находим и увеличиваем поток на эту величину. Ребро Х1-Х4 помечаем как рассмотренное.


4. Выбираем еще один путь, например: Х0-Х2-Х5-Х7, находим и увеличиваем поток на эту величину. Ребро Х0-Х2 помечаем как рассмотренное.


5. Выбираем еще один путь, например: Х0-Х3-Х2-Х5-Х7, находим и увеличиваем поток на эту величину. Ребро Х3-Х2 помечаем как рассмотренное.


6. Более путей от Х0 до Х7 нет, суммируем увеличения потока: 25+10+20=55.
Вывод: максимальный поток равен 55.

2) Построить разрез сети S.
Процедура «пометок вершин».
Начальное состояние: все вершины не имеют пометок.
Вершине Х0 приписывается пометка. Всем вершинам , для которых дуга не насыщена присваиваются пометки (красные круги)


Определяем дуги минимального разреза: это дуги, начала которых находятся в помеченных вершинах, а концы - в непомеченных вершинах.
Это дуги:
Таким образом, минимальный разрез данной сети
Вычисление величины максимального потока

Крайний случай: если матрица вся одного цвета - ответ 0.
Добавим фиктивные исток и сток. От истока ко всем белым вершинам проведем ребра, весом в B (цена перекраски в черный). От черных вершин ко стоку проведем ребра, весом в W (цена перекраски в белый). И между всеми соседними вершинами (будь они одного или разных цветов) - ставим ребро весом в G (серая линия). Величина максимального потока будет ответом на задачу.
Источник: Всеукраинская школьная олимпиада по информатике, 2007, День 1
  • Задача с ограничением на вершины. Пусть надо найти величину максимального потока и на вершины наложено ограничение, сколько они могут пропустить.
    Решение
    Все, что нам надо - это разделить каждую вершину на две, и между ними поставить ребро, весом в ограничение пропускной способности данной вершины
  • Минимальный разрез. Дан граф. Сколько вершин надо удалить, что бы не существовало пути из A в B?
    Решение
    В классической задаче о минимальном разрезе удалять нужно ребра. Не проблема! Разобьем вершины на 2, и поставим между ними ребро, весом в 1. Тогда ответ к задаче - нахождение минимального разреза в графе (что и есть максимальным потоком).
    Источник: Харьковская зимняя школа по программированию, 2009, День 3
  • Сочинитель стихов. Имеется детерминированный конечный автомат с одним начальным состоянием A и одним конечным B. Каждый переход задается тройкой чисел (i, j, k), переход из состояния i в состояние j по ребру k.
    После перехода по автомату из i в j по ребру k, стираются все переходы из i по ребру k, а также все переходы в j по ребру k. Требуется вывести количество путей из A в B по такому автомату.
    Решение
    Задача сводится к нахождению максимального количества путей, причем из одной вершины не выходят более одного ребра одного цвета. Сведем задачу к нахождения максимального потока. Для каждой вершин создадим k+1 вершину в перестроенной сети. Первая вершина будет входом, остальные вершины будут представлять цвета. Из вершины входа проведем по ребру пропускной способностью 1 в каждую из k вершин, соответствующих цвету. Из вершины соответствующих цвету i проведем все ребра цвета i во входы концов ребер. Найдя максимальный поток в такой сети, получим максимальное количество путей удовлетворяющих требуемому свойству.
  • Коллекционирование монет. Есть n коллекционеров и m видов монет. Для вступления в клуб, необходимо иметь не меньше одной монеты каждого типа. Вы (у Вас номер 1) можете меняться с коллекционерами имеющимися монетами. Любой коллекционер обменяет монету свою монету a на Вашу монету b , если у него больше одной монеты типа a и нету ни одной монеты типа b . Вы, в свою очередь, можете нарушать это правило. Нужно набрать как можно больше типов монет по известной ситуации у всех коллекционеров.
    Решение
    Построим сеть. Создадим для каждого типа монет по одной вершине. Эти вершины будут соответствовать Вашим монетам. Нужно собрать как можно больше уникальных монет, поэтому проведем ребро пропускной способности 1 в сток из каждой такой вершины. В вершины, соответствующие монетам, которые у Вас есть изначально, проведем ребро, пропускная способность которого равна количеству таких монет у Вас.
    Для каждого члена клуба (кроме 1, тоесть Вас) заведем по одной вершине. Эта вершина может принимать не более одной монеты, которой у него нет и отдавать
    не более k-1 монеты, которых у него k (k > 1). Естественно, член клуба отдает одну монету взамен одной полученной.
    Таким образом, в каждую такую вершину нужно провести ребро пропускной способности 1 из вершин соответствующих монетам, которых нет у этого члена клуба. А из этих вершин нужно провести ребра пропускной способностью k i - 1 в вершину i, соответствующую монетам, которых у члена клуба больше одной.
    Построенная сеть отражает процессы обмена в клубе. Максимальный поток в такой сети будет равен максимальному количеству монет, которые могуть быть собраны Вами.
    Источник: Харьковская зимняя школа по программированию, 2009, День 4
  • Циркуляция. Система охлаждения реактора представляет собой набор труб, соединяющих узлы. По трубам течет жидкость, причем для каждой трубы строго определено направление, в котором она должна по ней течь. Узлы системы охлаждения занумерованы от 1 до N. Система охлаждения должна быть спроектирована таким образом, чтобы для каждого узла за единицу времени количество жидкости, втекающей в узел, было равно количеству жидкости, вытекающей из узла. У каждой трубы имеется пропускная способность c ij . Кроме того, для обеспечения достаточного охлаждения требуется, чтобы по трубе протекало не менее l ij единиц жидкости за единицу времени. То есть для трубы, ведущей из i-го узла в j-ый должно выполняться l ij ≤ f ij ≤ c ij .
    Дано описание системы охлаждения. Нужно выяснить, каким образом можно пустить жидкость по трубам, чтобы выполнялись все указанные условия.
    Решение
    Это задача на нахождение циркуляции в сети с заданными нижними ограничениями на ребра. Если по ребру (u, v) должен проходить поток в отрезке , то в перестроенной сети будет три ребра (откуда, куда, вес): (u, v, r - l), (S, v, l), (u, T, l). S, T - дополнительно введенные сток и исток соответственно. Фактически мы пропускаем по ребру необходимый минимальный поток, после чего балансируем его так, чтобы получить циркуляцию.
  • Алгоритм расчета максимального потока в сетях

