Использование: к гидроэнергетике, преобразование энергии волн в электрическую энергию. Сущность изобретения: волновой генератор содержит опору, вертикальный цилиндрический корпус с крышкой и днищем, в котором выполнено волноприемное отверстие, обратный клапан и преобразователь энергии волн в виде вертикального вала, жестко соединенный с крышкой корпуса, в нижней части боковой стенки которого выполнены вертикальные тангенциально расположенные щелевые отверстия. Новым является то, что в конструкции имеются второй вертикальный цилиндрический корпус, электрогенератор, волноприемные отверстия, причем второй вертикальный цилиндрический корпус подвижно связан с первым корпусом посредством вертикального вала, жестко соединенного с крышкой второго корпуса, и на валу жестко посажен магнитный кольцевой ротор электрогенератора, а статор жестко соединен с днищем первого корпуса, который связан с опорой, причем вертикальные тангенциально расположенные щелевые отверстия второго корпуса направлены в сторону противоположную таким же отверстиям первого корпуса. 3 ил.

Изобретение относится к гидроэнергетике и может быть использовано во всех отраслях народного хозяйства для создания дополнительных источников энергии. Известен волновой двигатель, содержащий вертикальный корпус с волноприемным отверстием, клапан и преобразователь энергии волн, где корпус выполнен цилиндрическим с крышкой и днищем, волноприемное отверстие выполнено в днище, клапан выполнен обратным и установлен в отверстии, преобразователь представляет собой вертикальный вал и жестко соединен с крышкой корпуса, при этом в нижней части боковой стенки корпуса выполнены вертикальные тангенциально расположенные щелевые отверстия. Недостатком известной конструкции является низкий КПД. Техническим результатом изобретения является повышение КПД. Технический результат достигается тем, что в волновом генераторе, содержащем вертикальный цилиндрический корпус с крышкой и днищем, в котором выполнено волноприемное отверстие, обратный клапан и преобразователь энергии волн в виде вертикального вала, жестко соединенный с крышкой корпуса, в нижней части боковой стенки которого выполнены вертикальные тангенциально расположенные щелевые отверстия, отличающийся тем, что дополнительно содержит второй вертикальный цилиндрический корпус, электрический генератор, опору, волноприемные отверстия, причем второй вертикальный цилиндрический корпус подвижно связан с первым корпусом посредством вертикального вала, жестко соединенного с крышкой второго корпуса, и на валу жестко посажен ротор генератора, а статор жестко соединен с днищем первого корпуса, который связан с опорой, причем вертикальные тангенциально расположенные щелевые отверстия второго корпуса направлены в сторону, противоположную таким же отверстиям первого корпуса. На фиг.1 показан волновой генератор; на фиг.2 и 3 первый и второй соответственно цилиндрические корпуса, разрез. Волновой генератор содержит вертикальный цилиндрический корпус 1 с крышкой и днищем, в котором выполнено волноприемное отверстие 2, обратный клапан 3 и преобразователь энергии волн в виде вертикального вала 4, жестко соединенный с крышкой корпуса, в нижней части боковой стенки которого выполнены вертикальные тангенциально расположенные щелевые отверстия 5. Основными отличительными признаками являются второй вертикальный цилиндрический корпус 6, электрогенератор 7, опора 8, волноприемные отверстия 9, причем второй вертикальный цилиндрический корпус 6 подвижно связан с первым корпусом 1 посредством вертикального вала 10, жестко соединенного с крышкой второго корпуса, и на валу 10 жестко посажен магнитный кольцевой ротор 11 электрогенератора 7, а статор 12 жестко соединен с днищем первого корпуса 1, который связан с опорой 8, причем вертикальные тангенциально расположенные щелевые отверстия 13 второго корпуса 6 направлены в сторону, противоположную таким же отверстиям 5 первого корпуса 1. Волновой генератор устанавливается на некоторую глубину и работает следующим образом. При увеличении гидростатического давления возрастает давление и внутри вертикальных корпусов 1 и 6. Через обратные клапана 3, установленные в волноприемных отверстиях 2 и 9 вода вливается в корпуса 1 и 6 и приводит к уменьшению объема воздушных зазоров, которые образуются при установке генератора на глубину и находятся в верхних частях корпусов 1 и 6. Далее при спаде гидростатического давления под действием упругих сил сжатого воздуха вода с реактивной силой выбрасывается через тангенциально направленные щелевые отверстия 5 и 13, что вызывает вращательное движение корпусов 1 и 6, а следовательно, магнитного кольцевого ротора электрогенератора 11 и статора 12, причем они вращаются в противоположные друг от друга стороны, так как. вертикальные тангенциально направленные щелевые отверстия 5 и 13 корпусов 1 и 6 направлены в противоположные стороны относительно друг друга. При этом магнитные силовые линии ротора 11, пронизывая обмотку статора 12, наводят в них ЭДС. Если обмотку статора замкнуть через внешнюю цепь, то в этой цепи, а также в обмотках статора 12 возникает ток.