    ШАГ 1. Начальные присваивания. Текущему значению А т максимального потока в сети присваиваем значение 0. ШАГ 2. Выбор независимых маршрутов в сети и определение потоков в них. Из всего множества возможных маршрутов в сети от источника к стоку выбираем независимые маршруты М 1 , … , М k , не имеющие общих вершин, кроме начальной (источника v и ) и конечной (стока v с ). Для каждого выбранного маршрута М i (1£ i £ k ) определяем максимальный поток А (М i ).ШАГ 3. Коррекция текущего значения максимального потока в сети. Прибавляем найденные на ШАГе 2 значения максимальных потоков в независимых маршрутах М 1 , … , М k к текущему общему максимальному потоку в сети: А т := А т + А (М 1)+ А (М 2)+…+ А (М k ).ШАГ 4. Коррекция сети. Найденные на ШАГе 2 максимальные потоки А (М 1), … , А (М k )вычитаем из пропускной способности соответствующих дуг сети. Дуги с нулевой остаточной пропускной способностью удаляем.ШАГ 5. Проверка завершения работы алгоритма. Если после коррекции в сети не осталось маршрутов из источника v и в сток v с , то искомый максимальный поток в сети равен найденному текущему А := А т , алгоритм завершает свою работу, поскольку все пропускные возможности сети исчерпаны. Если же в корректированной сети существуют маршруты из источника v и в сток v с , то переход на ШАГ 2 и продолжение выполнения алгоритма. Пример 2. Найти максимальный поток в сети на рис.1.15 по данному алгоритму. Решение.ШАГ 1. Начальные присваивания. А т : = 0.

    I итерация. ШАГ 2. Выбор независимых маршрутов в сети и определение потоков в них. В качестве М 1 возьмем маршрут(v и =V 1 , V 2 , V 5 , v с =V 7), рассмотренный в примере 1. Для него А (М 1) = 10.

    Также несложно выделить независимый от М 1 маршрут М 2 = (v и =V 1 , V 3 , V 6 , v с =V 7). Выполним для него расчет максимальной пропускной способности и скорректируем пропускную способность дуг: А (М 2)= min {d 13 , d 36 , d 67 }= min {45, 40, 30}= 30. d 13 ¢= d 13 - 30 = 15, d 36 ¢= d 36 - 30 = 10, d 67 ¢= d 67 - 30 = 0.

    ШАГ 3. Коррекция текущего значения максимального потока в сети. А т := А т + А (М 1)+ А (М 2) = 0 + 10+ 30 = 40.ШАГ 4. Коррекция сети. Найденные на ШАГе 2 максимальные потоки А (М 1), А (М 2) в маршрутах М 1 , М 2 вычитаем из пропускной способности их дуг. Дуги с нулевой остаточной пропускной способностью удаляем. Результат дан на рис.1.16 а. а) б)Рис.1.16. Результат коррекции сети после итераций I и IIШАГ 5. Проверка завершения работы алгоритма. В корректированной сети (рис.1.16 а) существуют маршруты из источника v и в сток v с , например М 3 = (v и =V 1 , V 4 , V 2 , V 5 , v с =V 7). Продолжение выполнения алгоритма.

    II итерация. ШАГ 2. В качестве единственного независимого маршрута примем М 3 = (v и =V 1 , V 4 , V 2 , V 5 , v с =V 7). Для него:

    А (М 3)= min {d 14 , d 42 , d 25 , d 57 }= min {15, 10, 10, 15}= 10.

    d 14 ¢= d 14 - 10 = 5, d 42 ¢= d 42 - 10 = 0, d 25 ¢= d 25 - 10 = 0, d 57 ¢= d 57 - 10 = 5.

    ШАГ 3. А т := А т + А (М 3) = 40 + 10= 50.

    ШАГ 4. Коррекция сети. Максимальный поток А (М 3)вычитаем из дуг маршрута М 13 . Результат дан на рис.1.16 б.

    ШАГ 5. В корректированной сети не осталось маршрутов из источникав сток. А := А т := 50, завершение работы алгоритма.Ответ: максимальный поток в сети на рис.1.15 равен 50.

    Еслив сети задано несколькоисточников, ее достраивают, вводя новый общий источник, который соединяют с исходными источниками дугами, имеющими неограниченную пропускную способность. Затем задачу решают по обычному алгоритму. Искомыми потоками через исходные источники будут потоки по вновь добавленным дугам, входящим в них из нового общего источника. Аналогично поступают при наличии в сети нескольких стоков.

    Сетевое планирование

    Любую задачу по проектированию либо построению достаточно сложного объекта (проект ) можно разбить на ряд более мелких составляющих шагов. От правильного выбора последовательности выполнения данных шагов зависят сроки выполнения всего проекта.

    Весь комплекс действий по выполнению проекта представляют в виде совокупности событий и работ . Событиями называют отдельные этапы проекта. Работами называют процесс их выполнения. Весь комплекс событий и работ, необходимых для выполнения проекта, может быть представлен в виде двухполюсной сети Г = ({v и, v з }, V, X ), в которой:

    а) все события обозначены множеством вершин V, среди них выделено исходное событие v и (начало работ) и завершающее событие v з (завершение выполнения всего проекта), внутренние вершины сети задают промежуточные события - этапы, которые необходимо выполнить в процессе реализации проекта,

    б) все работы обозначены дугами, соединяющими между собой пары событий - вершин.