Формула изобретения

Волновой генератор, содержащий опору, вертикальный цилиндрический корпус с крышкой и днищем, в котором выполнено волноприемное отверстие, обратный клапан и преобразователь энергии волн, выполненный в виде вертикального вала, жестко соединенного с крышкой корпуса, в нижней части боковой стенки которого выполнены вертикальные тангенциально расположенные щелевые отверстия, отличающийся тем, что он снабжен электрическим генератором и вторым вертикальным цилиндрическим корпусом с волноприемными и вертикальными тангенциально расположенными щелевыми отверстиями, причем второй корпус подвижно связан с первым посредством дополнительного вертикального вала, жестко соединенного с крышкой второго корпуса, на дополнительном валу жестко закреплен магнитный кольцевой ротор электрического генератора, статор которого соединен с днищем первого корпуса, связанного с опорой, при этом щелевые отверстия второго корпуса направлены в сторону, противоположную щелевым отверстиям первого корпуса.

Движение океанских волн сопровождается выделением фантастических объемов энергии. Однако человечество пока так и не научилось эффективно перерабатывать эту энергию для своих целей. Одна из успешнейших на данный момент попыток – волновая электростанция Oceanlinx в акватории города Порт-Кембла, Австралия.



В настоящее время в мире проводятся испытания шести волновых электростанций. Электростанция же Oceanlinx у берегов Австралии была введена в эксплуатацию еще в 2005 году, однако затем была демонтирована для реконструкции и переоборудования, и только сейчас вновь запущена в действие.


Принцип работы волновой электростанции заключается в том, что проходящие через нее волны толчками заполняют водой специальную камеру, вытесняя содержащийся в этой камере воздух. Сжатый воздух под давлением проходит через турбину, вращая ее лопасти. В результате вырабатывается электричество.


Основным элементом, определяющим эффективность работы волновой электростанции, является турбина. Из-за того, что направление движения волн и их сила постоянно меняются, обычные турбины для выработки волновой электроэнергии непригодны. Поэтому на станции Oceanlinx используется турбина Denniss-Auld c регулируемым углом поворота лопастей.

Одна силовая установка Oceanlinx обладает мощностью (в пиковом режиме) от 100 кВт до 1,5 МВт. Установка в Порт-Кембла поставляет в электросеть города 450 кВт электричества.

Волновая электростанция – это один из подвидов электростанций, использующих для выработки электроэнергии кинетическую энергию воды. В данном случае используется энергия волн морей и океанов.

Это относительно новый вид энергетики, хотя ее история насчитывает уже более 200 лет. Чаще всего волновые электростанции устанавливаются недалеко от прибрежных зон там, где потенциальная волновая активность выше всего. К таким местам относятся: западно-европейское побережье, северное побережье Англии, Тихоокеанское побережье Америки (обоих континентов), прибрежная зона Южной Африки, Австралии и Новой Зеландии.

История

Первая так называемая «волновая мельница» была запатентована Парижским патентным бюро аж в 1799 году. С этого момента инженерами и учеными производились многочисленные попытки использования кинетической энергии волн для выработки электричества . Вплоть до начала 20-го века было множество подобных изобретений, правда не одно из них так и не использовалось в промышленных масштабах.

Лишь в 1973 году после катастрофической нехватки нефтяных запасов (нефтяной кризис) интерес исследователей и ученых к альтернативной энергетике заметно возрос. Начались активно разрабатываться и создаваться, в том числе и волновые электростанции.