    Графическое изображение данной сети называют сетевым графиком. Для обозначения последовательности действий в сетевой график вводят также фиктивные работы , которые не связаны с выполнением каких-либо действий. Соответствующие работы обозначают штриховыми дугами.

    В качестве примера рассмотрим организацию некоторого производства. Проект требует выполнения следующих работ:

    I) маркетинговые исследования, II) предпроектные исследования по оборудованию, III) организация сети сбыта, IV) проведение рекламной кампании, V) разработка технического задания на производственное оборудование, VI) разработка технической документации на производственные помещения и коммуникации, VII) закупка стандартного оборудования, VIII) проектирование и изготовление нестандартного оборудования, IX)строительство производственных помещений и монтаж коммуникаций, X) монтаж стандартного оборудования, XI) монтаж нестандартного оборудования, XII) пусконаладочные работы.

    Данные работы обозначим в сетевом графике дугами с соответствующими номерами.

    Событиями в данном проекте будут следующие:

    1) начало работ (исходное событие), 2) завершение маркетинговых исследований, 3) завершение предпроектных исследований, 4) организация сети сбыта, 5) организация рекламной кампании, 6) подготовка технического задания на производственное оборудование, 7) завершение разработки технической документации на производственные помещения и коммуникации, 8) завершение закупки стандартного оборудования, 9) завершение проектирования и изготовления нестандартного оборудования, 10) завершение строительства производственных помещений и монтажа коммуникаций, 11) завершение установки оборудования и пуско-наладочных работ,

    12) завершение проекта (завершающее событие).

    Событиям сопоставляем вершины с соответствующими номерами. Сетевой график выполнения проекта дан на рис. 1.17:



    Рис.1.17. Сетевой график выполнения проекта

    Потоки в сетях

    Задача о максимальном потоке

    Пусть задана сеть, состоящая из множества вершин Е и множества дуг, соединяющих некоторые упорядоченные пары вершин, взятых из Е. Будем предполагать, что она является симметрическим графом, т. е. если дуга () входит в сеть, то в нее входит и симметричная дуга (), хотя реально такой дуги может и не быть. Для определенности присвоим вершинам сети следующие номера: . Каждая вершина характеризуется интенсивностью . Вершины, для которых , назовем источниками, вершины, для которых , - стоками, а остальные - промежуточными. По путям сети направляются некоторые потоки - однородное вещество (газ, жидкость) или транспорт - из источников в стоки. Каждой дуге () сети поставлено в соответствие число , называемое пропускной способностью дуги. Под пропускной способностью дуги понимается максимальный поток, который она может пропустить за единицу времени. Пусть , и для остальных вершин, тогда - единственный источник, - единственный сток, а - промежуточные вершины сети.

    Ставится задача определить для заданной сети максимальную величину потока из источника в сток . Под потоком в сети из источника в сток будем понимать совокупность потоков {} по всем дугам сети, где - поток по дуге (), , равный количеству перемещаемой по ней субстанции в единицу времени. Математически задача о максимальном потоке формулируется следующим образом: найти неотрицательные значения для всех , максимизирующие

    (3.9)

    при ограничениях:

    (3.11)

    Условие (3.9) отражает величину максимального потока, который равен количеству вещества, вытекающего из источника, или притекающего в сток. Условия (3.10) означают, что поток по каждой дуге должен быть неотрицательным и не превышать ее пропускной способности; из условия (3.11) следует, что количество вещества, притекающего в любую промежуточную вершину, равно количеству вещества, вытекающего из нее.

    До сих пор мы рассматривали сети с единственным источником и стоком. На практике, однако, число источников и стоков может быть произвольным. Покажем, что с помощью незначительных изменений топологии задачи такого типа могут быть сведены к уже рассмотренным.

    Проиллюстрируем это на примере.

    Рассмотрим сеть, состоящую из трех источников и двух стоков (Рис. 3.10). Пусть, для определенности, данная сеть описывает следующую задачу.

    Места добычи нефти расположены в географических пунктах . Из мест добычи нефть транспортируется на нефтеперерабатывающие заводы через некоторые промежуточные пункты . Совокупность пунктов с соединяющими их транспортными магистралями изобразим в виде сети на Рис. 3.10, дуги соответствуют транспортным магистралям, а вершины - отдельным пунктам (местам добычи, заводам, станциям перекачки или железнодорожным станциям). Пропускные способности транспортных магистралей приписаны дугам сети. Чтобы определить, какое максимальное количество нефти можно транспортировать из мест добычи на нефтеперерабатывающие заводы, необходимо расширить сеть, добавив один фиктивный источник и один фиктивный сток (фиктивные дуги на рисунке нанесены штриховыми линиями).

    Очевидно, что величину потока как в исходной сети, так и в расширенной сети определяют пропускные способности дуг исходной сети. Таким образом, задача о максимальном потоке из множества источников во множество стоков равносильна задаче о максимальном потоке из единственного источника в единственный сток.


    Рис. 3.10. Введение фиктивного источника и стока

    Пример 3.

    Приведем пример решения задачи о максимальном потоке в Excel. Рассмотрим некоторую транспортную сеть (Рис. 3.11.). Предположим также, что транспортные потоки могут идти в обоих направлениях некоторых дуг (очевидно, данный случай является более общим и сложным для решения, чем случай односторонних транспортных потоков). На рисунке обозначены максимальные пропускные способности в обоих направлениях: например из пункта 3 в пункт 6 может быть транспортирован поток интенсивностью 4 единицы, и такой же поток – из пункта 6 в пункт 3 (нули у окончаний некоторых дуг означают невозможность транспортировки в соответствующем направлении). Требуется определить максимальную пропускную способность сети в целом, т.е. максимальное значение потока .

    Рис. 3.11. Сетевой график примера 3.

    Решение.

    Так как предполагается, что для каждого промежуточного узла сети полный входящий поток должен быть равен полному выходящему потоку, то задача может быть сформулирована следующим образом:

    Максимизировать при ограничениях:

    Введем данные на рабочий лист в соответствии с Рис. 3.12.

    Рис. 3.12. Данные для решения задачи о максимальном потоке

    Диапазон ячеек A6:Q6 отведем под расчетные значения переменных. В ячейки A8:A14, а также в целевую ячейку F13 введем следующие формулы

    C6+D6+I6-E6-H6-J6

    G6+N6+H6+K6-L6-I6-M6-P6

    F13 (целевая)

    После запуска Поиска решения введем следующие ограничения:

    В окне диалога Поиска решения в для диапазона изменяемых ячеек укажем A6:Q6.

    В результате решения получим ответ: ; потоки в дугах представлены ниже

    Пункты (узлы)

    Пункты (узлы)

    Следует отметить, что данная задача имеет неединственное оптимальное решение, то есть при максимальном потоке в 17 единиц может иметь место различное распределение потоков по дугам.

    Идея этого алгоритма состоит в поиске сквозных путей с положительными потоками от источника к стоку.

    Рассмотрим ребро (i, j) с (начальной) пропускной способностью. В процессе выполнения алгоритма части этих пропускных способностей «забираются» потоками, проходящими через данное ребро, в результате каждое ребро будет иметь остаточную пропускную способность. Запись - остаточная пропускная способность. Сеть в которой все ребра имеют остаточную пропускную способность, назовем остаточной.

    Для произвольного узла j, получающего поток из узла i, определим метку, где - величина потока, протекающего от j узла к узлу i. Чтобы найти максимальный поток, выполняем следующие действия.

    Для всех ребер положим остаточную пропускную способность равной первоначальной пропускной способности, т.е. приравняем =. Назначим и пометим узел 1 меткой. Полагаем i=1.