Первая промышленная волновая электростанция, разработка которой началась в 2005 году, была введена в эксплуатацию 23 сентября 2008 года в 5-ти километровой прибрежной зоне Португалии (район Агусадора). Ее эксплуатационная электрическая мощность составила 2,25 МВт. Сейчас она обеспечивает светом более 1,5 тыс. частных домов.

Принцип работы

Современная волновая электростанция состоит из нескольких специальных конвертеров, мощность каждого из которых может достигать 1 МВт. Каждый конвертер состоит из нескольких секций, между которыми закреплены на движимых конструкциях гидравлические поршни. К каждому поршню или системе поршней привязан гидравлический двигатель, который приводит во вращение электрический генератор .

Под действием волн конвертер начинает качаться, что приводит в движение гидравлические поршни. Последние создают в гидравлической системе, в которой находится масло, давление, а оно в свою очередь движет гидравлическими двигателями.

Один конвертер может достигать в длину до 150 метров и иметь диаметр около 3 метров. Вес одной такой установки не редко достигает 700 – 800 тонн.

Есть и другие конструкции конвертеров, которые представляют собой отдельные буи, расположенные не горизонтально, а вертикально. Принцип их работы аналогичен предыдущему с той лишь разницей, что гидравлические поршни имеют несколько иную форму.

Сложность конструкций всех существующих конвертеров заключается лишь в эксплуатационных особенностях механических их частей. Ведь волновые электростанции, как правило, находятся в соленой воде, поэтому очень важно не допустить ее контакта с металлическими элементами конвертера.

Также очень часто приходится использовать специальные приспособления (волнорезы и тормозные щиты), чтобы снизить чрезмерную энергию волны, которая с легкостью может разрушить всю конструкцию.

Удельная мощность всех волн морей и океанов намного превосходит как ветровую, так и солнечную суммарную энергию. Ученые подсчитали, что средняя эквивалентная мощность волны на нашей планете равняется примерно 15 кВт на погонный метр. И это при средней высоте волн до 1 метра. Если же волны, а это бывает не так уж и редко, достигают высоты 2 и более метров, их эквивалентная мощность может доходить до 80 кВт/м пог.

На сегодняшний день существует большое количество различных источников энергии, которые использует человек. Основными считаются конечно же , уголь и , но ведь они когда-то закончатся. К сожалению для многих, но запасов данных углеводородов осталось не так уж и много. По приблизительным расчетам ученых, газ и нефть на нашей планете закончится через 50 лет, а уголь через 400-500. Конечно подобные прогнозы делаются с учетом того, что не будет открыто новых месторождений, но все же стоит задуматься, а что если так и произойдет?!

Конечно волновые электростанции КПД которых имеет приличное значение имеют целый ряд преимуществ делающих их более перспективными перед углеводородами. Главным считается именно коэффициент полезного действия, который имеет высокие показатели. Также стоит отметить, что поплавковая волновая электростанция может также выполнять функцию волногасителя. Благодаря подобному использованию можно обезопасить берега водоемов, у которых бывают сильные приливы. Также волновые могут выполнять охрану морских границ государства, но для этого потребуется небольшое усовершенствование.

Строительство ВЭС

Во время строительства ВЭС необходимо учитывать следующие факторы получения электрической энергии:

  • Требуется брать в расчет показатели кинетической энергии волн. При попадании в трубу волновой электростанции вода оказывает давление на расположенную внутри, которая приводится в движение и вырабатывает энергию. Также данный процесс может осуществляться с помощью давления, которое оказывается водой, выталкивающей воздух из полой камеры.
  • Энергия получаемого от качения поверхности. При подобных случаях на поверхность воды устанавливаются специальные датчики, называемые поплавками. Они отслеживают профили каждой волны и преобразовывают качание в электрическую энергию.

К счастью схема ПВЭС проста, поэтому на строительство и запуск не приходится тратить больших средств, в то время как КПД приливной электростанции позволяет использовать ее даже для крупных городов побережья.

Заключение

Конечно, как и другие альтернативные способы добычи электрической энергии, данный метод не до конца изучен и разработан, но процесс идет очень хорошими темпами. На сегодняшний день даже преобразование не может на равных конкурировать с углеводородными источниками, но следует продолжать исследовать все альтернативные методы. Россия не так давно стала разрабатывать проект получения энергии из ВЭС, но у страны есть большой потенциал и возможности, которые требуется лишь реализовать на все 100%.