    Множество узлов j, в которые можно перейти из узла I по ребру с положительной остаточной пропускной способностью >0 для всех j. Если, выполняем 3 этап, в противном случае переходим к 4.

    В находим узел k, такой, что. Положим и пометим узел k меткой. Если k=n, сквозной путь найден, и переходим к 5 этапу, в противном случае полагаем i=k и возвращаемся к 2 этапу.

    Откат назад. Если i=1, сквозной путь не возможен, и переходим к 6. Если, находим помеченный узел r, непосредственно предшествующий узлу i, и удаляем его из множества узлов, смежных с узлом r. Полагаем i=r и возвращаемся ко 2 этапу.

    Определение остаточной сети. Обозначим через множество узлов, через которые проходит p_й найденный сквозной путь от узла источника (узел 1) до узла стока (узел n).тогда максимальный поток, проходящий по этому пути

    Остаточные пропускные способности ребер, составляющих сквозной путь, уменьшаются на величину в направлении движения потока и увеличиваются на эту же величину в противоположном направлении.

    Т.о. для ребра (i, j), входящего в сквозной путь, текущие остаточные пропускные способности изменяются:

    1) , если поток идет от узла i к j,

    2) , если поток идет от узла j к i.

    а) при m найденных сквозных путях максимальный поток выражается

    б) Имея значения начальных и конечных пропускных способностей ребра (i, j), можно вычислить оптимальный поток через это ребро следующим образом. Положим. Если >0, поток, проходящий через ребро (i, j) равен. Если >0, тогда поток равен. (случай, когда одновременно >0 и >0, невозможен).

    Пример 1. Найти максимальный поток в сети рис. 1

    Итерация 1. =

    3) k=3, так как. Назначаем и помечаем узел 3 меткой. i=3 и возвращаемся к 2)

    5) k=5 и. Помечаем узел 5 меткой. Получаем сквозной путь.

    6) сквозной путь определяем по меткам, начиная с узла 5 и заканчивая узлом 1: . и. Вычисляем остаточные пропускные способности вдоль пути:

    Итерация 2.

    1) и помечаем узел 1 меткой. i=1

    2») (, поэтому узел 5 не включается в

    3») k=4, и помечаем узел 4 меткой. i=4 и возвращаемся к 2)

    2""") (так как узлы 1 и 3 помечены, они не включаются в)

    3""") k=5 и. Помечаем узел 5 меткой. Получен сквозной путь. Переходим к 5)

    Итерация 3.

    1) и помечаем узел 1 меткой. i=1

    3) k=2, и помечаем узел 2 меткой. i=2 и возвращаемся к 2)

    3") k=3 и. Помечаем узел 3 меткой. i=3 и возвращаемся к 2)

    2») (так как) переходим к 4)

    4) метка узла 3 показывает номер предшествующего узла. На этой итерации узел 3 в дальнейшем во внимание не принимается, его метку вычеркиваем. и возвращаемся к 2)

    2""") (так как узел 3 удален из возможного сквозного пути)

    3""") и. Помечаем узел 5 меткой. Получен сквозной путь. Переходим к 5)

    5) и. Вычисляем остаточные пропускные способности вдоль пути:

    Итерация 4. на этой итерации получен путь с

    Итерация 5. на этой итерации получен путь с

    Итерация 6. новые сквозные пути невозможны, поскольку все ребра, исходящие из узла 1, имеют нулевые остаточные пропускные способности. Переходим к 6) для определения решения

    6) максимальный объем потока в сети равен единиц.

    Значения потоков по различным ребрам вычисляются путем вычитания последних значений остаточных пропускных способностей из первоначальных значений пропускных способностей.

    Результаты вычислений: табл. 1

    Величина потока

    направление

    (20,0) - (0,20)=(20, - 20)

    (30,0) - (0,30)=(30, - 30)

    (10,0) - (0,10)=(10, - 10)

    (40,0) - (40,0)=(0,0)

    (30,0) - (10,20)=(20, - 20)

    (10,5) - (0,15)=(10, - 10)

    (20,0) - (0,20)=(20, - 20)

    (20,0) - (0,20)=(20, - 20)

    Графическое последовательное выполнение алгоритма нахождения максимального потока (пример 1)







    д) е) Сквозных путей нет


    Рис.

    Исходные данные о транспортной системе, например, внутризаводской, приведенные на рис. 2, можно также задать таблицей (табл. 2).

    Табл.2. Исходные данные к задаче о максимальном потоке

    Очевидно, максимальная пропускная способность транспортной системы не превышает 6, поскольку не более 6 единиц грузов можно направить из начального пункта 0, а именно, 2 единицы в пункт 1, 3 единицы в пункт 2 и 1 единицу в пункт 3. Далее надо добиться, чтобы все 6 вышедших из пункта 0 единиц груза достигли конечного пункта 4. Очевидно, 2 единицы груза, пришедшие в пункт 1, можно непосредственно направить в пункт 4. Пришедшие в пункт 2 грузы придется разделить: 2 единицы сразу направить в пункт 4, а 1 единицу - в промежуточный пункт 3 (из-за ограниченной пропускной способности участка между пунктами 2 и 4). В пункт 3 доставлены такие грузы: 1 единица из пункта 0 и 1 единица из пункта 3. Их направляем в пункт 4. Итак, максимальная пропускная способность рассматриваемой транспортной системы - 6 единиц груза. При этом не используются внутренние участки (ветки) между пунктами 1 и 2, а также между пунктами 1 и 3. Не догружена ветка между пунктами 1 и 4 - по ней направлены 2 единицы груза при пропускной способности в 3 единицы. Решение можно представить в виде таблицы (табл. 3)

    Табл.3. Решение задачи о максимальном потоке

    Пункт отправления

    Пункт назначения

    План перевозок

    Пропускная способность

    Задача линейного программирования при максимизации потока. Дадим формулировку задачи о максимальном потоке в терминах линейного программирования. Пусть Х KM - объем перевозок из пункта К в пункт М. Согласно рис. 2 К = 0,1,2,3, М = 1,2,3,4, причем перевозки возможны лишь в пункт с большим номером. Значит, всего имеется 9 переменных Х KM, а именно, Х 01, Х 02, Х 03, Х 12, Х 13, Х 14, Х 23, Х 24, Х 34. Задача линейного программирования, нацеленная на максимизацию потока, имеет вид:

    Х 01 + Х 02 + Х 03 = F (0)

    Х 01 + Х 12 + Х 13 + Х 14 = 0 (1)

    Х 02 - Х 12 + Х 23 + Х 24 = 0 (2)

    Х 03 - Х 13 - Х 23 + Х 34 = 0 (3)

    Х 14 - Х 24 - Х 34 = - F (4)

    Х КМ? 0, К, М = 0, 1, 2, 3, 4

    Здесь F - целевая функция, условие (0) описывает вхождение грузов в транспортную систему. Условия (1) - (3) задают балансовые соотношения для узлов 1- 3 системы. Другими словами, для каждого из внутренних узлов входящий поток грузов равен выходящему потоку, грузы не скапливаются внутри и системы и не «рождаются» в ней. Условие (4) - это условие «выхода» грузов из системы. Вместе с условием (0) оно составляет балансовое соотношение для системы в целом («вход» равен «выходу»). Следующие девять неравенств задают ограничения на пропускную способность отдельных «веток» транспортной системы. Затем указана неотрицательность объемов перевозок и целевой функции. Ясно, что последнее неравенство вытекает из вида целевой функции (соотношения (0) или (4)) и неотрицательности объемов перевозок. Однако последнее неравенство несет некоторую общую информацию - через систему может быть пропущен либо положительный объем грузов, либо нулевой (например, если внутри системы происходит движение по кругу), но не отрицательный (он не имеет экономического смысла, но формальная математическая модель об этом «не знает»).