Сегодня главными источниками энергии считаются углеводородное сырье – нефть, уголь, газ. Как показывают исследования, угольных залежей при нынешних темпах добычи будет достаточно еще на 4 столетия, а залежи нефти и газа истощатся через 4 десятка и 6 десятков лет соответственно.

Подобное скорое сокращение количества полезных ископаемых требует поиска других методов добычи энергии. Самым многообещающим видом является такой вид гидроэнергетики как волновая.

Единая структура станций волновой энергетики

Станция волновой энергетики – это строение, находящееся на воде, способное за счет волн вырабатывать электрическую энергию. При их возведении необходимо считаться с двумя обстоятельствами:

Энергия движения волн. Волны, направляющиеся в коллектор значительной окружности, заставляют вращаться лопасти турбин, приводящие в рабочее состояние генератор. Существует и другой способ – волна движется сквозь открытую емкость, вытесняя сжатый воздух, вынуждает двигатель работать.

Энергия поверхностного качения. Здесь получение электроэнергии случается благодаря преобразователям - поплавкам, которые следят за направлением волны, находясь на плоскости воды.

Существуют следующие типы подобных поплавков:

Утка «Солтера» - подразумевает огромное число поплавков, которые установлены на одном валу. Для большей результативности данного вида поплавка нужно прикрепить на вал их до 30 штук.

Плот Коккереля представляет собой строение из 4 ячеек, имеющих соединение посредством шарнир, которые движутся из-за силы волн и заставляют работать гидроцилиндрические устройства, обеспечивающие деятельность генераторов.

Преобразователи Pelamis навеваются еще морскими змеями, сегменты в виде цилиндров соединяются шарнирным способом и под действием вол созданная «змея» изгибается, заставляя работать гидравлические поршни.

Достоинства и недостатки гидроэнергетики волн

Сегодня всего только 1% добываемой электрической энергии относится к гидроэнергетике волн, но их ресурсы огромны. Незначительное применение станций волновой энергетики объясняется дорогостоящей на выходе энергией.

Минусами применения станций волновой энергетики являются определенные условия:

Экологические. Огромное число преобразователей волн способно нанести вред экологической системе, потому что волны оказывают значительное влияние на газообмен океана и атмосферы, на очищение поверхности воды от засорений.

Социально-экономические. Определенные виды генераторов, используемые в гидроэнергетике волн, могут нанести вред судоходству. Что повлияет на работу рыбаков, которым придется покинуть крупные рыбопромышленные места.

Однако волновые электростанции помимо минусов имеют и ряд определенных достоинств:

  1. станции могут выступать в качестве волногасителей, а значит, способны защитить берега от разломов и обвалов;
  2. можно расположить волновые электрогенераторы небольшой мощности на конструкциях мостов, причалов, сокращая действие на них;
  3. значительное преимущество перед ветровой энергетикой;
  4. электроэнергия получаемая благодаря морским волнам не завит и не нуждается в углеводородном сырье, залежи которых значительно сокращаются.

Важнейшей целью создателей станций волновой энергетики является модернизация его постройки таким способом, чтобы ощутимо сократить себестоимость производимого электричества.

Территориальное возведение волновых электростанций

Возведение волновых электростанций малых мощностей используется для питания электроэнергией маленьких объектов:

Построек по береговой линии;

Малых селений;

Независимых маяков, буев;

Научных и исследовательских устройств;

Буковых установок.

Португалия

В районе Агусадора в 2008 году произошло значительное событие в гидроэнергетике – впервые начала свою работу волновая электростанция с мощностью 2,25 МВт. Разработкой занималась компания Pelamis Wave из Шотландии, которая подписала с Португалией договор на 8 млн. евро.

На данный момент на станции работают 3 преобразователя по типу змеи, которые на половину находятся в воде. Одна «змея» имеет длину в 120 метров, а весит 750 тонн. Сама станция располагается в 5 км от береговой линии, на нее по кабелям поступает электричество. На станции проводятся работы, способствующие росту мощности этой волновой станции до 21 МВт, в планах установить 25 дополнительных преобразователей, что позволит снабдить электричество 15 тысяч домов.

Норвегия

Появление волновых станций для промышленных целей зафиксировано в 85-м году XX века в Норвегии.

Эта станция – воздушное волновое сооружение, имеет мощность до 500 кВт. Ее опускают на самый низший слой поверхности воды.